Устройство для оценки защищенности от коррозии по величине смещения от естественного потенциала

Устройство для оценки защищенности от коррозии по величине смещения от естественного потенциала относится к системе контроля эффективности электрохимической защиты заглубленных, полузаглубленных (емкости) в грунт, под слоем бетона, а также морских стальных сооружений, находящихся под катодной защитой. Устройство для оценки защищенности от коррозии по величине смещения от естественного потенциала содержит заполненный электролитом диэлектрический корпус, в котором размещен электрод сравнения, снабженный электрическим проводом. Также устройство содержит датчик потенциала, вмонтированный в корпус датчика потенциала и снабженный двумя электрическими проводами, выведенными через корпус датчика потенциала, другой датчик потенциала, вмонтированный в корпус датчика потенциала и снабженный одним проводом тройник. При этом электрод сравнения имеет пластиковый корпус с отверстиями. Причем верхняя часть корпуса закрыта пробкой, нижняя часть соединена с тройником, с тройником соединены два корпуса датчика потенциала, в которых выполнены сквозные капиллярные отверстия, заполненные электролитом. При этом датчики потенциала расположены вблизи капиллярных отверстий, места контакта проводов от датчиков потенциала в корпусах датчиков потенциала залиты герметиком. Причем провода от датчиков потенциала через корпуса датчиков потенциала, тройник, корпус и пробку выведены наружу. Корпус может быть заполнен загущенным агаром микробиологическим раствором KCl. Электрод сравнения может быть хлорсеребряным. Капиллярные отверстия могут быть заполнены загущенным агаром микробиологическим раствором KCl. Техническим результатом изобретения является увеличение точности измерения естественного и поляризационного потенциала стального сооружения, что позволяет по величине смещения поляризационного потенциала от естественного потенциала контролировать защищенность металлического сооружения от коррозии. 9 з.п. ф-лы, 2 ил.

 

Изобретение относится к системе контроля эффективности электрохимической защиты заглубленных, полузаглубленных (емкости) в грунт, под слоем бетона, а также морских стальных сооружений, находящихся под катодной защитой.

Наиболее близким к данному техническому решению является электрод сравнения, предназначенный для определения значений параметров катодной защиты металлических сооружений в грунтах с различным удельным сопротивлением, в зонах действия блуждающих токов, на засоленных участках, в зонах многолетнемерзлых грунтов, а также в морских условиях (см. патент РФ №78319 от 20 ноября 2008 г.).

Недостатками известного электрода сравнения является наличие резьбовых соединений, не обеспечивающих герметичность корпуса, приводящих к изменению концентрации внутреннего электролита, что приводит к уменьшению срока службы и точности измерений по причине обеднения внутреннего электролита потенциалопределяющими ионами Cl-.

Технической задачей, решаемой с помощью настоящего устройства, является создание конструкции, обеспечивающей повышение точности измерений потенциалов и тока, надежности и увеличение срока службы. Устройство позволяет одновременно измерять стационарный (естественный) и поляризационный потенциал стальных сооружений в различных электролитах по методу Габера-Луггина с использованием хлорсеребряного электрода сравнения, а также измерять плотность натекающего тока на датчик потенциала.

Технический результат, достигаемый с помощью настоящего устройства, состоит в создании двух электролитических контактов (обладающих малой площадью) между хлорсеребряным электродом (ХСЭ) и двумя датчиками потенциала через капиллярные отверстия, которые расположены максимально близко к датчикам потенциала, что позволяет измерять поляризационный потенциал трубопровода без омической составляющей (поляризационный потенциал) и естественный потенциал стального сооружения одновременно.

Технический результат достигается также применением неполяризующегося хлорсеребряного электрода сравнения (ХСЭ), промышленно выпускаемого, имеющего пластиковый корпус, который не допускает осыпание хлорида серебра (AgCl) с поверхности серебряного стержня, применением полипропиленового корпуса, выдерживающего большое наружное давление, а также применением сварных соединений полипропилена, исключающих просачивание KCl из внутренней полости устройства (в местах соединения деталей корпуса) в окружающий электролит. Это приводит к увеличению срока службы электролита и соответственно самого устройства. Кроме этого, увеличивается точность измерения из-за неизменности концентрации электролита в процессе эксплуатации устройства. Надежность обеспечивается применением сварных соединений в отличие от резьбовых соединений прототипа.

