Расходомер с одним вводом и множественным выводом



Расходомер с одним вводом и множественным выводом
Расходомер с одним вводом и множественным выводом
Расходомер с одним вводом и множественным выводом
Расходомер с одним вводом и множественным выводом

 


Владельцы патента RU 2502056:

МАЙКРО МОУШН, ИНК. (US)

Расходомер (200) с одним вводом и множественным выводом содержит приемный трубопровод (202) и делитель (203) потока. Расходомер (200) дополнительно включает в себя сенсорный элемент (204) первого потока, связанный с делителем (203) потока, включающий в себя первый выходной трубопровод (206), для получения первого сигнала расхода. Расходомер (200) дополнительно содержит, по меньшей мере, сенсорный элемент (205) второго потока, связанный с делителем (203) потока, включающий в себя второй выходной трубопровод (207), и сконфигурированный для получения второго сигнала расхода. Входной поток может быть измерен сенсорным элементом (204) первого потока на первом выходном трубопроводе (206), может быть измерен сенсорным элементом (205) второго потока на втором выходном трубопроводе (207) или может быть одновременно измерен сенсорным элементом (204) первого потока на первом выходном трубопроводе (206) и сенсорным элементом (205) второго потока на втором выходном трубопроводе (207). Технический результат - осуществление измерения расхода топлива и распределение альтернативного топлива, а также измерение потока топлива первой и второй очереди. 2 н. и 10 з.п. ф-лы, 4 ил.

 

Область техники, к которой относится изобретение

Настоящее изобретение относится к расходомеру с одним вводом и множественным выводом, и более точно, к расходомеру с одним вводом и множественным выводом, который может быть использован для измерения расхода топлива и альтернативного топлива.

Предшествующий уровень техники

Колебательные трубчатые датчики, например массовые расходомеры Кориолиса, обычно действуют посредством регистрации смещения колеблющегося трубопровода, содержащего перетекающее вещество. Свойства вещества в трубопроводе, например, массовый расход, плотность и тому подобные, могут быть определены обработкой измеренных сигналов, принятых от преобразователей смещения, связанных с трубопроводом. Колебательные моды колеблющейся заполненной веществом системы обычно подвержены суммарному воздействию параметров несущего трубопровода и вещества в нем, таких как масса, жесткость и степень демпфирования колебаний.

Типичный массовый расходомер Кориолиса содержит один или несколько трубопроводов, которые включены в трубопроводную линию или другую транспортную систему, переносящую вещество, например, флюиды, буровые растворы и тому подобное. Каждый трубопровод может быть рассмотрен как имеющий набор собственных колебательных мод, например, простой изгиб, крутильные, радиальные, и связанные моды. При обычном измерении массового расхода расходомером Кориолиса трубка возбуждается на одной или нескольких колебательных модах при протекании вещества по трубке, а смещение трубки измеряется в точках, разнесенных вдоль трубки. Возбуждение обычно обеспечивается специальным возбудителем, например, электромеханическим устройством, таким как соленоидный возбудитель, периодически возмущающий трубку на звуковой частоте. Массовый расход может быть определен измерением времени задержки или разности фаз между смещениями в местах расположения преобразователей. Два таких преобразователя (или тензометрических датчика) обычно используются для измерения колебательного отклика потока по трубке или трубкам, и они обычно располагаются в положениях сверху и снизу по течению относительно возбудителя. Два тензометрических датчика подключены к электронной контрольно-измерительной аппаратуре с помощью кабеля, например, двух независимых пар проводов. Контрольно-измерительная аппаратура принимает сигналы от двух тензометрических датчиков и обрабатывает сигналы для получения измеренного значения массового расхода.

Расходомеры используются для измерений массового расхода большого многообразия протекающих флюидов. Одно из потенциальных применений расходомеров Кориолиса - измерение и распределение альтернативных топлив. Рынок альтернативного топлива продолжает расширяться в связи с ростом загрязнения окружающей среды и в связи с проблемами стоимости и доступности неэтилированного бензина и другого традиционного топлива. Фактически, многие государства оказываются вынужденными заниматься продвижением законодательства по использованию альтернативного топлива.

