Способ и устройство для вибрирования расходомерной трубки вибрационного расходомера



Способ и устройство для вибрирования расходомерной трубки вибрационного расходомера
Способ и устройство для вибрирования расходомерной трубки вибрационного расходомера
Способ и устройство для вибрирования расходомерной трубки вибрационного расходомера
Способ и устройство для вибрирования расходомерной трубки вибрационного расходомера
Способ и устройство для вибрирования расходомерной трубки вибрационного расходомера
Способ и устройство для вибрирования расходомерной трубки вибрационного расходомера
Способ и устройство для вибрирования расходомерной трубки вибрационного расходомера
Способ и устройство для вибрирования расходомерной трубки вибрационного расходомера
Способ и устройство для вибрирования расходомерной трубки вибрационного расходомера
Способ и устройство для вибрирования расходомерной трубки вибрационного расходомера
Способ и устройство для вибрирования расходомерной трубки вибрационного расходомера
Способ и устройство для вибрирования расходомерной трубки вибрационного расходомера
Способ и устройство для вибрирования расходомерной трубки вибрационного расходомера
Способ и устройство для вибрирования расходомерной трубки вибрационного расходомера
Способ и устройство для вибрирования расходомерной трубки вибрационного расходомера

 


Владельцы патента RU 2473871:

МАЙКРО МОУШН, ИНК. (US)

Система (20) измерения параметров потока содержит вибрационный расходомер (400), включающий в себя, по меньшей мере, одну расходомерную трубку (410), возбуждающее устройство (420), приспособленное для того, чтобы прикладывать смещающее усилие к расходомерной трубке (410). Система (20) измерения параметров потока также содержит измерительную электронную аппаратуру (450), сконфигурированную так, чтобы формировать сигнал возбуждения, чтобы колебать расходомерную трубку (410) около первого отклоненного положения (1002) между положением покоя, первым отклоненным положением (1002) и вторым отклоненным положением (1003). При этом первое отклоненное положение (1002) смещено от положения (1001) покоя расходомерной трубки. Технический результат - возможность колебать расходомерные трубки с помощью сложного сигнала возбуждения, который может включать в себя более чем одну частоту. 3 н. и 13 з.п. ф-лы, 15 ил.

 

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится к вибрационным расходомерам, а более конкретно, к способу и устройству для вибрации расходомерной трубки вибрационного расходомера.

УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ

Расходомеры используются, чтобы измерять удельный массовый расход, плотность и другие характеристики текучих веществ. Текучее вещество может содержать жидкость, газ, взвешенные частицы в жидкостях или газе или любую их комбинацию. Вибрационные трубопроводные датчики, такие как массовые расходомеры Кориолиса и вибрационные ареометры, типично работают посредством обнаружения движения вибрирующей трубы, которая содержит текучее вещество. Свойства, ассоциированные с веществом в трубе, такие как массовый расход, плотность и т.п., могут быть определены посредством обработки измерительных сигналов, принимаемых от измерительных преобразователей движения, ассоциированных с трубой. На режимы колебаний заполненной вибрационным веществом системы, в общем, влияют комбинированные характеристики массы, жесткости и демпфирования вмещающей трубы и вещества, содержащегося в ней.

Типичный массовый расходомер Кориолиса включает в себя одну или более труб, которые соединены линейно в трубопровод или другую транспортную систему и переносят вещество, например жидкости, жидкие массы и т.п., в системе. Каждая конфигурация трубопровода может рассматриваться как имеющая набор режимов собственных колебаний, в том числе, но не только, режим плоского изгиба, крутильных колебаний, радиальных колебаний, поперечных колебаний и связанных колебаний. В типичном измерительном приборе массового расхода Кориолиса труба возбуждается в одном или более режимах вибрации, когда вещество течет через трубу и движение трубы измеряется в точках, разнесенных с промежутками вдоль трубы. Возбуждение типично обеспечивается актуатором, например электромеханическим устройством, таким как возбуждающее устройство типа катушки линейного электропривода, которое возмущает трубу периодическим образом. Удельный массовый расход может быть определен посредством измерения временной задержки или сдвигов фаз между движениями в позициях измерительных преобразователей. Плотность текучего вещества может быть определена из частоты вибрационной характеристики расходомера. Два или более таких датчика (или датчиков-измерителей) типично применяются для того, чтобы измерять вибрационную характеристику расходомерной трубки или трубок и типично располагаются в позициях выше по потоку и ниже по потоку от актуатора. Два датчика-измерителя, как правило, соединены с электронной измерительной аппаратурой кабельной разводкой, например двумя независимыми парами проводов. Измерительное оборудование принимает сигналы от двух датчиков-измерителей и обрабатывает сигналы для того, чтобы получать измерения параметров потока.

В некоторых приборах типичное возбуждающее устройство может быть неосуществимо. Это особенно верно в приборах с низким расходом, где вес магнитов, прикрепленных к расходомерным трубкам, становится недопустимым. Известно из патента Соединенных Штатов 7168329, например, о замене магнитов магнитным материалом, применяемым к части самой расходомерной трубки. Такая система пригодна для простых частот возбуждения, таких как синусоидальная или прямоугольная волна, использующих два или более возбуждающих устройства, т.е. одно с каждой стороны расходомерной трубки. Недавно, однако, тип сигнала возбуждения стал более сложным, чем простой прямоугольный, трапециевидный, синусоидальный одночастотный сигнал возбуждения. Сложный сигнал возбуждения может содержать две или более частот, например. Чтобы реализовать расширенные функции расходомера, такие как калибровка расходомера, измерения скорости звука, многофазное обнаружение потока и т.д., множественные частоты прикладываются к расходомерным трубкам одновременно, давая в результате сложный сигнал возбуждения. Однако для того чтобы расходомер получил имеющую значение информацию, движущая сила должна быть как двунаправленной, так и линейной. Двунаправленная движущая сила означает, что расходомерная трубка колеблется по направлению к и от узла привода. Линейная движущая сила означает, что усилие, оказываемое на расходомерную трубку, почти линейно пропорционально току/напряжению, прикладываемому к катушке. Такая движущая сила может не быть проблемой в типичных узлах привода, однако, в реализациях, таких как раскрытая в патенте '329, расходомер может работать только либо в режиме втягивания, либо в режиме выталкивания. Следовательно, чтобы получать двустороннюю движущую силу, требуется несколько катушек возбуждения, по одной с каждой стороны расходомерной трубки. Эта конфигурация требует чрезмерного количества частей, что может быть дорогостоящим.

