Способ переработки березовой коры с получением бетулина и субериновых кислот

Изобретение относится к химической переработке березовой коры с получением бетулина и субериновых кислот. Способ включает экстракцию бетулина из бересты метилтретбутиловым эфиром. Затем кору обрабатывают водным раствором NaOH. Водно-щелочной раствор, сливаемый с бересты для извлечения субериновых кислот, обрабатывают раствором серной кислоты. Очистку бетулина от примесей в органическом экстракте осуществляют концентрированием с последующей горячей отмывкой раствором NaOH, а затем водой, при одновременной отгонке остаточного метилтретбутилового эфира из бетулина. Способ позволяет получить бетулин и субериновые кислоты без использования стадий дополнительной очистки. Преимуществами способа являются экологическая безопасность и экономичность. 2 з.п. ф-лы, 2 пр.

 

Изобретение относится к химической переработке лесотехнических отходов, конкретно к переработке березовой коры с получением бетулина и субериновых кислот.

Береста, являющаяся крупнотоннажным отходом лесопереработки, представляет собой источник ряда ценных компонентов, таких как бетулин и субериновые производные.

Бетулин (содержание в бересте до 30%), относящийся к тритерпеноидам ряда лупана, проявляет различные виды биологической активности [Т.Г.Толстикова, И.В.Сорокина, Г.А.Толстиков, А.Г.Толстиков, О.Б.Флехтер, Биоорганическая Химия, 2006, т.32, №1, с.42-55]. Бетулин широко используют в синтетических целях, в основном, для получения соединений, представляющих интерес в качестве фармпрепаратов, в частности для получения производных бетулиновой кислоты, для которых известна противоопухолевая и анти-ВИЧ активность [Р.Yogeeswari, D.Sriram, Curr. Med. Chem., 2005, 12, p.657, R.Cichewicz, S.Kouzi, Med. Res. Rev., 2003, 24, p.90], поэтому важным является получение бетулина с содержанием >90%.

Соли субериновых кислот получают гидролитической щелочной обработкой трудноэкстрагируемого полиэфира суберина (содержание суберина в бересте от 20 до 30% мас.) [R.Ekman, Holzforschung, 1983, 37, 205]. Субериновые кислоты представляют интерес для производства средств защиты растений [Р.Schweizer, G.Felix, A.Buchala, C.Muellerand J.-P.Metraux, Plant J., 1996, 10, p.331-341], разработки средств защиты кожи [S.Hamanaka, M.Hara, H.Nishio, F.Otsuka, A.Suzuki, Y.Uchida, J. Invest. Dermatol., 2002, 119, pp.416-423], для производства пленкообразующих средств [Е.Г.Судакова, Б.Н.Кузнецов, И.П.Ивановский, Н.М.Иванченко, Хим. Раст. Сырья, 2004, 1, с.31-34].

Бетулин и суберин являются главными компонентами бересты, поэтому комплексная переработка сырья с выделением бетулина и субериновых кислот является актуальной.

Известен способ получения бетулина, по которому бересту экстрагируют метил-третбутиловым эфиром, для отделения примесей промывают экстракт раствором неорганического основания, экстракт упаривают на роторном испарителе [Юнусов М.С., Комиссарова Н.Г., Беленкова Н.Г., пат. РФ 2270202 от 19.07.2004]. Однако по данному способу не получают суберин, кроме этого, значительное количество метил-третбутилового эфира остается после экстракции на бересте и безвозвратно теряется, концентрирование экстрактов в вакууме также приводит к потерям растворителя. Для отмывки бетулина от примесей используется дополнительная стадия, требующая применения специального оборудования.

Известен способ, включающий экстракцию бетулина из бересты двуокисью углерода в сверхкритических условиях с последующим гидролизом и извлечением солей субериновых кислот обработкой водно-спиртовым раствором неорганического основания [патент US 6634575 21.10.2003]. Недостатками способа являются сложность оборудования для сверхкритической CO2-экстракции при высоком давлении, низкое содержание бетулина в концентратах CO2-экстрактов, а также большие потери спиртовых растворов на стадии извлечения субериновых веществ, связанные с невозможностью регенерации с отработанной бересты.