Использование расходомеров Кориолиса для альтернативного топлива возможно при заправке машин, например, автомобилей, автобусов, и т.п. Обычно заправка личных машин осуществляется на заправочных станциях, использующих традиционные бензиновые насосы или распределители сжатого природного газа (CNG) для альтернативного топлива. Традиционные распределители бензина требуют наличия двух отдельных и независимых измерителей для одновременной заправки двух машин. Вместе с тем, общая стоимость и размеры топливного насоса для альтернативного топлива должны быть минимизированы, чтобы изготовление насоса было конкурентоспособным в условиях роста промышленности. Таким образом, имеется потребность в разработке рентабельного топливного расходомера, который мог бы обеспечить два измерения расхода топлива одновременно.

Сущность изобретения

Технической задачей настоящего изобретения является решение проблем, связанных с распределением и измерением расхода топлива, например, распределением и измерением расхода альтернативного топлива путем создания расходомера с одним вводом и множественным выводом.

Расходомер согласно изобретению содержит приемный трубопровод для приема флюидного потока и делитель потока, связанный с приемным трубопроводом. Делитель потока делит флюидный поток, по меньшей мере, на первый поток и второй поток. Расходомер дополнительно содержит сенсорный элемент первого потока, связанный с делителем потока, включающим в себя первый выходной трубопровод для формирования первого сигнала расхода, соответствующего первому потоку. Расходомер дополнительно содержит, по меньшей мере, сенсорный элемент второго потока, связанный с делителем потока и имеющий второй выходной трубопровод для формирования второго сигнала расхода, соответствующего второму потоку. Входной поток может измеряться сенсорным элементом первого потока в первом выходном трубопроводе, может измеряться сенсорным элементом второго потока во втором выходном трубопроводе, или может одновременно измеряться сенсорным элементом первого потока и сенсорным элементом второго потока, размещенными соответственно в первом выходном трубопроводе и во втором выходном трубопроводе.

Расходомер с одним вводом и множественным выводом предоставлен в соответствии с вариантом реализации изобретения. Расходомер содержит приемный трубопровод для приема флюидного потока и делитель потока, связанный с приемным трубопроводом. Делитель потока разделяет флюидный поток, по меньшей мере, на первый поток и второй поток. Расходомер дополнительно содержит сенсорный элемент первого потока, связанный с делителем потока, включающим в себя первый выходной трубопровод, и предназначенный для формирования первого сигнала расхода, соответствующего первому потоку. Расходомер дополнительно содержит, по меньшей мере, сенсорный элемент второго потока, связанный с делителем потока, включающим в себя второй выходной трубопровод, и предназначенный для формирования второго сигнала расхода, соответствующего второму потоку. Расходомер дополнительно содержит электронный измеритель, который принимает первый сигнал расхода и второй сигнал расхода и формирует соответствующее измерение первого топливного потока и соответствующее измерение второго топливного потока. Расходомер дополнительно содержит корпус, который включает в себя делитель потока, сенсорный элемент первого потока, сенсорный элемент второго потока, электронный измеритель, по меньшей мере, часть приемного трубопровода, по меньшей мере, часть первого выходного трубопровода и, по меньшей мере, часть второго выходного трубопровода. Входной поток может измеряться через первый выходной трубопровод сенсорным элементом первого потока, может измеряться через второй выходной трубопровод сенсорным элементом второго потока или может одновременно измеряться и через первый выходной трубопровод сенсорным элементом первого потока, и через второй выходной трубопровод сенсорным элементом второго потока.