Кроме того, движущая сила должна быть почти линейной. Хотя большинство вибрационных расходомеров созданы с линейной системой возбуждения, некоторые расходомеры, такие как расходомеры, упомянутые в патенте '329, лишены линейного сигнала возбуждения и, следовательно, как правило, не могут поддерживать сложные сигналы возбуждения. Одним подходом для того, чтобы устранить проблему линейности, будет увеличение размера и силы магнитной катушки.

Чтобы устранять однонаправленную проблему, упомянутую в патенте '329, может быть использовано несколько катушек или, альтернативно, магнитно-твердое вещество, включающее в себя северный/южный полюс, может быть применено к расходомерной трубке. Эти решения являются дорогостоящими и могут быть недопустимыми с точки зрения ограничений размера и мощности.

Настоящее изобретение преодолевает эти и другие проблемы, объединяя одну катушку возбуждения, которая может колебать расходомерные трубки с помощью сложного сигнала возбуждения, который может включать в себя более чем одну частоту.

АСПЕКТЫ

Согласно аспекту изобретения система измерения параметров потока содержит:

вибрационный расходомер, включающий в себя:

- по меньшей мере, одну расходомерную трубку;

- возбуждающее устройство, приспособленное для того, чтобы прикладывать смещающее усилие к расходомерной трубке; и

измерительную электронную аппаратуру, сконфигурированную так, чтобы формировать сигнал возбуждения, чтобы колебать расходомерную трубку около первого отклоненного положения, при этом первое отклоненное положение смещено от положения покоя расходомерной трубки.

Предпочтительно, сигнал возбуждения включает в себя напряжение смещения.

Предпочтительно, смещающее усилие, прикладываемое возбуждающим устройством, смещает расходомерную трубку в первом направлении.

Предпочтительно, собственная упругость расходомерной трубки смещает расходомерную трубку во втором направлении, противоположном первому направлению.

Предпочтительно, сигнал возбуждения колеблет расходомерную трубку между положением покоя, первым отклоненным положением и вторым отклоненным положением.

Предпочтительно, измерительная электронная аппаратура дополнительно сконфигурирована для того, чтобы формировать алгоритм линеаризации.

Предпочтительно, расходомерная трубка дополнительно содержит магнитную часть.

Согласно другому аспекту изобретения система измерения параметров потока содержит:

вибрационный расходомер, включающий в себя:

- по меньшей мере, одну расходомерную трубку;

- возбуждающее устройство, приспособленное для того, чтобы прикладывать смещающее усилие к расходомерной трубке; и

измерительную электронную аппаратуру, сконфигурированную для того, чтобы формировать напряжение смещения и сигнал возбуждения и прикладывать сигнал возбуждения, включающий в себя напряжение смещения, к возбуждающему устройству, чтобы колебать расходомерную трубку.

Предпочтительно, сигнал возбуждения, включающий в себя напряжение смещения, колеблет расходомерную трубку около первого отклоненного положения, при этом первое отклоненное положение смещено от положения покоя расходомерной трубки.

Предпочтительно, сигнал возбуждения колеблет расходомерную трубку между положением покоя, первым отклоненным положением и вторым отклоненным положением.

Предпочтительно, смещающее усилие, прикладываемое возбуждающим устройством, отклоняет расходомерную трубку в первом направлении.

Предпочтительно, собственная упругость расходомерной трубки отклоняет расходомерную трубку во втором направлении, противоположном первому направлению.

Предпочтительно, измерительная электронная аппаратура дополнительно сконфигурирована для того, чтобы формировать алгоритм линеаризации.

Предпочтительно, расходомерная трубка дополнительно содержит магнитную часть.

Согласно другому аспекту изобретения способ работы вибрационного расходомера, включающего в себя расходомерную трубку и возбуждающее устройство, содержит этап:

колебания расходомерной трубки около первого отклоненного положения, в котором первое отклоненное положение смещено от положения покоя расходомерной трубки.

Предпочтительно, этап колебания расходомерной трубки содержит применение первого смещающего усилия к расходомерной трубке с помощью возбуждающего устройства на основе сигнала возбуждения, при этом собственная упругость расходомерной трубки применяет второе смещающее усилие, противоположное первому смещающему усилию.

Предпочтительно, этап колебания расходомерной трубки около первого отклоненного положения содержит колебание расходомерной трубки между положением покоя расходомерной трубки, первым отклоненным положением и вторым отклоненным положением, при этом первое отклоненное положение находится между положением покоя расходомерной трубки и вторым отклоненным положением.

Предпочтительно, способ дополнительно содержит этапы формирования сигнала возбуждения, включающего в себя напряжение смещения, и приложения сигнала возбуждения к возбуждающему устройству, чтобы колебать расходомерную трубку.

Предпочтительно, способ дополнительно содержит этап формирования алгоритма линеаризации для сигнала возбуждения, отправленного возбуждающему устройству.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1 показывает систему измерения параметров потока предшествующего уровня техники.

Фиг.2 показывает вид сбоку расходомера предшествующего уровня техники.

Фиг.3 показывает сигнал возбуждения предшествующего уровня техники.

Фиг.4 показывает систему измерения параметров потока согласно варианту осуществления изобретения.

Фиг.5 показывает измерительную электронную аппаратуру согласно варианту осуществления изобретения.

Фиг.6 показывает прямоугольный сигнал возбуждения согласно варианту осуществления изобретения.

Фиг.7 показывает вид сбоку расходомера согласно варианту осуществления изобретения.

Фиг.8 показывает сигнал возбуждения предшествующего уровня техники.

Фиг.9 показывает сигнал возбуждения согласно варианту осуществления изобретения.

Фиг.10 показывает вид сбоку расходомера согласно варианту осуществления изобретения.

Фиг.11 показывает вид сбоку расходомера согласно другому варианту осуществления изобретения.

Фиг.12 - это график, показывающий соотношение между усилием, испытываемым расходомерной трубкой, и расстоянием, на котором расходомерная трубка находится от возбуждающего устройства.

Фиг.13 - это график, показывающий соотношение между усилием, испытываемым расходомерной трубкой, и расстоянием, на котором расходомерная трубка находится от возбуждающего устройства.

Фиг.14 показывает сигнал возбуждения вместе с усилием, испытываемым расходомерной трубкой.

Фиг.15 показывает другой сигнал возбуждения вместе с усилием, испытываемым расходомерной трубкой.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Фиг.4-15 и последующее описание описывают конкретные примеры для изучения специалистами в области техники того, как создавать и использовать оптимальный вариант изобретения. В целях изучения принципов изобретения некоторые традиционные аспекты упрощены или опущены. Специалисты в данной области техники должны принимать во внимание отклонения от этих примеров, которые попадают в пределы объема изобретения. Специалисты в данной области техники должны принимать во внимание, что признаки, описанные ниже, могут комбинироваться различными способами, чтобы формировать несколько вариантов изобретения. Как результат, изобретение не ограничено конкретными примерами, описанными ниже, а только формулой изобретения и ее эквивалентами.