Известны способы совместного получения бетулина и суберина, включающие предварительный гидролиз бересты паром в присутствии щелочей с последующей совместной экстракцией бетулина и солей субериновых кислот алифатическими спиртами.

Так, известен способ получения суберина из коры березы путем гидролиза в водно-спиртощелочной или в водно-щелочной среде с последующим подкислением гидролизата, отличающийся тем, что кору предварительно подвергают активации при давлении 3-5 МПа, температуре 180-260°С и продолжительности активации 60-360 с [Левданский В.А.; Еськин А.П.; Полежаева Н.И.; Кузнецов Б.Н. Пат. РФ 2119503, 27.09.1998]. По данному способу получают также бетулин, который экстрагируют совместно с солями субериновых кислот водным спиртом. Недостатком является загрязнение бетулина продуктами гидролиза (производными спиртов, полифенолами, кислотами, в том числе субериновыми), поэтому использование получаемого по данному способу технического бетулина для синтеза неприемлемо, а очистка является трудоемкой.

Описаны также способы обработки бересты, по которым совместная экстракция солей субериновых кислот и бетулина осуществляются одновременно с гидролизом суберина при использовании спиртового раствора щелочи. Так, известен способ получения бетулина и суберината натрия из бересты, включающий экстракцию бетулина из бересты в экстракторе органическими растворителями, смешивающимися с водой, в замкнутом экстракционном технологическом комплексе, последующую обработку проэкстрагированной бересты при нагревании и перемешивании водно-спиртовой щелочью без выгрузки из экстрактора, фильтрацию горячей реакционной массы с отделением нерастворимого остатка целлолигнина, упаривание фильтрата натриевых солей субериновых кислот [Кислицин А.Н., Клабукова И.Н., Трофимов А.Н., пат. РФ 2306318 от 31.08.2005]. Данный способ является наиболее близким аналогом - прототипом настоящего изобретения.

Недостатками способа-прототипа являются следующие:

- Загрязнение бетулина продуктами гидролиза (соли жирных кислот, полифенолы, спирты). Большое количество поверхностно-активных веществ существенно затрудняют очистку бетулина.

- В случае получения очищенного бетулина по способу-прототипу в качестве экстрагента используется толуол (который является высококипящим и токсичным). Для получения очищенного бетулина по способу-прототипу требуется дополнительная промывка толуольного экстракта.

- При получении чистого бетулина по способу-прототипу получение субериновых кислот не предполагается, поскольку необходимо использование двух различных органических растворителей.

- Для совместной экстракции используется водорастворимый экстрагент - азеотроп изопропилового спирта, что делает практически невозможным регенерацию экстрагента с отработанного сырья и приводит к высоким потерям экстрагента на бересте после экстракции и на бетулине во время сушки.

- Экстрагированная береста содержит до 100-300% остатков растворителей по весу, является пожароопасной; токсичные пары растворителей, испаряющиеся с отвалов, попадают в атмосферу, при использовании отходов бересты от экстракции в качестве добавки в почву остатки растворителей загрязняют последнюю и токсичны для растений.

Другим недостатком использования водно-спиртовых растворов для экстракции является низкая растворимость бетулина, поэтому требуется большое количество экстрагента в цикле.

Задачей настоящего изобретения является создание нового экологически безопасного и экономичного способа переработки березовой коры с получением бетулина, который может быть использован в синтетических целях, и субериновых кислот.

Поставленная задача решается способом, по которому бересту для извлечения бетулина экстрагируют несмешивающимся с водой легкокипящим растворителем - метил-третбутиловым эфиром, а получение раствора солей субериновых кислот (из которого получают субериновые кислоты) осуществляется после извлечения бетулина горячей водно-щелочной обработкой бересты с одновременной гидродистилляцией экстрагента, который возвращают в процесс. Концентрированием органического экстракта с сопутствующей отмывкой примесей кислот и фенолов получают чистый бетулин. Субериновые кислоты получают подкислением водно-щелочного экстракта.

Предлагаемый способ переработки березовой коры с получением бетулина и субериновых кислот заключается в следующем.

