Способ формирования контурной диаграммы направленности антенной решетки

Изобретение относится к антенной технике и может быть использовано для управления комплексными взвешивающими устройствами в каналах антенных решеток по критерию максимума заданного энергетического функционала. Техническим результатом изобретения является формирование диаграммы направленности произвольной формы за счет управления комплексными взвешивающими устройствами антенной решетки. Способ формирования контурной диаграммы направленности антенной решетки, основанный на взвешивании сигналов, принятых каждым излучателем, и последующем их суммировании, при котором комплексные весовые коэффициенты находят как главный вектор пучка эрмитовых форм, соответствующий наибольшему характеристическому числу пучка, отличающийся тем, что в качестве первой эрмитовой формы выбирают квадрат среднего значения амплитудной диаграммы направленности в пространственном секторе произвольной формы Ωг, который задают весовой функцией µ(u, v), где u и v - направляющие косинусы, а в качестве второй эрмитовой формы выбирают среднее значение полной диаграммы направленности антенной решетки по мощности. 4 ил.

 

Изобретение относится к антенной технике и может быть использовано для управления комплексными взвешивающими устройствами антенных решеток (АР) по критерию максимума заданного интегрального параметра.

Известен способ формирования диаграммы направленности (ДН) антенной решетки (АР), основанный на взвешивании сигналов, принятых каждым излучателем, с помощью комплексных весовых коэффициентов (КВК) [1], определяемых путем решения оптимизационной задачи по критерию минимума квадратичного функционала

где , Fзад(u) - нормированные формируемая контурная и заданная ДН; - вектор комплексных амплитуд токов в элементах АР порядка N, N - общее число элементов АР; - операция, имеющая смысл векторной среднеквадратичной нормы; u - обобщенная координата.

Недостатком известного способа [1] является приближенность получаемого решения задачи формирования контурной ДН, обусловленная используемым функционалом. Точное аналитическое решение задачи минимизации функционала (1) имеет место только при выполнении условия М=N, где М - число узловых точек формируемой ДН, что неприемлемо для формирования контурных ДН сложной формы (в общем случае произвольной формы). При формировании контурной ДН справедливы (в зависимости от степени сложности формы ДН) условия М>N или М>>N, при которых решение оптимизационной задачи по критерию минимума функционала (1) получают приближенным в среднеквадратичном смысле, при этом для определения КВК используют псевдообратную матрицу, что существенно усложняет вычислительный алгоритм.

Более близким по технической сущности является способ формирования ДН АР, основанный на оптимизации интегральных параметров АР, например на максимизации отношения сигнал/помеха+шум (ОСПШ), основанный на взвешивании сигналов, принятых каждым излучателем, с помощью КВК и последующем их суммировании [2], в соответствии с которым КВК находят как главный вектор пучка эрмитовых форм, соответствующий наибольшему характеристическому числу пучка [3].

Существо известного способа [2] заключается в представлении максимизируемого интегрального параметра АР, например ОСПШ, в виде отношения эрмитовых форм

где A и B - эрмитовы матрицы N-го порядка с элементами

в которых fn(u) - парциальная диаграмма АР, полученная при возбуждении n-го элемента волной единичной амплитуды и нулевой фазы; m, n=1, 2, …, N. T(u) - функция, нормированная к собственным шумам антенны, описывающая шумы и помехи на входе АР

В (2) и далее * - символ, имеющий смысл эрмитова сопряжения матрицы или комплексного сопряжения скалярной величины; u0 - направление прихода сигнала; Рп, uп - относительный уровень помехи и направление ее прихода соответственно.

Решением задачи оптимизации является N - мерный вектор-столбец КВК , определяемый с использованием теоремы об экстремальных свойствах характеристических чисел пучка эрмитовых форм [3]. Поскольку отношению эрмитовых форм (1) соответствует пучок эрмитовых форм

то в общем случае максимум (2) равен максимальному характеристическому числу пучка эрмитовых форм (3), а обеспечивается этот максимум собственным вектором пучка (3), соответствующим его максимальному собственному числу [3].