На фиг.1 и фиг.2 представлено устройство для оценки защищенности от коррозии по величине смещения от естественного потенциала.

Устройство для оценки защищенности от коррозии по величине смещения от естественного потенциала, изображенное на чертежах, состоит из корпуса 1, пробки 2, электрода 3, тройника 4, двух корпусов датчиков потенциала 5 с вмонтированными в них датчиками потенциала 6 и 7, соединительных проводов 8 и 9, герметика 10, изолированного провода 11, капиллярных отверстий 12, раствора 13.

Приведенное на фигуре 1 и 2 устройство состоит из цилиндрического корпуса 1, выполненного из полипропилена. Верхняя торцевая поверхность корпуса 1 методом сварки закрыта полипропиленовой пробкой 2. Внутри цилиндрического корпуса 1 помещен выпускаемый промышленностью хлорсеребряный электрод 3 (например, типа ЭСО-01 производства «Гомель-прибор», г.Гомель, Белоруссия), имеющий пластиковый корпус с отверстиями, расположенными на нижнем торце. Нижняя часть цилиндрического корпуса 1 методом сварки соединена со средней частью полипропиленового тройника 4. В два свободных отверстия тройника 4 вварены корпуса датчиков потенциала 5 с вмонтированными в них датчиками потенциала 6 и 7 прямоугольной формы, выполненными из Ст3. Два соединительных провода 8 от датчика потенциала 6 и один провод 9 от датчика потенциала 7 выведены через среднюю часть тройника 4, цилиндрический корпус 1 и пробку 2 наружу. Изолированный провод 11 от хлорсеребряного электрода 3 через корпус 1 и пробку 2 выведен наружу. Каждый корпус датчика потенциала 5 имеет по три капиллярных отверстия 12 диаметром 0,1 мм, через которые осуществляется контакт внутренней полости устройства и наружных поверхностей датчиков потенциала 6 и 7. Внутренняя полость корпуса 1 заполнена загущенным агаром микробиологическим раствором KCl 13. Электролитический контакт хлорсеребряного электрода 3, помещенного внутрь корпуса 1, с датчиками потенциала 6 и 7 осуществляется через капиллярные отверстия 12, заполненные загущенным агаром микробиологическим раствором KCl 13.

Для герметизации нерабочей поверхности датчиков потенциала 6 и 7, мест контакта проводов 8 и 9 с датчиками потенциала 6, 7 после их установки во внутренний объем тройника 4 заливают герметик 10 и оставляют в горизонтальном положении до затвердевания.

Верхний торец корпуса 1 и пробка 2, нижний торец корпуса 1 и тройник 4, тройник 4 и корпуса 5 датчика потенциала 6 соединены между собой методом сварки. Сварка пропиленовых деталей (в отличие от резьбовых соединений) обеспечивает более надежную герметизацию всех мест соединений.

Размещение устройства для контроля эффективности электрохимической защиты осуществляется следующим образом. Устройство помещают в шпур на изоляционное покрытие трубопровода таким образом, чтобы открытые поверхности датчиков потенциала 6 и 7 были обращены от трубопровода. Шпур засыпают вынутым из шпура грунтом и слегка уплотняют. Провод 11 от хлорсеребряного электрода 3 и провода 8 и 9 датчиков потенциала 6 и 7 выводят в контрольно-измерительный пункт для контроля параметров катодной защиты. Провода маркируют. Один из двух проводов 8 от датчика потенциала 6 подключают в контрольно-измерительном пункте к выводу от трубопровода. Провод 9 от датчика потенциала 7 к выводу от трубы не подключают. При этом датчик потенциала 6, от которого выведен провод 8, приобретает потенциал обследуемого трубопровода, а на оставшемся не подключенным втором датчике потенциала 7 устанавливается стационарный (естественный) потенциал, характеризующий агрессивность грунта в месте установки устройства.