Фиг.1 показывает систему 10 измерения параметров потока предшествующего уровня техники. Система 10 измерения параметров потока включает в себя вибрационный расходомер 100 и измерительную электронную аппаратуру 150. Расходомер 100 включает в себя расходомерную трубку 110, возбуждающее устройство 120 и датчики-измерители 121, 122. Возбуждающее устройство 120 и датчики-измерители 121, 122 могут связываться с измерительной электронной аппаратурой 150 через провода 123, 124, 125. Измерительная электронная аппаратура 150 может обрабатывать сигналы, принятые от датчиков 121, 122, чтобы создавать информацию измерения параметров потока, включающую в себя, но не только, массовый расход, плотность и калибровку расходомера.

При работе жидкость поступает во входное отверстие 101 через входной фланец 108 и выходит из расходомерной трубки 110 в выходном отверстии 102 через выходной фланец 109. Когда жидкость течет через расходомерную трубку 110, возбуждающее устройство 120 прикладывает сигнал возбуждения, заставляющий расходомерную трубку 110 вибрировать колебательным образом.

Фиг.2 показывает вид сбоку расходомера 100 предшествующего уровня техники. Как показано, возбуждающее устройство 120 содержит катушку 120A возбуждения и возбуждающий магнит 120B. Возбуждающее устройство 120 согласно расходомеру 100 предшествующего уровня техники способно как притягивать расходомерную трубку 110, так и отталкивать расходомерную трубку 110. Следовательно, расходомерная трубка 110 может колебаться около положения 222 покоя между отклоненными положениями, как показано пунктирными линиями 220 и 221. Следовательно, расходомер 100 может возбуждаться простым синусоидальным сигналом 300 возбуждения, как показано на фиг.3, включающим в себя как положительный, так и отрицательный компоненты тока/напряжения.

Фиг.3 показывает сигнал 300 возбуждения согласно предшествующему уровню. Сигнал 300 возбуждения показан как простой график напряжения в зависимости от времени, где показанные единицы измерения являются произвольными. Сигнал 300 возбуждения содержит простую синусоидальную частоту возбуждения, как описано выше, где сигнал 300 возбуждения включает в себя как положительный, так и отрицательный компонент тока/напряжения. В течение положительной части тока/напряжения сигнала 300 возбуждения расходомерная трубка 110 отталкивается от катушки 120A возбуждения, как изображено в положении 221 расходомерной трубки. Наоборот, в течение отрицательной части тока/напряжения сигнала 300 возбуждения расходомерная трубка 110 притягивается к катушке 120A возбуждения, как изображено в положении 220 расходомерной трубки. Сигнал 300 возбуждения обеспечивает надлежащие результаты для расходомера 100 предшествующего уровня техники во время простой операции. Сигнал 300 возбуждения может не быть подходящим, однако, для расходомеров, у которых отсутствует возможность притягивать и отталкивать расходомерную трубку 110 от катушки 120A возбуждения.

Фиг.4 показывает систему (20) измерения параметров потока согласно варианту осуществления изобретения. Система (20) измерения параметров потока включает в себя расходомер 400 и измерительную электронную аппаратуру 450. Расходомер 400 включает в себя расходомерную трубку 410, возбуждающее устройство 420 и датчики-измерители 421, 422. Хотя только одна расходомерная трубка 410 показана, следует понимать, что в других вариантах осуществления расходомер 400 содержит множество расходомерных трубок. Следовательно, настоящее изобретение не должно ограничиваться конструкцией с одной расходомерной трубкой. Расходомер 400 похож на расходомер 100 за исключением того, что расходомерная трубка 410 включает в себя магнитную часть 426, а не возбуждающий магнит 120B. Согласно одному варианту осуществления изобретения магнитная часть 426 содержит мю-металлическую магнитную часть. Однако следует понимать, что могут быть использованы другие материалы, и настоящее изобретение не должно ограничиваться мю-металлическими материалами. Кроме того, расходомер 400 может содержать магнит, прикрепленный к расходомерной трубке 410, аналогично расходомеру 100, показанному на фиг.1. Следовательно, в зависимости от конкретного материала, использованного для магнитной части 426, возбуждающее устройство 420 может иметь возможность возбуждать расходомерную трубку 410 только в одном направлении, т.е. тянуть или толкать расходомерную трубку 410.

Возбуждающее устройство 420 и датчики-измерители 421, 422 могут связываться с измерительной электронной аппаратурой 450 через провода 423, 424, 425. Измерительная электронная аппаратура 450 может принимать сигналы датчиков от первого и второго датчиков-измерителей 421, 422 через провода 424, 425, соответственно. Измерительная электронная аппаратура 450 может обрабатывать сигналы датчиков, чтобы вычислять информацию параметров потока. Эта информация, вместе с другой информацией, сообщается измерительной электронной аппаратурой 450 по маршруту 26 средству использования (не показано). Измерительная электронная аппаратура 450 показана более подробно на фиг.5.

Фиг.5 показывает измерительную электронную аппаратуру 450 согласно варианту осуществления изобретения. Измерительная электронная аппаратура 450 может включать в себя интерфейс 501 и систему 503 обработки. Измерительная электронная аппаратура 450 может принимать сигналы 510 датчика от расходомера 400, такие как сигналы датчика-измерителя/датчика скорости. В некоторых вариантах осуществления сигналы 510 датчика могут быть приняты от возбуждающего устройства 420. Измерительная электронная аппаратура 450 может работать как массовый расходомер или может работать как ареометр, включая в себя работу в качестве расходомера Кориолиса. Измерительная электронная аппаратура 450 может обрабатывать сигналы 510 датчиков для того, чтобы получать характеристики потока вещества, протекающего через расходомерную трубку 410. Например, измерительная электронная аппаратура 450 может определять одно или более из разности фаз, частоты, разницы времени, плотности, удельного массового расхода, объемного расхода, калибровки расходомера и т.д. Кроме того, измерительная электронная аппаратура 450 может формировать сигнал 511 возбуждения и подавать сигнал 511 возбуждения к возбуждающему устройству 420. Сигнал 511 возбуждения может содержать простой сигнал возбуждения, такой как сигнал 600 возбуждения, показанный на фиг.6, или может содержать усовершенствованный более сложный сигнал возбуждения, включающий в себя множество частот, такой как сигнал 900 возбуждения, показанный на фиг.9. Отдельные сигналы возбуждения обсуждаются более подробно ниже.