Бересту экстрагируют 3 раза метил-третбутиловым эфиром при температуре, близкой к температуре кипения, экстракт сливают и направляют в аппарат-концентратор для выделения и очистки бетулина. В экстрактор добавляют водный раствор неорганического основания и гидролизуют суберин бересты, одновременно удаляют гидродистилляцией метил-третбутиловый эфир с экстрагированной бересты. Водный раствор солей сливают, фильтруют и подкисляют с получением субериновых кислот.

Бетулин получают концентрированием органического экстракта при атмосферном давлении, причем на конечной стадии концентрирования остаток подвергают обработке горячим водным раствором щелочи для удаления остаточного растворителя гидродистилляцией, при этом одновременно осуществляется очистка бетулина от примесей кислот и разрушение примесей сложных эфиров, которые удаляют в виде водных растворов солей фильтрованием.

Предлагаемый способ переработки березовой коры с получением бетулина и субериновых кислот отличается следующим:

- гидролиз бересты и экстракцию солей субериновых кислот осуществляют водной щелочью после экстракции бетулина, что позволяет избежать загрязнения бетулина жирными кислотами, спиртами, полифенолами и получать бетулин чистотой более 90% по сравнению с другими известными совместными способами получения бетулин+суберин, в которых гидролиз осуществляется спиртовой щелочью и предшествует экстракции бетулина и солей субериновых кислот или осуществляется с таковой одновременно;

- очистку и концентрирование экстракта бетулина осуществляют совместно, при нагревании, что позволяет эффективно разрушать остаточные количества экстракционных примесей сложноэфирного характера и удалять кислые примеси;

- гидролиз бересты совмещают с регенерацией экстрагента с бересты;

- очистку бетулина осуществляют совместно с гидродистилляцией растворителя с бетулина.

Преимуществом предлагаемого способа переработки березовой коры является совместное получение чистого бетулина, который может быть использован в синтетических целях, а также субериновых кислот из одного сырья (комплексная переработка сырья). При этом используется только один органический растворитель, исключается использование высококипящего токсичного толуола, необходимого для получения чистого бетулина по способу-прототипу.

Экологическая чистота при реализации процесса по предлагаемому способу заключается в предотвращении выбросов паров органических растворителей в атмосферу или попадания их в почву. Это достигается тем, что водно-щелочную экстракцию, осуществляемую после слива органического экстракта с древесной зелени, проводят с одновременной отгонкой с водяным паром и конденсацией остаточного органического растворителя с бересты.

Экономические преимущества заявляемого способа заключаются в снижении затрат на органический экстрагент, который возвращают в процесс для извлечения бетулина. Используемый способ позволяет получить чистый бетулин 90%+, субериновые кислоты с использованием одного вида органического растворителя, а также регенерировать экстрагент с отработанного сырья.

Уменьшается общее количество используемого органического растворителя, так как органический экстрагент используется только для экстракции бетулина, для извлечения субериновых веществ используется водная щелочь.

По предлагаемому способу метил-третбутиловый эфир, остающийся на слое экстрагируемого сырья, а также МТБЭ на слое бетулина при концентрировании экстрактов удаляют гидродистилляцией и собирают, что позволяет существенно снизить затраты на экстракцию и избежать выбросов летучих органических веществ в атмосферу или попадания растворителей в почву.

Бетулин сушат от влаги на воздухе, не требуется применение специальных условий, как в случае осушки от органических растворителей.

По предлагаемому способу исключается использование дополнительного оборудования для промывки органических экстрактов, содержащих бетулин, очистку от примесей осуществляют на стадии концентрирования с одновременной отгонкой растворителя.

Изобретение иллюстрируется следующими примерами.

Пример 1. Экстракция и очистка бетулина

Воздушно-сухую измельченную бересту (35 кг) в мешках из бязи заливают 350 л метил-третбутилового эфира (МТБЭ) и нагревают подачей пара в рубашку аппарата до температуры кипения экстрагента ~55°С. Экстракт выдерживают при температуре 50-55°С в течение 4 час, после чего экстракт (250 л) сливают через фильтр и отправляют на установку концентрирования экстракта (аппарат с рубашкой). Операцию экстракции проводят всего 3 раза, при добавлении метил-третбутилового эфира (250 л) и выдерживании 4 час при температуре 50-55°С. Вторая и третья порция экстрактов имеют объем ~250 л. При нескольких последовательных загрузках бересты третий экстракт используют для залива на свежую бересту.