В частном случае устройство закрепляют липкой лентой к поверхности секции трубы на изоляционное покрытие перед нанесением бетонного утяжеляющего покрытия. Провода 8 от датчика потенциала 6, провод 9 от датчика потенциала 7 и провод 11 от хлорсеребряного электрода 3 выводят к краю секции трубы, где обетонирование секции трубы в заводских условиях проводиться не будет.

Измерение поляризационного потенциала датчика потенциала 6 проводят следующим образом. При укладке трубопровода в траншею провода 8 и 11 выводят в контрольно-измерительный пункт и один из выводов 8 от датчика потенциала 6 соединяют с выводом от трубопровода, при этом датчик потенциала 6 приобретает потенциал трубопровода. Измерение потенциала трубопровода проводят вольтметром, с высоким входным сопротивлением (на чертеже не показан), подключенным между хлорсеребряным электродом 3 и неподключенным к трубопроводу выводом 8 от датчика потенциала 6. В результате максимального приближения датчика потенциала 6 к капиллярам 12 измерение потенциала датчика 6 осуществляется с минимальной омической составляющей, которой можно пренебречь.

Измерение стационарного (естественного) потенциала производят вольтметром с высоким входным сопротивлением (на чертеже не показан) между выводом 9 от датчика потенциала 7, не подключенного к трубопроводу, и выводом 11 от хлорсеребряного электрода 3.

По величине измеренного поляризационного потенциала датчика потенциала судят о защищенности металлического сооружения от коррозии. По разнице поляризационного и стационарного (естественного) потенциалов, измеренных на датчиках потенциалов 6 и 7, также судят о защищенности металлического сооружения от коррозии.

Плотность натекающего тока на датчик потенциала 6 определяют следующим образом. Один из выводов 8 от датчика потенциала 6 соединяют с выводом от трубопровода, при этом на датчик потенциала натекает катодный ток. В разрыв цепи помещают шунтирующее сопротивление. Измерение плотности катодного тока проводят вольтметром на шунтирующем сопротивлении.

Точность измерения поляризационного потенциала достигается применением промышленно выпускаемого хлорсеребряного электрода сравнения 3. Надежность и увеличение срока службы электрода сравнения достигается за счет загущения раствора 13 агаром микробиологическим и заполнения им капиллярных отверстий 12 и применением сварных соединений полипропилена, предотвращающих вытекание раствора KCl из внутренней полости устройства.

Точность и воспроизводимость результатов измерений потенциала обеспечивается в результате:

- применения промышленно выпускаемого хлорсеребряного электрода сравнения, что приводит к увеличению точности;

- максимального приближения капилляров к датчикам потенциала, что приводит к уменьшению омической составляющей потенциала и увеличению точности измерений;

- уменьшения осмотического переноса хлорид-ионов раствора в окружающую среду, что приводит к увеличению срока службы электролита электрода сравнения и, соответственно, точности измерения потенциала;

- для проведения измерений не требуется отключений датчика потенциала от подземного сооружения, это приводит к установлению стабильных значений потенциала в процессе измерения, отсюда следует повышение точности измерения;

- применения двух датчиков потенциала для оценки защищенности от коррозии металлического сооружения по величине смещения потенциала от естественного, что наряду с оценкой по поляризационному потенциалу увеличивает точность оценки защищенности.

Устройство обладает следующими преимуществами:

- относительная простота конструкции, неприхотливость в обращении, возможность длительного использования;

- работоспособно при отрицательных температурах (при понижении температуры ниже нуля не происходит разрушения корпуса, как в случае электродов сравнения со стеклянным корпусом);

- не имеет временных ограничений по хранению, так как составные части устройства не меняются во времени, а загущение электролита агаром микробиологическим способствует уменьшению истечения электролита до минимальных значений.

Устройство может применяться в качестве электрода длительного действия - при постоянном нахождении в исследуемой среде (грунт, море, бетон) и переносного электрода, применяемого при однократном измерении.