Если матрица А в (2) и (3) первого ранга, т.е. для нее справедливо представление , где - вектор-строка с элементами fn(u), тогда согласно [2] максимум (2) имеет значение

а вектор оптимальных КВК определяется выражением

Недостатком известного способа является то, что он не может быть применен для формирования контурной ДН.

Предлагаемый способ направлен на устранение упомянутых выше недостатков известных способов.

Структурная схема устройства, функционирующего по предлагаемому способу, представлена на фиг.1. На фиг.2 показана весовая функция µ(u, v), которую используют для формирования контурной ДН. На фиг.3 и 4 представлены контурные ДН АР, сформированные предложенным способом.

Рассмотрим существо предлагаемого способа. Как и в прототипе [2], сигналы, принятые каждым излучателем, взвешивают с помощью КВК, далее эти сигналы суммируют, в результате чего формируют контурную ДН. Вектор КВК находят как главный вектор пучка эрмитовых форм, соответствующий наибольшему характеристическому числу пучка.

Однако в отличие от прототипа при определении КВК для каждого излучателя используют информацию о форме заданной контурной ДН, которую учитывают с использованием весовой функции µ(u, v), где u и v - направляющие косинусы, в связи с чем в качестве первой эрмитовой формы выбирают квадрат среднего значения амплитудной ДН в пространственном секторе произвольной формы Ωг, который задают весовой функцией µ(u, v), а в качестве второй эрмитовой формы выбирают среднее значение полной ДН АР по мощности.

Проведенный сравнительный анализ заявленного способа и прототипа показывает - заявленный способ отличается тем, что изменены условия выполнения операции взвешивания, поскольку при определении КВК для каждого излучателя используют информацию о форме заданной контурной ДН, которую учитывают с использованием весовой функции µ(u, v), где u и v - направляющие косинусы, в связи с чем в качестве первой эрмитовой формы выбирают квадрат среднего значения амплитудной ДН в пространственном секторе произвольной формы Ωг, который задают весовой функцией µ(u, v), а в качестве второй эрмитовой формы выбирают среднее значение полной ДН АР по мощности.

В соответствии с предлагаемым способом формирования контурной ДН используют энергетический функционал

числитель которого отражает квадрат среднего значения амплитудной ДН в пространственном секторе произвольной формы Ωг. Функционал (6) отличается от известного [2] новой весовой функцией µ(u, v), описывающей требуемую форму главного максимума ДН, т.е. требуемую контурную ДН.

Числитель функционала (6) преобразуют в эрмитову форму

где AK - эрмитова матрица порядка N с элементами

Знаменатель функционала (6) имеет смысл среднего значения полной ДН АР по мощности, который аналогично преобразуют в эрмитову форму

где BK - эрмитова матрица порядка N с элементами

С учетом (7) и (9) функционал (6) преобразуют к отношению эрмитовых форм

Поскольку матрица AK первого ранга, то вектор КВК, , максимизирующий (6) и формирующий контурную ДН, определяют выражением

где - вектор-строка порядка N с элементами

Таким образом, в отличие от известного способа [1], при изменении формы контурной ДН для определения вектора КВК, формирующего заданную ДН, достаточно рассчитать N элементов вектора и выполнить операцию (10). При использовании известного способа [1] для решения аналогичной задачи потребуется рассчитать в общем случае N*M элементов, что существенно сложнее.

Работа устройства, функционирующего по предложенному способу, может быть проиллюстрирована с помощью фиг.1. Информация о форме главного максимума контурной ДН µ(u, v) поступает на вход 1 вычислителя КВК 2. Принятые каждым излучателем 3 сигналы взвешивают с помощью устройств комплексного взвешивания 4 в соответствии с КВК, поступающими от вычислителя 2, при определении которых используют выражение (10). Сигналы с выходов устройств комплексного взвешивания поступают на вход сумматора 5, на выходе которого 6 формируют контурную ДН заданной формы.