Экстракт концентрируют отгонкой МТБЭ в аппарате с рубашкой, отгоняют ~690 л МТБЭ (~85-90% от содержащегося на бересте), отогнанный растворитель используют на последующих стадиях экстракции, добавляют к остатку водный раствор NaOH (1%, 40 л) и, нагревая, отгоняют с гидродистилляцией еще 40 л МТБЭ. Горячий водный раствор сливают из аппарата, добавляют воду 60 л, нагревают 1 час, водный слой сливают.

Твердый влажный экстракт выгружают из аппарата и сушат на воздухе. После сушки получают 8.4 кг бетулинсодержащего экстракта (выход 24%, содержание бетулина 93%, содержание лупеола 5.1%).

Пример 2. Регенерация МТБЭ с отработанной бересты, получение субериновых кислот.

В аппарат с берестой после слива третьего настоя МТБЭ заливают 250 л 3% раствора NaOH и подачей пара в рубашку нагревают содержимое аппарата до 60-90°С, при этом происходит отгонка метил-третбутилового эфира с водяным паром. Отгоны конденсируют в холодильнике-конденсаторе и собирают в приемнике 90-100 л метил-третбутилового эфира. Суммарные потери МТБЭ ~2%, без гидродистилляции потери экстрагента на сырье и экстракте около 14-20% от общего количества экстрагента.

Горячий водный экстракт сливают с остатка (180-210 л) и фильтруют нерастворимые примеси. Раствор подкисляют 30% серной кислотой до рН ~2, отделяют фильтрованием осадок и после сушки получают 7.7- 8.4 кг субериновых кислот (выход 22-24%).

1. Способ переработки внешней березовой коры с получением бетулина и субериновых кислот, заключающийся в извлечении из березовой коры бетулина метилтретбутиловым эфиром, с последующей обработкой коры водным раствором NaOH и подкислением водно-щелочного раствора, сливаемого с бересты, раствором серной кислоты для извлечения субериновых кислот.

2. Способ по п.1, отличающийся тем, что извлечение бетулина проводят 3-кратной экстракцией метилтретбутиловым эфиром при температуре 50-55°С в течение 4 ч, а очистку бетулина от примесей в органическом экстракте осуществляют концентрированием с последующей горячей отмывкой 1%-ным раствором NaOH, а затем водой, при одновременной отгонке остаточного метилтретбутилового эфира из бетулина.

3. Способ по п.1, отличающийся тем, что обработку березовой коры после экстракции бетулина проводят водным раствором NaOH при температуре 60-90°С, при этом гидролизуют суберин и одновременно проводят отгонку с водяным паром остаточного метилтретбутилового эфира со слоя коры.



 

Похожие патенты:
Изобретение относится к химической переработке березовой коры с выделением таких продуктов, как бетулин и суберин. .
Изобретение относится к химической модификации лигноуглеводного материала и предназначено для получения карбоксиметилового эфира лигноуглеводного материала. .

Изобретение относится к способу непрерывной гидротермической предварительной обработки лигноцеллюлозной биомассы для получения этанола и других продуктов. .

Изобретение относится к способам получения катализаторов жидкофазного окислительного крекинга и их использованию. .
Изобретение относится к области химической промышленности, а именно к получению композиционных антикоррозионных лакокрасочных материалов, предназначенных для защиты ржавых металлических поверхностей от коррозии, наносимых непосредственно на ржавую поверхность металла, и получения основы - сорбционных материалов, на базе продуктов переработки природных органических соединений растительного происхождения.