1. Устройство для оценки защищенности от коррозии по величине смещения от естественного потенциала, содержащее заполненный электролитом диэлектрический корпус, в котором размещен электрод сравнения, снабженный электрическим проводом, датчик потенциала, вмонтированный в корпус датчика потенциала и снабженный двумя электрическими проводами, выведенными через корпус датчика потенциала, другой датчик потенциала, вмонтированный в корпус датчика потенциала и снабженный одним проводом, тройник, отличающееся тем, что электрод сравнения имеет пластиковый корпус с отверстиями, причем верхняя часть корпуса закрыта пробкой, нижняя часть соединена с тройником, с тройником соединены два корпуса датчика потенциала, в которых выполнены сквозные капиллярные отверстия, заполненные электролитом, причем датчики потенциала расположены вблизи капиллярных отверстий, места контакта проводов от датчиков потенциала в корпусах датчиков потенциала залиты герметиком, провода от датчиков потенциала через корпуса датчиков потенциала, тройник, корпус и пробку выведены наружу.

2. Устройство по п.1, отличающееся тем, что электролит является загущенным агаром микробиологическим раствором KCl.

3. Устройство по п.1, отличающееся тем, что электрод сравнения является хлорсеребряным.

4. Устройство по п.1, отличающееся тем, что имеет капиллярные отверстия, заполненные загущенным агаром микробиологическим раствором KCl.

5. Устройство по п.1, отличающееся тем, что датчик потенциала для измерения естественного потенциала имеет один вывод.

6. Устройство по п.5, отличающееся тем, что датчик потенциала для измерения естественного потенциала выполнен из трубной стали.

7. Устройство по п.1, отличающееся тем, что датчик потенциала для измерения поляризационного потенциала имеет два вывода.

8. Устройство по п.7, отличающееся тем, что датчик потенциала для измерения поляризационного потенциала выполнен из трубной стали.

9. Устройство по п.1, отличающееся тем, что датчик потенциала может располагаться на расстоянии 0,1 мм от капиллярных отверстий.

10. Устройство по п.1, отличающееся тем, что корпус выполнен методом сварки из прочного диэлектрического материала, выдерживающего повышенные нагрузки.



 

Похожие патенты:

Изобретение относится к области защиты от коррозии и может быть использовано для контроля процесса коррозионной защиты и автоматической коррекции величины защитного потенциала по длине трубопровода для его эффективной защиты.

Изобретение относится к способам бесконтактного определения мест дефектов гидроизоляционного покрытия и коррозионных повреждений наружных поверхностей подземных и подводных катодно-защищенных трубопроводов с пленочной гидроизоляцией с помощью электрохимического анализа и может быть использовано в подземном трубопроводном транспорте.

Изобретение относится к области защиты подземных сооружений от коррозии и может быть использовано при выборе времени плановых отключений станций катодной защиты (СКЗ) трубопроводов и подземных металлических сооружений различного назначения.

Изобретение относится к способу предварительной обработки трубчатой оболочки топливного стержня для исследований материалов, в частности для исследований поведения в процессе коррозии.

Изобретение относится к химической промышленности и может быть использовано для диагностирования аварийного состояния резервуаров, изготовленных из нержавеющих сталей, эксплуатируемых в технологических средах, содержащих галоидные ионы, в условиях возможного возникновения питтинговой коррозии.

Изобретение относится к области оценки коррозионной стойкости сталей и изделий из них, предназначенных для эксплуатации в агрессивных средах. .
Изобретение относится к технологии определения коррозионной стойкости внутренней поверхности металлической тары. .

Изобретение относится к испытаниям металлов и может быть использовано при определении свойств металла сварных труб, работающих в агрессивных средах. .

Изобретение относится к способам определения агрессивности котловой воды и стойкости металла к межкристаллитной коррозии с помощью электрохимического анализа. .