Кроме того, измерительная электронная аппаратура 450 может формировать напряжение смещения 512 для сигнала 511 возбуждения. Следует понимать, что напряжение смещения, такое как напряжение смещения 512, предназначено, чтобы обозначать ток или напряжение, которое подается к возбуждающему устройству в дополнение к сигналу возбуждения, чтобы повысить или понизить ток/напряжение подаваемого сигнала на предварительно определенную величину. Напряжение смещения 512 может содержать DC-напряжение смещения, например. Напряжение смещения 512 может содержать положительное или отрицательное напряжение смещения. Конкретное напряжение смещения может зависеть от конкретного магнитного материала и/или возбуждающего устройства, используемого в расходомере 400.

Измерительная электронная аппаратура 450 может также формировать алгоритм 513 линеаризации. Алгоритм 513 линеаризации может содержать подбор кривой, фильтрацию, усиление и т.д. Алгоритм 513 линеаризации может быть использован для того, чтобы создавать линейный сигнал возбуждения, например. Согласно другому варианту осуществления изобретения алгоритм 513 линеаризации может быть использован, чтобы предоставлять более линейный сигнал возбуждения на основе существующего нелинейного сигнала возбуждения, т.е. повышать линеаризацию сигнала возбуждения. Различные функции измерительной электронной аппаратуры 450 обсуждаются более подробно ниже.

Интерфейс 501 может принимать сигналы датчиков от датчиков-измерителей 421, 422 или возбуждающего устройства 420 через провода 423-425. Интерфейс 501 может выполнять любое необходимое или требуемое предварительное формирование сигнала, например, любой способ форматирования, усиления, буферизации и т.д. Альтернативно, некоторое или все предварительное формирование сигнала может выполняться в системе 503 обработки. Кроме того, интерфейс 501 может разрешать связи между измерительной электронной аппаратурой 450 и внешними устройствами. Интерфейс 501 может иметь возможность реализовывать любой способ электронной, оптической или беспроводной связи.

Интерфейс 501 в одном варианте осуществления может включать в себя цифровой преобразователь (не показан), при этом сигнал датчика содержит аналоговый сигнал датчика. Цифровой преобразователь может дискретизировать и оцифровывать аналоговый сигнал датчика и создавать цифровой сигнал датчика. Цифровой преобразователь может также выполнять любое необходимое прореживание данных, при котором цифровой сигнал датчика прореживается для того, чтобы уменьшать объем необходимой обработки сигнала и уменьшать время обработки.

Система 503 обработки управляет операциями измерительной электронной аппаратуры 450 и обрабатывает измерения параметров потока с расходомера 400. Система 503 обработки выполняет одну или более процедур обработки и, таким образом, обрабатывает измерения параметров расхода для того, чтобы создавать одну или более характеристик потока.

Система 503 обработки может содержать компьютер общего назначения, микропроцессорную систему, логическую схему или некоторое другое универсальное или специализированное процессорное устройство. Система 503 обработки может быть распределена между множеством устройств обработки. Система 503 обработки может включать в себя любой вид встроенного или независимого электронного носителя хранения, такого как система 504 хранения.

Система 503 обработки обрабатывает сигнал 510 датчика для того, чтобы формировать сигнал 511 возбуждения, среди прочего. Сигнал возбуждения подается на возбуждающее устройство 420 для того, чтобы колебать ассоциированную расходомерную трубку(и), такую как расходомерная трубка 410 на фиг.4. Примерные сигналы возбуждения предоставлены ниже.

Следует понимать, что измерительная электронная аппаратура 450 может включать в себя различные другие компоненты и функции, которые, в целом, известны в области техники. Эти дополнительные признаки опущены из описания и чертежей в целях простоты. Следовательно, настоящее изобретение не должно ограничиваться конкретными показанными и обсужденными вариантами осуществления.

Если расходомер 400 ограничивается возбуждением расходомерной трубки 410 в одном направлении, простой синусоидальный сигнал 300 возбуждения, включающий в себя как положительные, так и отрицательные компоненты, может не быть практичным. Это обусловлено тем, что во время отрицательных частей тока/напряжения сигнала 300 возбуждения расходомерная трубка 410 может не притягиваться к возбуждающему устройству 120. Альтернативно, если возбуждающее устройство 120 способно притягивать расходомерную трубку 410, но не отталкивать расходомерную трубку, тогда положительные части тока/напряжения сигнала 300 возбуждения могут не быть действующими. Поэтому одним подходом предшествующего уровня техники становится возбуждение расходомера согласно прямоугольному сигналу возбуждения, такому как показанный на фиг.6 и описанный ниже.

Фиг.6 показывает прямоугольный сигнал 600 возбуждения согласно варианту осуществления изобретения. Прямоугольный сигнал 600 возбуждения содержит одночастотный компонент, в котором ток/напряжение является положительным приблизительно в течение половины времени и приблизительно нулевым в течение приблизительно половины времени. Следовательно, когда измерительная электронная аппаратура 450 предоставляет сигнал 600 возбуждения возбуждающему устройству 420, расходомерная трубка 410 вибрирует, как показано на фиг.7.

Фиг.7 показывает вид сбоку расходомера 400 согласно варианту осуществления изобретения. Расходомерная трубка 410 показана сплошной линией в своем положении 700 покоя. Следует понимать, что выражение "положение покоя" предназначено, чтобы означать положение расходомерной трубки, когда, по существу, смещающее усилие не предоставляется возбуждающим устройством. Пунктирная линия 710 показывает расходомерную трубку 410, когда расходомерная трубка 410 отталкивается от возбуждающего устройства 420, например, когда расходомер возбуждается согласно прямоугольному сигналу 600 возбуждения. Когда расходомер 400 возбуждается согласно прямоугольному сигналу 600 возбуждения, магнитная часть 426 расходомерной трубки 410 отталкивается от возбуждающего устройства 420, когда подается ток. Упругость расходомерной трубки 410 приводит расходомерную трубку 410 обратно в ее положение покоя, когда ток не подается. Следует понимать, что в некоторых вариантах осуществления сигнал 600 возбуждения может содержать отрицательные компоненты, а не положительные компоненты.

Простые сигналы 300 и 600 возбуждения, показанные на фиг.3 и 6, являются достаточными для простых измерений; однако, некоторые функции расходомера требуют более сложных сигналов возбуждения, включающих в себя множественные частоты, предоставляемые, по существу, одновременно.