В соответствии с вариантом реализации изобретения предложен способ формирования расходомера с одним вводом и множественным выводом. Способ содержит следующие шаги: использование приемного трубопровода для приема флюидного потока и делителя потока, связанного с приемным трубопроводом. Делитель потока делит флюидный поток, по меньшей мере, на первый поток и второй поток. Способ дополнительно содержит использование сенсорного элемента первого потока, связанного с делителем потока, включающим в себя первый выходной трубопровод, и предназначенного для формирования первого сигнала расхода, соответствующего первому потоку. Способ дополнительно содержит использование, по меньшей мере, сенсорного элемента второго потока, связанного с делителем потока, включающим в себя второй выходной трубопровод, и предназначенного для формирования второго сигнала расхода, соответствующего второму потоку. Входной поток может измеряться сенсорным элементом первого потока через первый выходной трубопровод, а также может измеряться сенсорным элементом второго потока через второй выходной трубопровод, или может одновременно измеряться сенсорным элементом первого потока через первый выходной трубопровод, и сенсорным элементом второго потока через второй выходной трубопровод.

Согласно одному аспекту сенсорный элемент первого потока и сенсорный элемент второго потока содержат сенсорные элементы расходомера Кориолиса.

Согласно другому аспекту флюидный поток содержит топливо или альтернативное топливо, например, сжатый природный газ (CNG) или сжиженный нефтяной газ (LPG).

Согласно еще одному аспекту, расходомер дополнительно содержит корпус, который включает в себя делитель расхода, сенсорный элемент первого потока, по меньшей мере, сенсорный элемент второго потока, по меньшей мере, часть приемного трубопровода, по меньшей мере, часть первого выходного трубопровода, и, по меньшей мере, часть второго выходного трубопровода.

Согласно еще одному аспекту, делитель потока делит флюидный поток на первый поток и второй поток, и причем угол между первым потоком и вторым потоком составляет около сорока пяти градусов.

Согласно еще одному аспекту, делитель потока делит флюидный поток на первый поток и второй поток, и причем угол между первым потоком и вторым потоком составляет около девяноста градусов.

Согласно еще одному аспекту сенсорный элемент первого потока и сенсорный элемент второго потока содержат, по меньшей мере, один трубопровод первого потока для транспортировки первого потока, по меньшей мере, один трубопровод второго потока для транспортировки второго потока, первый возбудитель колебаний, по меньшей мере, одного трубопровода первого потока, второй возбудитель колебаний, по меньшей мере, одного трубопровода второго потока, два или более первых тензометрических датчиков для измерения результирующего колебательного движения, по меньшей мере, одного трубопровода первого потока и формирования первого сигнала расхода, и два или более вторых тензометрических датчиков для измерения результирующего колебательного движения, по меньшей мере, одного трубопровода второго потока и формирования второго сигнала расхода.

Согласно еще одному аспекту, расходомер дополнительно содержит электронный измеритель, который принимает первый сигнал расхода и второй сигнал расхода и формирует соответствующий сигнал измерения первого потока топлива и соответствующий сигнал измерения второго потока топлива.

Краткое описание чертежей

В дальнейшем изобретение поясняется описанием предпочтительных вариантов воплощения со ссылками на сопровождающие чертежи, на которых

фиг.1 изображает расходомер Кориолиса, содержащий сборку расходомера и электронный измеритель, согласно изобретению;

фиг.2 - схему расходомера с одним вводом и множественными выводами, согласно изобретению;

фиг.3 - схему расходомера с одним вводом и множественными выводами, согласно другому варианту реализации изобретения;

фиг.4 - грань корпуса, на которой размещены приемный трубопровод, первый выходной трубопровод, и второй выходной трубопровод, согласно изобретению.

Подробное описание предпочтительных вариантов воплощения изобретения

На фиг.1-4 и в описании раскрыты примеры для специалистов в данной области техники, из которых виден наилучший вариант использования изобретения. Специалистам в данной области техники очевидно, что описанные ниже признаки изобретения могут быть различным образом объединены для формирования множества вариантов воплощения. Изобретение не ограничено описанными ниже отдельными примерами, но только формулами и их эквивалентами.