Изобретение относится к системе контроля эффективности электрохимической защиты подземных трубопроводов, находящихся под катодной поляризацией

Изобретение относится к испытательной технике, предназначенной для определения влияния агрессивных сред на коррозионные свойства материалов и может быть использовано при разработке мероприятий по антикоррозионной защите оборудования в нефтяной, газовой, нефтехимической и других отраслях промышленности. Установка включает рабочий вал с приводом вращательного движения, герметичный контейнер, закрепленный на валу и частично заполненный коррозионной жидкостью, исследуемый образец, установленный в полости контейнера с помощью средств крепления, и трубки для подвода и отвода испытательного газа, снабженные регулирующими элементами. При этом герметичный контейнер выполнен в форме полого тора, в полости которого образец расположен вдоль меридиональных линий тора. Уровень коррозионной жидкости в герметичном контейнере установлен ниже внутренней образующей тора. Корпус герметичного контейнера и средства крепления образца изготовлены из диэлектрического материала или покрыты диэлектрическим материалом. Образец представлен в виде одного или нескольких проволочных элементов. Техническим результатом является повышение точности коррозионных испытаний. 3 з.п. ф-лы, 3 ил.

Способ прогнозирования аварийного технического состояния трубопровода канализационной системы применяют в канализационной системе мегаполиса или крупного промышленного района и могут использовать для диагностики технического состояния водоочистных сооружений и трубопроводов со сточными водами. В зоне контролируемого участка трубопровода размещают, по меньшей мере, два датчика технического состояния. Затем периодически снимают показания с датчиков и сравнивают их значения с заданным пороговым значением. По результатам упомянутого сравнения судят о техническом состоянии данного участка трубопровода. В качестве датчика технического состояния применяют газоанализатор. Причем все датчики располагают на соответствующих торцах контролируемого участка трубопровода и связывают их с блоком управления и обработки информации, который предварительно располагают вне зоны контролируемого участка трубопровода. Таким образом образуют измерительный комплекс для контроля за развитием коррозии на внутренней поверхности трубопровода канализационной системы. Техническим результатом является упрощение процесса прогнозирования технического состояния всей внутренней поверхности участка трубопровода канализационной системы при обеспечении постоянного контроля за причинами возникновения и развитием коррозии на этой поверхности. 2 ил.

Изобретение относится к контролю протекания коррозионных процессов и может быть применено для определения степени опасности проникновения локальной коррозии, в частности питтинговой коррозии, в металлические конструкции (реакторы, теплообменники, емкости, трубопроводы и т.д.), контактирующие с электропроводными коррозионными средами. Устройство для контроля локальной коррозии, которое состоит из объектов воздействия коррозионной среды - металлических пластин, имеющих заранее меньшую и различную между собой толщину, чем стенка металлической конструкции, и изготовленных из того же материала, что и металлическая конструкция. При этом одна сторона каждой пластины обращена в сторону коррозионной среды, а другая путем известных способов электрически и механически присоединена к протектору тех же размеров, что и пластина, изготовленному из металла, имеющего более отрицательный потенциал коррозии в данной среде, чем металл пластины. Каждые пластина и протектор образуют датчики, которые электрически изолированы друг от друга, а протектор и от среды, антикоррозионным диэлектрическим покрытием, причем каждый датчик помещен в общий корпус из коррозионно-стойкого диэлектрического материала и имеет через блок переключателей и токоизмерительный прибор электрический контакт с металлической конструкцией. Техническим результатом изобретения является повышение надежности дистанционного диагностирования коррозионного состояния металлических конструкций, контактирующих с коррозионной средой, независимо от давления, температуры, движения среды и типа конструкции. 2 з.п. ф-лы, 1 ил., 1 табл.
Изобретение относится к области металлургии, конкретнее к контролю стойкости трубных сталей, предназначенных для эксплуатации в агрессивных (водородсодержащих) средах, оказывающих коррозионное воздействие на материалы. Способ контроля стойкости трубных сталей против коррозионного растрескивания под напряжением заключается в том, что из сталей изготавливают образцы, в которых определяют общее содержание водорода в исходном состоянии, в состоянии после искусственного старения в течение 10-40 часов при температурах 50-300°C и после дополнительной термической обработки при температуре 850-1000°C в течение 10-60 минут в печи в воздушной атмосфере с последующим охлаждением на воздухе, а перед термической обработкой обеспечивают влажность атмосферы в рабочем пространстве печи не менее 50%. При этом о стойкости стали против коррозионного растрескивания судят по изменению содержания водорода в процессе старения и термической обработки по сравнению с его содержанием в исходном состоянии. Техническим результатом является обеспечение информативности при небольшой длительности проведения контроля на стойкость против коррозионного растрескивания с учетом химического состава и микроструктуры, наличия и распределения неметаллических включений, являющихся ловушками водорода.