Фиг.8 показывает пример усовершенствованного сигнала 800 возбуждения согласно предшествующему уровню техники. Сигнал 800 возбуждения содержит сложный сигнал, включающий в себя множество частот. Сигнал 800 возбуждения может быть реализован там, где требуются усовершенствованные измерения, например. Хотя сигнал 800 возбуждения обеспечивает приемлемые результаты в расходомерах, где возбуждающее устройство может вибрировать в двухтактном режиме, сигнал 800 возбуждения может не обеспечивать приемлемых результатов в расходомерах, которые воспринимают только однонаправленные движущие силы. Для того чтобы преодолевать недостатки сигнала 800 возбуждения, настоящее изобретение вводит напряжение смещения в сигнал возбуждения.

Согласно варианту осуществления изобретения измерительная электронная аппаратура 450 может формировать напряжение смещения 512. Хотя обсуждение ниже ограничивается ситуацией, где напряжение смещения 512 применяется к сигналу 800 возбуждения, следует понимать, что напряжение смещения 512 может быть применено к любому сигналу возбуждения, и настоящее изобретение не должно ограничиваться конкретными обсужденными сигналами возбуждения. Также следует понимать, что напряжение смещения может быть реализовано в вариантах осуществления, где возбуждающее устройство может вибрировать в двухтактном режиме. Следовательно, хотя обсуждение ниже ссылается, главным образом, на ситуации, когда возбуждающее устройство работает либо только в режиме втягивания, либо только в режиме толкания, настоящее изобретение не должно ограничиваться этими ситуациями. Сигнал 800 возбуждения, включающий в себя напряжение смещения 512, может быть применен к расходомерной трубке 410. Получающийся в результате сигнал 900 возбуждения показан на фиг.9.

Фиг.9 показывает сигнал 900 возбуждения согласно варианту осуществления изобретения. Как показано, сигнал 900 возбуждения аналогичен сигналу 800 возбуждения за исключением того, что сигнал 900 возбуждения согласно варианту осуществления включает в себя напряжение смещения. Это приводит в результате к тому, что, по существу, весь сигнал возбуждения является положительным. Другими словами, ток/напряжение подается на возбуждающее устройство 420, по существу, в течение всего сигнала 900 возбуждения. Это отличается от сигнала 600 возбуждения предшествующего уровня техники, где ток попеременно включается и выключается, давая в результате периоды, где расходомерная трубка 410 возвращается в свое положение покоя. Скорее, согласно варианту осуществления изобретения расходомерная трубка 410 колеблется около первого отклоненного положения 1002. Первое отклоненное положение 1002 может находиться между положением 1001 покоя и вторым отклоненным положением 1003 расходомерной трубки 410. Отклонение расходомерной трубки, происходящее в результате сигнала 900 возбуждения, показано на фиг.10.

Фиг.10 показывает вид сбоку расходомера 400 согласно варианту осуществления изобретения. Согласно показанному варианту осуществления, в ответ на сигнал 900 возбуждения, отправленный измерительной электронной аппаратурой 450 возбуждающему устройству 420, расходомерная трубка 410 колеблется между положением 1001 покоя, первым отклоненным положением 1002 и вторым отклоненным положением 1003. Согласно варианту осуществления, показанному на фиг.10, расходомерная трубка 410 колеблется около первого отклоненного положения 1002. Согласно показанному варианту осуществления первое отклоненное положение 1002 смещено от положения 1001 покоя. Следовательно, даже в вариантах осуществления, где возбуждающее устройство 420 может отклонять расходомерную трубку 410 только в одном направлении, расходомерная трубка 410 может все еще колебаться около первого отклоненного положения 1002. Это обусловлено тем, что возбуждающее устройство 420 может отклонять расходомерную трубку 410 за первое отклоненное положение 1002 во второе отклоненное положение 1003, а собственная упругость расходомерной трубки может приводить расходомерную трубку 410 обратно в положение 1001 покоя с другой стороны от первого отклоненного положения 1002. Согласно варианту осуществления изобретения расходомерная трубка 410 возбуждается с помощью усовершенствованного сигнала возбуждения, такого как сигнал 900 возбуждения, включающий в себя напряжение смещения. Согласно варианту осуществления изобретения первое отклоненное положение находится приблизительно в средней точке колебания расходомерной трубки.

В расходомерах предшествующего уровня техники, где возбуждающее устройство имело возможность смещать расходомерную трубку только в одном направлении, расходомер основывался на собственной упругости расходомерной трубки так, что она колебалась между положением покоя расходомерной трубки и первым отклоненным положением. Этот тип конфигурации показан на фиг.7, например.

Сигнал 900 возбуждения согласно варианту осуществления изобретения также использует собственную упругость расходомерной трубки. Однако, вместо возбуждения расходомерной трубки 410 между положением покоя и первым отклоненным положением, расходомерная трубка 410 возбуждается между положением 1001 покоя, первым отклоненным положением 1002 и вторым отклоненным положением 1003. Это дает в результате то, что расходомер 400 вибрирует, как если бы расходомерная трубка 410 возбуждалась в двунаправленном режиме. Однако, вместо отклонения расходомерной трубки 410 и притягивания расходомерной трубки 410, расходомер 400 согласно варианту осуществления изобретения отклоняет расходомерную трубку 410 в первое отклоненное положение 1002 и отклоняет расходомерную трубку 410 еще дальше во второе отклоненное положение 1003. Согласно показанному варианту осуществления первое отклоненное положение 1002 и второе отклоненное положение 1003 являются отклоненными от положения 1001 покоя в одном и том же направлении. В некоторых вариантах осуществления второе отклоненное положение 1003 находится дальше от положения 1001 покоя, чем первое отклоненное положение 1002. Следовательно, вместо средней точки колебания, которой является состояние покоя, как в предшествующем уровне техники, средней точкой колебания является первое отклоненное положение 1002. Другими словами, расходомерная трубка 410 колеблется около первого отклоненного положения 1002. Следует понимать, что первое отклоненное положение 1002 может не содержать точную среднюю точку колебания и предпочтительно, что сигнал 900 возбуждения является таким, что расходомерная трубка 410 колеблется в любую сторону от первого отклоненного положения 1002, а не колеблется в любую сторону от положения 1001 покоя, как в расходомерах предшествующего уровня техники. Кроме того, следует понимать, что местоположение первого отклоненного положения 1002 может изменяться на всем протяжении сигнала возбуждения. Местоположение может изменяться по ряду причин, включающих в себя изменение тока/напряжения сигнала возбуждения, например. Однако, даже если местоположение первого отклоненного положения 1002 изменяется, оно все еще будет сдвинутым от положения 1001 покоя расходомерной трубки.

Фиг.11 показывает вид сбоку расходомера 400 согласно другому варианту осуществления изобретения. Обсуждение выше описывает ситуацию, когда возбуждающее устройство 420 может только отталкивать расходомерную трубку 410 от возбуждающего устройства 420. Однако в некоторых вариантах осуществления магнитный материал, присоединенный к расходомерной трубке 410, может вместо этого притягиваться к возбуждающему устройству 420. Следовательно, согласно варианту осуществления изобретения расходомерная трубка 410 может отклоняться, как показано на фиг.11.