Расходомер Кориолиса 5 (фиг.1) содержит сборку расходомера 10 и электронный измеритель 20. Электронный измеритель 20 подключен к сборке расходомера 10 посредством линии 100 связи для передачи значений плотности, массового расхода, объемного расхода, общего массового расхода, температуры и другой информации по каналу 26. Специалистам в данной области техники очевидно, что настоящее изобретение может быть использовано с расходомером Кориолиса любого типа, независимо от количества возбудителей, тензометрических датчиков, трубопроводов, или рабочего режима колебаний.

Сборка расходомера 10 содержит пару фланцев 101 и 101', патрубки 102 и 102', возбудитель 104, тензометрические датчики 105-105', и трубопроводы 103А и 103B. Возбудитель 104 и тензометрические датчики 105 и 105' присоединяются к трубопроводам 103А и 103B.

Фланцы 101 и 101' присоединены к патрубкам 102 и 102'. Патрубки 102 и 102' могут быть присоединены к противоположным концам проставки 106. Проставка 106 устанавливает расстояние между патрубками 102 и 102' для избежания нежелательных колебаний в трубопроводах 103A и 103B. Когда сборка расходомера 10 помещается в трубопроводную систему (не показана), переносящую измеряемое вещество, то вещество попадает в сборку 10 расходомера через фланец 101, проходит через впускной патрубок 102, где полное количество вещества направляется в трубопроводы 103А и 103B, протекает через трубопроводы 103A и 103B, и поступает в выпускной патрубок 102', где оно выходит из сборки 10 расходомера через фланец 101'.

Трубопроводы 103А и 103B подбираются и соответствующим образом устанавливаются на впускном патрубке 102 и выпускном патрубке 102' так, чтобы имелось по существу то же самое массовое распределение, моменты инерции, и модули упругости около изгибных осей W-W и W'-W', соответственно. Трубопроводы проходят с внешней стороны относительно коллектора параллельно друг другу.

Трубопроводы 103А и 103B возбуждаются возбудителем 104 в противоположных направлениях относительно их соответствующих изгибных осей W и W', на которых устанавливается первая противофазная изгибная мода расходомера. Возбудитель 104 может представлять собой одно из многих хорошо известных устройств, например, это может быть магнит, установленный на трубопроводе 103A, и противоположно установленная катушка на трубопроводе 103B. Проходящий через катушку переменный ток заставляет колебаться оба трубопровода. Соответствующий сигнал подается от электронного измерителя 20 через соединение 110 на возбудитель 104.

Электронный измеритель 20 принимает сенсорные сигналы по линиям 111 и 111', соответственно. Электронный измеритель 20 производит и подает управляющий сигнал на соединение 110, который запускает возбудитель 104, заставляя колебаться трубопроводы 103A и 103B. Электронный измеритель 20 обрабатывает левые и правые сигналы скорости от тензометрических датчиков 105 и 105' для вычисления массового расхода. Канал 26 обеспечивает ввод и вывод, позволяющий электронному измерителю 20 взаимодействовать с оператором или с другими электронными системами. Выше описан исключительно пример работы расходомера Кориолиса, который не ограничивает приложения настоящего изобретения.

На фиг.2 показана схема расходомера 200 с одним впуском и двойным выпуском в соответствии с вариантом реализации изобретения. Расходомер 200 может содержать сдвоенный выходной измеритель, как показано, или может включать в себя более двух выходов. Расходомер 200 может быть использован для измерения первого потока и второго потока протекающего флюида, например, топлива. Топливо может включать в себя обычное топливо, например бензин, и дизельное топливо, и дополнительно может включать в себя альтернативные топлива, например, сжатый природный газ (CNG), сжиженный нефтяной газ (LPG), и другие альтернативы бензину и дизельному топливу, включая топливо с различным процентным содержанием жидких и газообразных компонентов. Вместе с тем, ясно, что может измеряться расход и других веществ, что соответствует приведенному описанию и прилагаемым формулам.