Устройство для электрохимического исследования коррозии металлов относится к области исследования коррозионного поведения материалов в различных средах с помощью построения коррозионных диаграмм, что позволяет оценить характер воздействия отдельных факторов на скорость коррозии, а также выявить наиболее значимый (лимитирующий) процесс (установить степень анодного, катодного и омического контроля). Установка для электрохимического исследования коррозии металлов (фиг. 1) включает в себя цепь для измерения потенциалов электродов, цепь для измерения коррозионного тока, а также термостат. Цепь для измерения потенциалов состоит из электродов (1), погруженных в растворы, находящиеся в сосудах (4). Растворы соединяются электролитическим ключом (3). В каждый раствор погружается электрод сравнения (например, хлорсеребряный электрод) (2). Переключатель (6) и милливольтметр (7) позволяют измерять потенциалы металлических электродов относительно применяемого электрода сравнения. Цепь для измерения коррозионного тока состоит из электродов (1), погруженных в растворы, находящиеся в сосудах (4). Растворы соединяются электролитическим ключом (3). Между электродами последовательно включены: тумблер (5), калиброванный резистор (8) с подключенным параллельно к нему высокоомным цифровым милливольтметром (9), магазин сопротивлений (10). Термостат состоит из сосуда, заполненного теплоносителем, наример водой (13), в который погружены сосуды с исследуемыми электродами, а также мешалка (11) и термометр (12). Электрохимическое исследование коррозионного элемента осуществляется следующим образом. В соответствии со схемой (фиг.1) собирается установка. Металлические образцы частично изолируют по длине термоусадочной трубкой или лаком для создания определенной площади поверхности и предотвращения контакта металлической поверхности с границей раздела фаз «раствор-воздух». Затем производят обработку поверхности в соответствии с ГОСТ 9.305-84. При разомкнутом тумблере (5) измеряют потенциалы исследуемых металлических образцов при отсутствии тока в цепи (стационарный потенциал металлического электрода), который затем пересчитывают относительно стандартного водородного электрода (СВЭ). При замыкании цепи тумблером (5) выставляется с помощью магазина сопротивлений (10) необходимое значение электрического сопротивления, и милливольтметром (9) измеряют падение напряжения на калиброванном резисторе (8). Полученное значение напряжения используют для расчета силы тока в исследуемой цепи из закона Ома. По полученным экспериментальным данным строят коррозионную диаграмму в координатах E ( С В Э ) = f ( I ) . На фиг.2 приведен пример такой диаграммы. Затем производят расчет степени анодного, катодного и омического контроля, а также весового показателя коррозии. Техническим результатом является упрощение схемы установки для измерения силы тока практически короткозамкнутого коррозионного элемента. 2 ил.

Изобретение относится к области оценки коррозионной поврежденности подземных сооружений и может применяться в нефтяной и газовой промышленности в составе систем дистанционной оценки скорости коррозии и определения вида коррозии (поверхностной равномерной, неравномерной, язв и питтингов) подземных трубопроводов. Размещают устройство для оценки скорости коррозии, состоящее из образца-свидетеля и двух пьезоэлектрических преобразователей раздельно-совмещенного и совмещенного типа в коррозионной среде, последовательно преобразователем каждого типа определяют текущую толщину образца по времени прихода донных эхо-сигналов. Затем рассчитывают скорость и определяют вид коррозии по изменению значений текущей толщины образца-свидетеля относительно начальной. Техническим результатом является упрощение способа оценки скорости коррозии для применения его в составе систем коррозионного мониторинга магистральных трубопроводов и создание устройства, реализующего способ с применением стандартных средств ультразвукового контроля. 2 н.п. ф-лы.