Потенциальные возможности предложенного способа формирования контурных ДН проиллюстрируем на примере АР изотропных излучателей, элементы которой размещены в узлах прямоугольной сетки с шагом, равным половине длины волны и образуют «квазикруглый» раскрыв (выбрана центральная часть плоской АР с квадратным раскрывом 33×33 элементов).

На фиг.2 показана заданная форма главного максимума контурной ДН, т.е. весовая функция µ(u, v).

На фиг.3 показана в виде поверхности сформированная предложенным способом объемная контурная ДН. Из фигуры видно, что форма главного максимума соответствует заданной весовой функции. Более наглядно результаты реализации способа формирования контурной ДН иллюстрирует фиг.4, где показана сформированная контурная ДН в виде линий уровня.

Таким образом, предлагаемый способ формирования контурных ДН позволяет сформировать с существенно меньшими вычислительными затратами диаграммы АР с главным максимумом любой степени сложности.

Предлагаемый способ может быть применен также к АР с направленными идентичными и к АР с неидентичными (например, искаженными взаимными связями) излучателями.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Зелкин Е.Г., Соколов В.Г. Методы синтеза антенн: Фазированные антенные решетки и антенны с непрерывным раскрывом. - М.: Сов. радио, 1980.

2. Cheng D.K. Optimization techniques for antenna arrays // IEEE Proc. 1971. V.59. №12. P.1664.

3. Гантмахер Ф.Р. Теория матриц. 4-изд. М.: Наука. Гл. ред. физ.-мат.лит., 1988.

Способ формирования контурной диаграммы направленности антенной решетки, основанный на взвешивании сигналов, принятых каждым излучателем, и последующем их суммировании, при котором комплексные весовые коэффициенты находят как главный вектор пучка эрмитовых форм, соответствующий наибольшему характеристическому числу пучка, отличающийся тем, что в качестве первой эрмитовой формы выбирают квадрат среднего значения амплитудной диаграммы направленности в пространственном секторе произвольной формы Ωг, который задают весовой функцией µ(u, v), где u и v - направляющие косинусы, а в качестве второй эрмитовой формы выбирают среднее значение полной диаграммы направленности антенной решетки по мощности.



 

Похожие патенты:

Изобретение относится к антенной технике, в частности к активным пространственным передающим антенным решеткам миллиметрового диапазона волн, и может быть использовано при создании антенн с немеханическим качанием луча антенны для сверхскоростной (более 15 Гбит/с) спутниковой информации.

Изобретение относится к антенной технике и может быть использовано для оптимального управления комплексными взвешивающими устройствами в каналах антенных решеток по критерию максимума отношения сигнал/шум + помеха.

Изобретение относится к антенной технике и может быть использовано в радиотехнических системах связи при приеме широкополосных сигналов в условиях воздействия широкополосных помех.

Изобретение относится к антенному устройству и системе беспроводной связи. .

Изобретение относится к антенной технике и может быть использовано для решения задачи формирования провала в диаграммах направленности (ДН) плоских фазированных антенных решеток (ФАР) путем изменения лишь фаз возбуждений ее элементов.

Изобретение относится к антенной технике и может быть использовано для оптимального управления комплексными взвешивающими устройствами в каналах моноимпульсных антенных решеток (MAP).

Изобретение относится к радиолокации, в частности к активной фазированной антенной решетке (АФАР), управляемой как по направлению излучения и приема, так и по параметрам зондирующего сигнала, работающей в составе импульсно-доплеровской бортовой радиолокационной станции (БРЛС).

Изобретение относится к области способов управления формированием требуемых характеристик амплитудно-фазового распределения поля (АФР) в раскрыве адаптивной антенной решетки (ААР).

Изобретение относится к антенной технике и может быть использовано для решения задачи подавления бокового излучения диаграмм направленности (ДН) линейных фазированных антенных решеток путем изменения лишь фаз возбуждений элементов ФАР.