Мастика // 483415
Изобретение относится к получению порошковой целлюлозы из целлюлозных материалов
Изобретение относится к химической технологии, а именно к способу получения природного термопластичного полимера (варианты). При осуществлении способа (вариант 1) в качестве исходного материала используют гидротропный лигнин, полученный из мискантуса, который смешивают с водой. Гидролиз ведут при атмосферном давлении, осуществляют нагрев смеси до температуры кипения воды и выдержку в течение 5-60 мин. По окончании выдержки отбирают твердую фазу, сушат ее, обрабатывают ацетоном при комнатной температуре. После чего отделяют твердую фазу, из фильтрата удаляют ацетон при комнатной температуре до получения термопластичного полимера. При осуществлении способа (вариант 2) в качестве исходного материала используют измельченный мискантус, который смешивают с водой. Гидролиз ведут при повышенном давлении, осуществляют нагрев смеси до температуры 180-190°C и выдержку в течение 5-60 мин. По окончании выдержки реакционную смесь охлаждают до комнатной температуры, отбирают твердую фазу, промывают водой до бесцветных промывных вод, подвергают ее сушке при температуре 100-110°C, затем обрабатывают ацетоном при кипении в течение 30-60 мин. После чего отделяют твердую фазу, из фильтрата удаляют ацетон при комнатной температуре. Полученный промежуточный продукт обрабатывают ацетоном при комнатной температуре, отделяют твердую фазу, из фильтрата удаляют ацетон при комнатной температуре до получения термопластичного полимера. Каждый вариант изобретения позволяет повысить экологичность, технологическую целесообразность, эксплуатационные удобства способа получения целевого продукта, растворимого в органическом растворителе и имеющего пониженную температуру размягчения. 2 н. и 1 з.п. ф-лы, 2 табл., 3 пр.

Изобретение относится к получению лигнина из лигноцеллюлозной биомассы, а также к снижению засорения лигнином технологического оборудования при переработке лигноцеллюлозной биомассы. Осуществляют подачу лигноцеллюлозной биомассы при первом давлении и первой температуре. Биомасса включает первую твердую фракцию, включающую нерастворимый лигнин, и первую жидкую фракцию, включающую растворимые C6 сахариды, и растворимый лигнин. Перед указанной стадийной подачей из биомассы удаляют по меньшей мере часть C6 сахаридов фракционированием. Понижают первое давление биомассы до второго давления при практически одновременном понижении первой температуры биомассы до второй температуры. Осуществляют практически одновременное понижение второго давления и второй температуры до третьего давления и третьей температуры для осаждения растворимого лигнина в первой жидкой фракции. Образуется смесь, включающая вторую твердую фракцию, включающую нерастворимый лигнин, и осажденный лигнин, а также вторую жидкую фракцию, включающую растворимые С6 сахариды. Изобретение обеспечивает получение продукта лигнина с частицами небольшого размера для повышения эффективности сгорания и для предотвращения типичных проблем засорения оборудования и с повышением степени регенерации энергии. 2 н. и 27 з.п. ф-лы, 1 ил, 1 табл, 1 пр.
Изобретение относится к способу модификации гидролизного лигнина путем обработки азотной кислотой. При этом обработку проводят в водно-органосольвентной среде. Способ позволяет повысить степень растворения гидролизного лигнина и сократить продолжительность обработки. 1 з.п. ф-лы, 1 табл., 13 пр.