Колебание расходомерной трубки, показанное на фиг.11, аналогично колебанию расходомерной трубки, показанному на фиг.10, за исключением того, что расходомерная трубка 410 притягивается к возбуждающему устройству 420, а не отталкивается от возбуждающего устройства 420. Следовательно, в отличие от сигнала 900 возбуждения, где, по существу, весь сигнал возбуждения показан как положительный, колебание расходомерной трубки, показанное на фиг.11, будет результатом сигнала возбуждения, где, по существу, весь сигнал возбуждения содержит отрицательный ток/напряжение. Следовательно, напряжение смещения будет отрицательным напряжением смещения. Согласно варианту осуществления изобретения расходомерная трубка 410 может колебаться около первого отклоненного положения 1102. На основе используемого сигнала возбуждения расходомерная трубка 410 может приводиться во второе отклоненное положение 1103, когда сигнал возбуждения находится на максимуме. Когда сигнал возбуждения находится на минимуме, расходомерная трубка 410 может возвращаться в положение 1101 покоя или близко к положению 1101 покоя. Следует понимать, что, если сигнал возбуждения не полностью снят, например, согласно сигналу 900 возбуждения, расходомерная трубка 410 может не возвращаться полностью в положение 1101 покоя.

Следует понимать, что, в то время как обсуждение выше ограничено сигналом 900 возбуждения, включающим напряжение смещения, аналогичное напряжение смещения может применяться к любому из ранее обсужденных сигналов возбуждения. Например, напряжение смещения может предоставляться простым синусоидальным или прямоугольным сигналам возбуждения на фиг.3 и 6, соответственно. Кроме того, следует понимать, что показанные сигналы возбуждения являются просто примерами, и различные другие сигналы возбуждения рассматриваются и находятся в рамках настоящего изобретения. Напряжение смещения, как обсуждалось выше, может также быть использовано с возбуждающими устройствами, допускающими вибрацию в двухтактном режиме. Хотя сигнал возбуждения, включающий в себя напряжение смещения, используемый двухтактный режим возбуждения, может быть полностью положительным или отрицательным, сигнал возбуждения может включать в себя как положительные, так и отрицательные компоненты. Следовательно, поскольку расходомерная трубка 410 вибрирует около первого отклоненного положения 1002, расходомерная трубка 410 может все еще пересекать положение 1001 покоя расходомерной трубки в течение положительного или отрицательного компонента сигнала возбуждения.

Сигнал 900 возбуждения, включающий в себя напряжение смещения, предоставляет сигнал, который отклоняет расходомерную трубку 410 в одном направлении и использует собственную упругость расходомерной трубки, чтобы отклонять расходомерную трубку 410 в противоположном направлении, таким образом создавая колебание, которое представляет двунаправленный сигнал возбуждения. Следовательно, сигнал 900 возбуждения может быть использован в расходомерах, таких как расходомер 400, где возбуждающее устройство может отклонять расходомерную трубку только в одном направлении и все еще реализует возможности измерения сложных, многочастотных сигналов возбуждения. Настоящее изобретение, однако, может также выполнять поправку на нелинейности, которые могут возникать в результате усовершенствованного сигнала 900 возбуждения.

Хотя существуют различные источники нелинейностей в сигнале возбуждения, согласно варианту осуществления изобретения один источник нелинейности в сигнале возбуждения присутствует вследствие расстояния между возбуждающим устройством 420 и расходомерной трубкой 410. В расходомерах предшествующего уровня техники, таких как расходомер 100, узел катушка/магнит возбуждающего устройства 120 является таким, что существует очень маленькое расстояние между катушкой 120A и магнитом 120B. Если усилие на магните 120B, оказываемое фиксированным током/напряжением в катушке в зависимости от расстояния, на котором магнит находится от катушки, представляется графически, может быть сформирован график, такой как показано на фиг.12.

Фиг.12 показывает соотношение между усилием, испытываемым магнитом 120B или, альтернативно, расходомерной трубкой 410 посредством катушки 120A или возбуждающего устройства 420, и расстоянием. Как может быть видно, усилие почти линейно в пределах короткого расстояния 1250 от катушки/возбуждающего устройства. Расходомер 100 предшествующего уровня спроектирован, чтобы работать в этой почти линейной области 1250.

Однако с однонаправленным возбуждающим устройством 420 и магнитной частью 426 расходомера 400 возбуждающее устройство 420 находится относительно далеко от расходомерной трубки 410 так, что она колеблется около первого отклоненного положения 1002, а не около положения 1001 покоя. Таким образом, расходомер 400 работает, главным образом, в области 1350, показанной на фиг.13.

Фиг.13 показывает соотношение между усилием, испытываемым расходомерной трубкой 410, и расстоянием, на котором расходомерная трубка 410 находится от возбуждающего устройства 420. Только положительное расстояние показано для ситуаций, где возбуждающее устройство 420 может только отталкивать расходомерную трубку 410. Следует понимать, что похожий график может быть построен для ситуаций, где возбуждающее устройство 420 может только притягивать расходомерную трубку 410.

Как может быть видно, область 1350, как правило, находится дальше от возбуждающего устройства 420, чем область 1250, показанная на фиг.12. Это приводит в результате, как правило, к нелинейному сигналу 900 возбуждения, поскольку результирующее усилие нелинейно следует сигналу возбуждения. Это обусловлено тем, что поскольку расходомерная трубка отклоняется из первого отклоненного положения 1002 во второе отклоненное положение 1003, расстояние изменяется на относительно большую величину, даже когда приложенное усилие остается постоянным. Эта нелинейность показана на фиг.14.

Фиг.14 показывает сигнал 600 возбуждения вместе с фактическим усилием 1400, испытываемым расходомерной трубкой 410. В начале каждого цикла расходомерная трубка 410 находится в своем положении 700 покоя. Это положение, где возбуждающее устройство 420 находится наиболее близко к расходомерной трубке 410 и, таким образом, к магнитной части 426. Следовательно, усилие 1400 является наибольшим в положении 700 покоя. Когда возбуждающее устройство 420 отталкивает расходомерную трубку 410, усилие, приложенное относительно катушки, уменьшается. Как может быть видно на фиг.14, усилие 1400 значительно падает прежде, чем ток/напряжение возбуждающего устройства 420 выключается. Этот тип искажения может не оказывать значимого воздействия на стандартные измерения, такие как массовый расход и плотность, которые основаны на фазе и частоте. Однако на другие измерения может негативно влиять такая нелинейная тенденция. Следовательно, воздействие на другие сигналы возбуждения, такие как сигнал 900 возбуждения, может давать в результате значительные ошибки.