Изобретение относится к антенной технике и может быть использовано для пространственного подавления помех путем формирования провалов («нулей») в диаграммах направленности фазированных антенных решеток (ФАР) в направлениях источников помех. Технический результат - повышение оперативности управления решеткой за счет возможности подавления лепестков высокого уровня. Для этого способ основан на взвешивании сигналов, принятых каждым излучателем, с помощью весовых коэффициентов, весовые коэффициенты находят как вектор, минимизирующий функционал ошибки, при определении которого используют информацию о направлении на источник сигнала и о распределении источников помех, в качестве максимизируемого функционала выбирают отношение мощности сигнала, принимаемого с заданного направления, к сумме мощностей шумов и помех, принимаемых антенной, а в качестве оптимального вектора весовых коэффициентов выбирают вектор, минимизирующий функционал ошибки. 1 ил., 1 табл.

Изобретение относится к фазированным (ФАР) и активным фазированным антенным решеткам (АФАР), состоящим из приемных каналов, выходные сигналы которых оцифровываются с помощью аналогово-цифровых преобразователей и обрабатываются в процессорах бортовых цифровых вычислительных машин радиолокационных станций, головок самонаведения или систем радиопротиводействия. Техническим результатом является обеспечение углового сверхразрешения, мерой которого является ширина «сжатой» диаграммы направленности антенны (ДНАСЖ); уменьшение шумовой ошибки измерения угловых координат; и уменьшение времени обзора заданного сектора пространства за счет расширения диаграммы направленности антенны (ДНА). Это достигается за счет дополнительной обработки кодов цифровых выходных сигналов приемных каналов цифровой ФАР (АФАР) и формирования «сжатой» ДНАСЖ параллельно с обычной (несжатой) ДНА и совместной их обработки, а также формирования расширенной диаграммы направленности ФАР (АФАР). 7 ил.

Изобретение относится к области радиотехники. Технический результат - повышение предела подавления помеховой импульсной мощности в узкополосных приемно-передающих каналах радиотехнических систем, работающих в диапазоне СВЧ, в условиях короткоимпульсных помеховых воздействий большой мощности при проведении испытаний на электромагнитную совместимость. Устройство защиты узкополосных приемно-передающих каналов радиотехнических систем, содержащее основную и дополнительную антенны, соединенные вычитающим элементом, содержит еще N≥1 пару из основной и дополнительной антенн и N≥1 вычитающий элемент, а также (N+1) узкополосных фильтров, которые образуют (N+1) взаимно ортогональных идентичных плеча устройства, состоящих каждое из одной пары основной и дополнительной антенн и последовательно включенных вычитающего элемента и узкополосного фильтра, при этом все антенны выполнены резонансными и идентичны друг другу, антенны попарно - основная и дополнительная - связаны с вычитающим элементом и фильтром, выполненными в виде объединенных отрезков экранированного волновода, в котором установлен режим бегущей волны, связь основной и дополнительной антенн с соответствующим волноводным вычитающим элементом в каждом плече осуществляется таким образом, чтобы синфазные сигналы с этих антенн возбуждали в волноводе противофазные поперечные пучности волноводного распределения электромагнитного поля. 3 ил.

Изобретение относится к радиолокации, а именно к широкополосным антенным системам, рабочий диапазон частот которых перекрывает несколько октав. Технический результат - расширение диапазона рабочих частот комбинированной антенной системы, работающей в активном и пассивном режимах. Широкополосная антенная система содержит комбинированную моноимпульсную антенну Кассегрена с возбуждением от фазированной антенной решетки, работающую в высокочастотном диапазоне, в которую вводится кольцевая антенная решетка из K логопериодических вибраторных антенн и широкополосный приемник, при этом логопериодические вибраторные антенны расположены между параболическим цилиндром и плоскостью, ортогональной продольной оси антенны и проходящей через ось вращения твист-рефлектора, ориентированы параллельно оси антенной системы в направлении полета летательного аппарата и находятся в плоскости, касательной к образующей цилиндра, ограничивающего поперечные размеры антенной системы, элементы логопериодических вибраторных антенн выполнены в виде полосковых проводников, расположенных с двух сторон плоской диэлектрической платы. 3 ил.