Изобретение относится к переработке растительной биомассы, в частности древесных опилок, стружки, корней, веток и других растительных фрагментов, разделением на целлюлозную, лигниновую и низкомолекулярную фракции. Способ комплексной переработки растительной биомассы включает гидротермомеханическую обработку деструктированной растительной биомассы в жидкой среде и разделение полученной пульпы на целевые продукты в виде отдельных фракций, способ отличается тем, что на первом этапе пульпу, полученную смешением воды и растительных отходов, обрабатывают путем механического воздействия в установке, вызывающего саморазогрев компонентов пульпы, на втором этапе после обработки пульпы при температуре саморазогрева 40±5°С часть жидкой фракции отводят из пульпы, на третьем этапе добавляют воду и повторяют гидротермомеханическую обработку, обеспечивая саморазогрев смеси до 120±5°С или гидротермомеханическую обработку проводят при температуре не выше 200°С за счет вышеуказанного саморазогрева и дополнительного нагрева, в процессе последующего охлаждения смеси выделяют - твердофазную диспергированную в пульпе целлюлозную фракцию при понижении температуры пульпы до 100±5°С, - лигниновую фракцию, осаждаемую при понижении температуры пульпы до 40±5°С, - жидкую фракцию в виде смеси воды и низкомолекулярных органических и неорганических соединений, которые растворимы в воде и/или осаждаемы при температурах ниже 40±5°С, а гидротермомеханическую обработку проводят в воде при соотношении вода/биомасса от 20:80 до 80:20.Технический результат - способ характеризуется экологичностью, высокой степенью извлечения целевых продуктов, в результате получают фракции, пригодные для дальнейшего использования. 3 з.п. ф-лы, 5 табл., 4 пр.
Изобретение относится к катионной электроосаждаемой композиции покрытия. Катионная электроосаждаемая композиция покрытия содержит водную дисперсию, содержащую пленкообразующую смолу и отвердитель, в которой указанная пленкообразующая смола содержит лигнинсодержащую смолу в катионной солевой форме. Также изобретение относится к катионной электроосаждаемой композиции покрытия, содержащей водную дисперсию, содержащую пленкообразующую смолу и отвердитель, в которой указанная пленкообразующая смола содержит лигнин, который не прореагировал с монофункциональным соединением, в количестве, составляющем ≥5 мас.% от композиции покрытия относительно общего содержания твердого вещества смолы композиции покрытия. Изобретение также относится к способу получения электроосаждаемой катионной композиции покрытия, который включает (i) взаимодействие лигнина и эпихлоргидрина для образования промежуточного продукта реакции и последующее взаимодействие промежуточного продукта реакции с амином и (ii) взаимодействие продукта реакции (i) с амином и кислотой. Изобретение позволяет использовать сырье из возобновляемых и/или недорогих источников. 6 н. и 14 з.п. ф-лы, 4 пр.

Изобретение относится к области биотехнологии. Предложен способ обработки лигноцеллюлозной биомассы. Осуществляют пропитывание подаваемой лигноцеллюлозной биомассы водяным паром или водой или их смесью в температурном диапазоне от 100 до 210ºС в течение от 1 минуты до 24 часов для получения пропитанной биомассы, содержащей сухое содержимое и первую жидкость. Далее сепарируют по меньшей мере часть первой жидкости из пропитанной биомассы для образования потока первой жидкости и потока первой твердой фракции. При этом поток первой твердой фракции содержит пропитанную биомассу. Далее обрабатывают паром поток первой твердой фракции для получения обработанного паром потока. Способ позволяет при высокой степени жесткости паровой обработки получать продукт с низким содержанием фурфурола. 21 з.п. ф-лы, 9 ил., 30 табл., 6 пр.
Настоящее изобретение относится к использованию сульфидированного лигнина в качестве противозадирной присадки в смазочной композиции. Техническим результатом настоящего изобретения является расширение сфер применения сульфидированного лигнина, а также использование сульфидированного лигнина для снижения износа в паре трения колесо - рельс. 1 табл.

Изобретение относится к способу переработки растительной биомассы, включающему ее гидротермомеханическую обработку в жидкой среде при температуре саморазогрева и разделение полученной суспензии на отдельные фракции. При этом растительную биомассу с соотношением вода/биомасса от 10:90 до 90:10 подвергают гидротермомеханической обработке при температуре саморазогрева реакционной смеси 45°С - 240°С до получения размера частиц твердой фазы не более 1000 мкм, разделяют полученную водную суспензию при температуре реакционной смеси на твердую целлюлозосодержащую фракцию и жидкую фракцию, содержащую лигнин, которую смешивают с растительной биомассой, не подвергавшейся гидротермомеханической обработке и/или с растительной биомассой, предварительно подвергнутой упомянутой гидротермомеханической обработке, удаляют из образовавшейся смеси жидкость, и направляют полученную массу для формирования целевых изделий. Способ позволяет повысить экологичность и универсальность процесса переработки растительной биомассы, исключить из технологического цикла токсичные органические растворители и получить из натурального растительного сырья экологически чистые продукты. 2 з.п. ф-лы, 3 табл., 3 пр.

Изобретение относится к химической переработке березовой коры с получением бетулина и субериновых кислот

Наверх