Изобретение относится к канализационной системе и может быть использовано для диагностики технического состояния бетонного трубопровода. Мобильный комплекс включает транспортное средство, в котором размещены портативный компьютер, связанный с ним блок обработки и управления, датчики технического состояния, в качестве которых применены газоанализаторы. Портативный компьютер связан с удаленной базой данных беспроводной дистанционной связью и оснащен программами, позволяющими производить считывание информации из энергонезависимой памяти блока обработки и управления, сохранение ее на жесткий диск портативного компьютера, конвертирование в формат, пригодный для последующей обработки стандартными программами, и просмотр получаемых результатов в графической форме в функции времени на экране портативного компьютера. Датчики технического состояния выполнены с возможностью их выемки из транспортного средства и установки в зоне контролируемого участка канализационного трубопровода. Технический результат: оперативность диагностирования технического состояния подсводной части внутренней поверхности бетонного канализационного трубопровода. 1 з.п. ф-лы, 1 ил.

Изобретение относится к химической промышленности и может быть использовано для опережающего мониторинга состояния резервуаров, подверженных воздействию питтинговой коррозии. Способ диагностирования аварийного состояния резервуара в коррозионной среде включает размещение в ней электродной системы, содержащей исследуемый рабочий электрод, вспомогательный электрод и электрод сравнения, последовательное определение потенциала исследуемого рабочего электрода в разомкнутой цепи, потенциала питтингообразования, запаса питтингостойкости по потенциалу как разности между потенциалом питтингообразования и потенциалом разомкнутой цепи. В электродную систему дополнительно вводят контрольный рабочий электрод и определяют его потенциал в разомкнутой цепи. Затем выбирают пороговое значение потенциала исследуемого рабочего электрода. Контрольный рабочий электрод подсоединяют к потенциостату в качестве электрода сравнения. Исследуемый рабочий электрод периодически поляризуют при нулевом значении и при выбранном пороговом значении потенциала, изменяя продолжительность периода поляризации, и регистрируют силу тока и количество электричества, прошедшее через электродную систему. Об аварийном состоянии резервуара судят по наличию питтинговой коррозии на исследуемом рабочем электроде в период поляризации, а именно по появлению флуктуации тока с определенной амплитудой в период поляризации, которую количественно оценивают по значению количества электричества, прошедшего через электродную систему. Техническим результатом является повышение точности диагностирования аварийного состояния резервуара за счет определения количественной оценки питтинговой коррозии в условиях, близких к реальным. 1 табл.

Изобретение может быть использовано для испытаний нержавеющих сталей и сплавов на устойчивость к межкристаллитной коррозии (МКК) с целью прогнозирования их поведения в агрессивных средах, оказывающих коррозионное воздействие на металлы. Способ включает изготовление и подготовку образцов и приготовление растворов. Также способ включает проведение провоцирующего нагрева образцов, выдержку последних в рабочем растворе при заданных температуре и продолжительности и оценку коррозионной стойкости методом изгиба образцов. Провоцирующий нагрев проводят только на части образцов, а образцы без провоцирующего нагрева испытывают в состоянии поставки. Затем оценивают стойкость против МКК всех испытанных образцов гравиметрическим методом, рассчитывают скорость проникновения коррозии и сравнивают скорости проникновения коррозии образцов с провоцирующим нагревом и в состоянии поставки. Кроме того, оценку коррозионной стойкости проводят дополнительно металлографическим методом. Оценка результатов испытаний образцов на стойкость против МКК выполняется методом изгиба образцов на 90° с целью определения трещин и металлографическим методом. Дополнительно проводится оценка стойкости образцов, подвергнутых провоцирующему нагреву, и образцов в состоянии поставки гравиметрическим методом и исследование микроструктуры образцов после испытаний. Техническим результатом является повышение достоверности определения процессов межкристаллитной коррозии. 1 табл., 1 з.п. ф-лы.
Наверх