Изобретение относится к радиолокации, точнее к фазированным антенным решеткам (ФАР) СВЧ диапазона, и может быть использовано в пассивной и активной радиолокации для осуществления непрерывного параллельного контроля пространства. Технический результат - возможность формирования одновременно существующего веера (пучка) остронаправленных лучей, покрывающих весь контролируемый телесный угол как одномерной (линейной), так и двумерной антенной решеткой. Для этого многолучевая СВЧ линейная антенная решетка включает N приемопередающих модулей, каждый из которых имеет антенный элемент, усилитель с СВЧ переключателями, делитель СВЧ и диаграммообразующее устройство. Двумерная антенная решетка содержит P линейных многолучевых СВЧ антенных решеток. Каждая линейная решетка является строкой, при этом на каждой M плате элементарных сумматоров дополнительно выполнен делитель СВЧ на K каналов, подключенный к выходу монолитного усилителя. Выходы каналов делителей каждой платы в каждой строке сдвинуты на шаг, равный L/M, где L - длина платы. Выходы строки соединены вертикальными столбцами, являющимися диаграммообразующими устройствами. Общее число выходов плат слолбцов в режиме приема равно M×K, причем каждый выход соответствует своему лучу в пространстве. В режиме передачи выходы К плат М столбцов преобразуются во входы каналов (лучей), излучаемых АФАР. 2 н.п. ф-лы, 7 ил.

Изобретение относится к полосковой СВЧ антенной технике, в частности к распределительной системе для фазированной антенной решетки. Технический результат - формирование оптимальных амплитудных распределений для суммарной и разностной диаграмм направленности (ДН), возможность реализации в сантиметровом и дециметровом диапазонах длин волн. Для этого распределительная система для ФАР состоит из двух основных и двух дополнительных линейных делителей мощности с последовательной схемой деления, выполненных на направленных ответвителях, объединенных между собой фазирующими секциями. Входы линейных делителей мощности соединены с выходами суммарно-разностной схемы, имеющей один суммарный и один разностный входы. Выходы распределительной системы выполнены в виде коаксиально-полосковых переходов, к части выходов направленных ответвителей дополнительных линейных делителей мощности присоединены согласованные нагрузки, в качестве которых применены полосковые корпусные СВЧ-резисторы. Распределительная система конструктивно выполнена в виде слоистой структуры, содержащей подложку с нанесенным на нее рисунком центральных проводников симметричной полосковой линии, установленной между слоями диэлектрика. Слои металла представляют собой экраны симметричной полосковой линии, на которых закреплены выходные коаксиально-полосковые переходы. 7 з.п. ф-лы, 4 ил.

Использование: для формирования компенсационной диаграммы направленности в плоской антенной решетке. Сущность изобретения заключается в том, что осуществляют прием сигналов антенными элементами плоской антенной решетки с электронным сканированием лучом и суммируют их, формируя остронаправленную сканирующую диаграмму направленности плоской антенной решетки с использованием выбранных комплексных амплитуд антенных элементов с учетом требуемого превышения уровня компенсационной диаграммы направленности над уровнем боковых лепестков остронаправленной сканирующей диаграммы направленности. Формирование слабонаправленной диаграммы направленности производят путем суммирования сигналов антенных элементов, расположенных в центральных ортогональных линейках плоской антенной решетки, с комплексными амплитудами, соответствующими комплексным амплитудам антенных элементов плоской антенной решетки в направлении на источник полезного сигнала. Для формирования компенсационной диаграммы направленности вычитают сигнал, соответствующий остронаправленной сканирующей диаграмме направленности, из сигнала, соответствующего слабонаправленной диаграмме направленности, умноженной на весовой коэффициент, равный отношению норм остронаправленной сканирующей и слабонаправленной диаграмм направленности при ориентации луча плоской антенной решетки в направлении нормали к плоскости раскрыва. Технический результат: обеспечение требуемого превышения уровня компенсационной диаграммы направленности над уровнем боковых лепестков остронаправленной сканирующей диаграммы направленности плоской антенной решетки в широком секторе углов при сохранении чувствительности приемной системы. 12 ил.