Фиг.15 показывает сигнал 900 возбуждения вместе с усилием 1500, испытываемым расходомерной трубкой 410. Как может быть видно, усилие 1500, прикладываемое к расходомерной трубке 410, является очевидно нелинейным с сигналом 900 тока/напряжения. Настоящее изобретение может выполнять поправку на нелинейности, реализуемые расходомером 400. Корректировка может быть реализована либо в аппаратных средствах, либо в программном обеспечении. Схема или алгоритмы обработки цифрового сигнала могут характеризовать кривую усилия в зависимости от расстояния, показанную на фиг.13, например. Следовательно, кривая, соответствующая графику, показанному на фиг.15, может быть использована, чтобы получать более линейный сигнал возбуждения.

Согласно варианту осуществления изобретения усилие, испытываемое расходомерной трубкой 410, может быть нанесено на график в зависимости от сигнала возбуждения. Разница может быть скорректирована посредством кривой, соответствующей результирующей силе с сигналом возбуждения. Таким образом, нелинейности из-за увеличившегося расстояния между катушкой возбуждения и расходомерной трубкой 410 могут быть скорректированы с помощью различных аппаратных средств и/или программных алгоритмов корректировки.

Подробные описания вышеупомянутых вариантов осуществления не являются исчерпывающими описаниями всех вариантов осуществления, рассматриваемых изобретателями как находящиеся в рамках изобретения. В действительности, специалисты в области техники поймут, что определенные элементы вышеописанных вариантов осуществления могут по-разному быть объединены или выделены, чтобы создавать дополнительные варианты осуществления и такие дополнительные варианты осуществления попадают в рамки и учения изобретения. Также обычным специалистам в данной области техники будет очевидно, что вышеописанные варианты осуществления могут быть объединены в целом или частично, чтобы создавать дополнительные варианты осуществления в рамках и учениях изобретения.

Таким образом, хотя конкретные варианты осуществления и примеры изобретения описываются в данном документе в иллюстративных целях, различные эквивалентные модификации возможны в рамках изобретения, как поймут специалисты в соответствующей области техники. Учения, предоставленные в данном документе, могут быть применены к другим расходомерам, а не только к вариантам осуществления, описанным выше и показанным на сопровождающих чертежах. Соответственно, рамки изобретения должны быть определены из последующей формулы изобретения.

1. Система (20) измерения параметров потока, содержащая:
вибрационный расходомер (400), включающий в себя:
- по меньшей мере, одну расходомерную трубку (410);
- возбуждающее устройство (420), приспособленное для того, чтобы прикладывать смещающее усилие к расходомерной трубке (410); и
измерительную электронную аппаратуру (450), сконфигурированную так, чтобы формировать сигнал возбуждения, чтобы колебать расходомерную трубку (410) около первого отклоненного положения (1002) между положением покоя, первым отклоненным положением (1002) и вторым отклоненным положением (1003), при этом первое отклоненное положение (1002) смещено от положения (1001) покоя расходомерной трубки.

2. Система (20) измерения параметров потока по п.1, в которой сигнал возбуждения включает в себя напряжение смещения.

3. Система (20) измерения параметров потока по п.1, в которой смещающее усилие, прилагаемое возбуждающим устройством (420), отклоняет расходомерную трубку (410) в первом направлении.

4. Система (20) измерения параметров потока по п.3, в которой собственная упругость расходомерной трубки (410) отклоняет расходомерную трубку (410) во втором направлении, противоположном первому направлению.

5. Система (20) измерения параметров потока по п.1, в которой измерительная электронная аппаратура (450) дополнительно сконфигурирована, чтобы формировать алгоритм (513) линеаризации.

6. Система (20) измерения параметров потока по п.1, в которой расходомерная трубка (410) дополнительно содержит магнитную часть (426).

7. Система (20) измерения параметров потока, содержащая:
вибрационный расходомер (400), включающий в себя:
- по меньшей мере, одну расходомерную трубку (410);
- возбуждающее устройство (420), приспособленное для того, чтобы прикладывать смещающее усилие к расходомерной трубке (410); и измерительную электронную аппаратуру (450), сконфигурированную для того, чтобы формировать напряжение смещения и сигнал возбуждения и прикладывать сигнал возбуждения, включающий в себя напряжение смещения, к возбуждающему устройству (420), чтобы колебать расходомерную трубку (410), причем сигнал возбуждения колеблет расходомерную трубку (410) между положением (1001) покоя, первым отклоненным положением (1002) и вторым отклоненным положением (1003).

8. Система (20) измерения параметров потока по п.7, в которой сигнал возбуждения, включающий в себя напряжение смещения, колеблет расходомерную трубку (410) около первого отклоненного положения (1002), при этом первое отклоненное положение (1002) смещено от положения (1001) покоя расходомерной трубки.

9. Система (20) измерения расхода по п.7, в которой смещающее усилие, прилагаемое возбуждающим устройством (420), отклоняет расходомерную трубку (410) в первом направлении.

10. Система (20) измерения параметров потока по п.9, в которой собственная упругость расходомерной трубки (410) отклоняет расходомерную трубку (410) во втором направлении, противоположном первому направлению.

11. Система (20) измерения параметров потока по п.7, в которой измерительная электронная аппаратура (450) дополнительно сконфигурирована, чтобы формировать алгоритм (513) линеаризации.

12. Система (20) измерения параметров потока по п.7, в которой расходомерная трубка (410) дополнительно содержит магнитную часть (426).

13. Способ работы вибрационного расходомера, включающего в себя расходомерную трубку и возбуждающее устройство, содержащий этап, на котором:
- выполняют колебания расходомерной трубки около первого отклоненного положения между положением покоя расходомерной трубки, первым отклоненным положением и вторым отклоненным положением, при этом первое отклоненное положение находится между положением покоя расходомерной трубки и вторым отклоненным положением, при этом первое отклоненное положение смещено от положения покоя расходомерной трубки.

14. Способ по п.13, в котором этап колебания расходомерной трубки содержит этап, на котором применяют первое смещающее усилие к расходомерной трубке с помощью возбуждающего устройства на основе сигнала возбуждения, при этом собственная упругость расходомерной трубки применяет второе смещающее усилие, противоположное первому смещающему усилию.

15. Способ по п.13, дополнительно содержащий этапы, на которых формируют сигнал возбуждения, включающий в себя напряжение смещения, и прикладывают сигнал возбуждения к возбуждающему устройству, чтобы колебать расходомерную трубку.