Расходомер 200 содержит корпус 201, приемный трубопровод 202, делитель 203 потока, сенсорный элемент 204 первого потока и соответствующий первый выходной трубопровод 206, по меньшей мере, сенсорный элемент 205 второго потока и соответствующий второй выходной трубопровод 207, и электронный измеритель 20.

Корпус 201 содержит делитель 203 потока, сенсорный элемент 204 первого потока, сенсорный элемент 205 второго потока, по меньшей мере, часть приемного трубопровода 202, по меньшей мере, часть первого выходного трубопровода 206 и, по меньшей мере, часть второго выходного трубопровода 207. Приемный трубопровод 202, первый выходной трубопровод 206 и второй выходной трубопровод 207 могут выступать из корпуса 201 в некоторых вариантах реализации.

Делитель 203 потока связан с приемным трубопроводом 202 и с сенсорным элементом 204 первого потока и сенсорным элементом 205 второго потока. Сенсорный элемент 204 первого потока связан с первым выходным трубопроводом 206, а сенсорный элемент 205 второго потока связан с вторым выходным трубопроводом 207. Поток флюида входит через приемный трубопровод 202 и делитель 203 потока. В делителе 203 потока поток флюида может течь непосредственно через сенсорный элемент 204 первого потока, непосредственно через сенсорный элемент 205 второго потока, или может течь одновременно через сенсорный элемент 204 первого потока и через сенсорный элемент 205 второго потока. Флюид протекает через один сенсорный элемент 204 первого потока и сенсорный элемент 205 второго потока, или через оба, и выходит из одного первого выходного трубопровода 206 и из второго выходного трубопровода 207, или из обоих. Первый сигнал расхода и/или второй сигнал расхода формируются сенсорным элементом 204 первого потока и сенсорным элементом 205 второго потока и подаются на электронный измеритель 20 через соединения 100a и/или соединения 100b. Электронный измеритель 20 получает первый сигнал расхода и/или второй сигнал расхода и генерирует соответствующее измерение первого потока топлива и/или соответствующее измерение второго потока топлива. Измерения первого и второго потока топлива могут быть использованы электронным измерителем 20 для осуществления расчетной операции с топливом и затем могут быть переданы оператору или на компьютерное устройство по каналу 26. Соответственно, входной поток может быть измерен сенсорным элементом 204 первого потока через первый выходной трубопровод 206, может быть измерен сенсорным элементом 205 второго потока через второй выходной трубопровод 207, или может быть одновременно измерен сенсорным элементом 204 первого потока через первый выходной трубопровод 206, и сенсорным элементом 205 второго потока через второй выходной трубопровод 207. Следует отметить, что расходомер 200 может включать в себя более двух выходных трубопроводов и более двух поточных сенсорных элементов.

Делитель потока 203 делит входной поток на первый поток и второй поток. В одном варианте реализации делитель 203 потока делит поток на два с углом между первым и вторым потоком около сорока пяти градусов. В другом варианте реализации делитель 203 потока делит поток с углом между первым и вторым потоком около девяноста градусов. Следует отметить, что два данных угла указаны исключительно для примера. Возможны и другие углы, что также отвечает данному изобретению и формуле изобретения.

Сенсорный элемент 204 первого потока и сенсорный элемент 205 второго потока содержат поточный сенсорный элемент любого типа. В одном варианте реализации сенсорный элемент 204 первого потока и сенсорный элемент 205 второго потока содержат сенсорные элементы типа расходомера Кориолиса. В одном варианте реализации сенсорный элемент 204 первого потока и сенсорный элемент 205 второго потока могут быть выполнены так, что два сенсорных элемента имеют несколько различающиеся колебательные характеристики, чтобы избежать проблем с устойчивостью и эффективностью работы.