Изобретение относится к радиотехнике, в частности к средствам приема и передачи радиоволн. Приемо-передающий модуль активной фазированной антенной решетки содержит передающий и приемный каналы, первое, второе и третье направленное устройство разделения падающей и отраженной мощностей, защитное устройство, выпрямитель, согласованную нагрузку, обратноходовой преобразователь. Вход падающей мощности первого направленного устройства соединен с выходом передающего канала, а выход отраженной мощности соединен с входом падающей мощности второго направленного устройства, которое через защитное устройство соединено с входом приемного канала. Выход отраженной мощности второго направленного устройства разделения падающей и отраженной мощностей подключен к входу падающей мощности третьего направленного устройства, подключенному к выпрямителю, нагруженному на вход обратноходового преобразователя, выход которого подключен к цепи питания передающего канала. Выход отраженной мощности третьего направленного устройства разделения падающей и отраженной мощностей подключен к согласованной нагрузке. Технический результат - повышение КПД антенной решетки. 2 ил.

Изобретение относится к антенной технике. Техническим результатом является формирование провалов в диаграммах направленности (ДН) плоских фазированных антенных решеток (ФАР) в нескольких заданных направлениях, имеющих угловые координаты в сферической системе кординат. Способ формирования провалов в ДН плоской ФАР состоит в оценке уровня исходной диаграммы направленности N-элементной ФАР, выделении в раскрыве двух M-элементных подрешеток и введении фазовых поправок, со знаком минус для элементов одной подрешетки и со знаком плюс для элементов другой подрешетки. Для формирования провалов в ДН плоской ФАР в нескольких заданных направлениях оценку уровня исходной диаграммы направленности N-элементной ФАР осуществляют в К заданных направлениях, которые задают двумя угловыми координатами θнапр i и φнапр I, выбирают К эквивалентных линейных раскрывов, углы которых равны значениям координат К направлений φнапр i, вычисляют возбуждение этих раскрывов, после выделения в каждом эквивалентном линейном раскрыве двух M-элементных подрешеток, расположенных на его краях, величины их фазовых поправок выбирают равными по абсолютному значению из условия заданных глубины, ширины и координаты θнапр i провала. Фазовые поправки, вычисленные для формирования провалов, вносят на элементы ФАР, образующие данный эквивалентный линейный раскрыв, при условии что M-элементные подрешетки К эквивалентных линейных раскрывов формируются несовпадающими элементами ФАР, где θнапр i и φнапр i - заданные направления в сферической системе координат, a θнапр i отсчитывается от нормали к плоскости раскрыва ФАР; i - порядковый номер заданного направления, i=1…К; К - количество заданных направлений. 22 ил.

Изобретение относится к области радиосвязи. Заявлены антенная система и базовая станция, содержащая данную антенную систему; причем особенностью заявленной антенной системы является то, что модуль массива TRX выполнен с возможностью передавать сигналы передачи во входной порт модуля матрицы Батлера; модуль матрицы Батлера выполнен с возможностью генерировать первые сигналы посредством обработки сигналов передачи и передавать первые сигналы во входные порты модуля фидерной сети через выходные порты модуля матрицы Батлера; а модуль фидерной сети выполнен с возможностью генерировать вторые сигналы посредством обработки первых сигналов и передавать вторые сигналы в модуль массива антенных элементов через выходные порты модуля фидерной сети; модуль матрицы Батлера выполнен так, что сигналы, подаваемые на первый входной порт и второй входной порт модуля матрицы Батлера, представляют собой разные сигналы передачи, а сигналы, выводимые из выходных портов с первого по четвертый модуля матрицы Батлера, представляют собой первые сигналы, соответствующие упомянутым разным сигналам передачи. Техническим результатом является уменьшение потерь в фидере, обеспечение более удобной возможности регулирования вертикальной и горизонтальной характеристик лучей антенны. 2 н. и 2 з.п. ф-лы, 6 ил.

Изобретение относится к антенной технике и может быть использовано для управления комплексными взвешивающими устройствами в каналах антенных решеток по критерию максимума заданного энергетического функционала

Наверх