16. Способ по п.13, дополнительно содержащий этап, на котором формируют алгоритм линеаризации для сигнала возбуждения, отправленного возбуждающему устройству.



 

Похожие патенты:

Изобретение относится к подходящему, в частности, для преобразователя колебаний и/или для датчика вибрационного типа электромагнитному устройству с создающим магнитное поле постоянным магнитом, с жестко соединенным с постоянным магнитом держателем, а также со стаканом для магнита.

Изобретение относится к вибрационному расходомеру и, более конкретно, к вибрационному расходомеру с очень высокой частотой вибрации. .

Изобретение относится к области измерительной техники и может быть использовано для измерения массового расхода жидкостей, протекающих по трубопроводам, например, при транспортировке нефтепродуктов.

Изобретение относится к расходометрии и может быть использовано в процессе измерения расхода среды с поддержанием постоянной амплитуды колебания трубки в интервале изменяющейся температуры.

Изобретение относится к расходомерам, включающим в себя балансный элемент

Изобретение относится к вибрационному измерительному преобразователю для измерения проходящей по трубопроводу текучей среды, в частности газа, жидкости, порошка или других текучих материалов, в частности, для измерения плотности и/или массового расхода, а также, в частности, суммарного за интервал времени массового расхода носителя, протекающей в трубопроводе, по меньшей мере, временно, с интенсивностью расхода более 2200 т/ч, в частности, более 2500 т/ч

Группа изобретений относится к определению свойств многофазной технологической текучей среды. Способ определения свойств многофазной технологической текучей среды содержит этапы, на которых: пропускают многофазную текучую среду по колебательно подвижной расходомерной трубке и расходомеру переменного перепада давления; вызывают движение расходомерной трубки и определяют первое кажущееся свойство текучей среды; определяют, по меньшей мере, одно кажущееся промежуточное значение, которое представляет собой первый критерий Фруда для негазообразной фазы текучей среды и второй критерий Фруда для газообразной фазы текучей среды; определяют степень влажности текучей среды на основе преобразования между первым и вторым критериями Фруда и степенью влажности; определяют второе кажущееся свойство текучей среды с использованием расходомера переменного перепада давления; определяют фазозависимое свойство текучей среды на основе степени влажности и второго кажущегося свойства. При этом первое кажущееся свойство выбрано из кажущегося массового расхода или плотности. Группа изобретений относится также к расходомеру, содержащему колебательно подвижную расходомерную трубку, соединенные с ней возбудитель колебаний и датчик для считывания движения трубки, и контроллер, а также к измерительному преобразователю расходомера и системе определения свойств многофазной текучей среды. Группа изобретений обеспечивает повышение точности определения свойств многофазной текучей среды и позволяет оценить точность работы расходомеров. 4 н. и 17 з.п. ф-лы, 7 ил.

Вибрационный расходомер включает в себя трубопровод (210), по меньшей мере, один измерительный преобразователь (230, 231), приводной элемент (250); по меньшей мере, один привод (220) и основание (260). Трубопровод (210) определяет путь потока текучей среды. По меньшей мере, один измерительный преобразователь (230, 231) измеряет движение трубопровода (210). По меньшей мере, один привод (220) приводит в вибрацию в противофазе трубопровод (210) и приводной элемент (250). Основание (260) соединено с трубопроводом (210) и приводным элементом (250) и переключается между состоянием по существу неподвижным или движением по существу в фазе с трубопроводом (210), или движением по существу в фазе с приводным элементом (250) для того, чтобы уравновесить движение трубопровода (210) и приводного элемента (250). Технический результат - уравновешивание системы для вибрационного расходомера. 2 н. и 22 з.п. ф-лы, 5 ил.

Предложен способ эксплуатации системы вибрационного расходомера. Способ включает в себя этап приема сигнала первого датчика от первого вибрационного расходомера. Сигнал второго датчика принимается от второго вибрационного расходомера. Первый расход формируется из сигнала первого датчика, и второй расход формируется из сигнала второго датчика. Способ дополнительно включает в себя этап определения дифференциального смещения нуля первого вибрационного расходомера исходя из первого и второго расходов. Технический результат - возможность непрерывной адаптации к изменяющимся условиям, а также уменьшение существенных ошибок, произведенных экспериментальных изменений единственного смещения нуля, которые могут быть связаны с факторами, отличными от измеренных эксплуатационных условий. 4 н. и 14 з.п. ф-лы, 7 ил., 1 табл.

Вибрационный расходомер (205) состоит из трубопровода (210), содержащего первый концевой участок (211) и второй концевой участок (212). Вибрационный расходомер (205) затем подсоединяют к корпусу (300), который окружает, по меньшей мере, участок трубопровода (210). Вибрационный расходомер (205) также включает в себя первое соединение (290) корпуса. Первое соединение (290) корпуса содержит первый участок (205), соединенный с первым концевым участком (211) трубопровода (210) и один или более деформируемых элементов (292, 293, 294), проходящих радиально от первого участка (295) и соединенных с корпусом (300) так, что один или более деформируемых элементов (292, 293, 294) адаптированы для ограничения перемещения трубопровода (210) потока в направлении, параллельном плоскости деформируемых элементов (292, 293, 294), и в направлении, параллельном оси (X) вращения трубопровода (210) потока, но обеспечивая возможность трубопроводу потока вращаться вокруг оси вращения (X). Технический результат - улучшение балансировки расходомера, несмотря на изменение плотности текучей среды, протекающей через трубопровод потока. 3 н. и 12 з.п. ф-лы, 4 ил.

Расходомер (200) с одним вводом и множественным выводом содержит приемный трубопровод (202) и делитель (203) потока. Расходомер (200) дополнительно включает в себя сенсорный элемент (204) первого потока, связанный с делителем (203) потока, включающий в себя первый выходной трубопровод (206), для получения первого сигнала расхода. Расходомер (200) дополнительно содержит, по меньшей мере, сенсорный элемент (205) второго потока, связанный с делителем (203) потока, включающий в себя второй выходной трубопровод (207), и сконфигурированный для получения второго сигнала расхода. Входной поток может быть измерен сенсорным элементом (204) первого потока на первом выходном трубопроводе (206), может быть измерен сенсорным элементом (205) второго потока на втором выходном трубопроводе (207) или может быть одновременно измерен сенсорным элементом (204) первого потока на первом выходном трубопроводе (206) и сенсорным элементом (205) второго потока на втором выходном трубопроводе (207). Технический результат - осуществление измерения расхода топлива и распределение альтернативного топлива, а также измерение потока топлива первой и второй очереди. 2 н. и 10 з.п. ф-лы, 4 ил.
Наверх