В варианте реализации, показанном на чертеже, сенсорный элемент 204 первого потока содержит, по меньшей мере, один трубопровод 103a первого потока для транспортировки первого потока, и сенсорный элемент 205 второго потока содержит, по меньшей мере, один трубопровод 103b второго потока для транспортировки второго потока. Показано, что, по меньшей мере, один трубопровод 103a первого потока и, по меньшей мере, один трубопровод 103b второго потока могут содержать элементы расходомера в виде сдвоенной трубки. Кроме того, в другом варианте реализации, по меньшей мере, один трубопровод 103a первого потока и, по меньшей мере, один трубопровод 103b второго потока могут содержать элементы расходомера в виде единственной трубки и могут дополнительно включать в себя две соответственные балансные трубки (фиг.3). Вариант реализации с одним трубопроводом может быть применен там, где измеряемый флюидный поток имеет небольшие значения плотности.

В одном варианте реализации сенсорные элементы 204 и 205 потока могут содержать по существу U-образный трубопровод(ы), как показано. Кроме того, в варианте реализации, показанном на фиг.4, сенсорные элементы 204 и 205 потока могут содержать по существу прямой трубопровод(ы). Вместе с тем, могут также использоваться и другие формы трубопроводов, что соответствует формуле изобретения.

Сенсорный элемент 204 первого потока дополнительно содержит первый возбудитель 104a для генерирования колебаний, по меньшей мере, одного трубопровода 103a первого потока и два или несколько первых тензометрических датчиков 105a и 105a' для измерения результирующего колебательного движения, по меньшей мере, одного трубопровода 103a первого потока и получения первого сигнала расхода. Аналогично, сенсорный элемент 205 второго потока дополнительно содержит второй возбудитель 104b для генерирования колебаний, по меньшей мере, одного трубопровода 103b второго потока и два или несколько вторых тензометрических датчиков 105b и 105b' для измерения результирующего колебательного движения, по меньшей мере, одного трубопровода 103b второго потока и получения второго сигнала расхода.

В некоторых вариантах реализации измеритель 200 может включать в себя некоторую методику регулирования давления для предотвращения изменений потока при любом выпуске, вызванных наличием потока вещества из других выпусков. Соответственно, подходящий регулятор давления (или регуляторы) может быть подключен в любой точке выше по течению относительно датчиков 204, 205 расхода, и т.д., включая положение до приемного трубопровода 202. Кроме того, один или несколько регуляторов давления могут быть подключены снизу по течению относительно датчиков 204, 205 расхода, и т.д.

На фиг.3 показана схема расходомера 200 с одним вводом и множественными выводами в соответствии с другим вариантом реализации изобретения. В этом варианте реализации сенсорный элемент 204 первого потока и сенсорный элемент 205 второго потока содержат однотрубные расходомеры, содержащие прямые трубопроводы 303a и 303b, связанные с балансовыми плечами 304a и 304b. Прямые трубопроводы 303a и 303b могут быть присоединены к делителю 203 потока, к первому выходному трубопроводу 206, и к второму выходному трубопроводу 207 с помощью первых фланцев 310a и 311a и вторых фланцев 310b и 311b.

На фиг.4 показана грань корпуса 201, на которой размещены приемный трубопровод 202, первый выходной трубопровод 206 и второй выходной трубопровод 207 в соответствии с вариантом реализации изобретения. В этом варианте реализации приемный трубопровод 202, первый выходной трубопровод 206 и второй выходной трубопровод 207. Вместе с тем, должно быть ясно, что в альтернативных вариантах реализации приемный трубопровод 202, первый выходной трубопровод 206 и второй выходной трубопровод 207 могут произвольно располагаться на различных внешних гранях расходомера 200. Приемный трубопровод 202, первый выходной трубопровод 206 и второй выходной трубопровод 207 могут включать в себя резьбу (например, трубную резьбу) для съемного присоединения внешних трубопроводов к расходомеру 200.

Топливный расходомер с одним вводом и двойным выводом в соответствии с данным изобретением может использоваться в любом из вариантов реализации, предоставляя ряд преимуществ, если это требуется. Изобретение предоставляет топливный расходомер, осуществляющий измерение расхода топлива и распределение альтернативного топлива. Изобретение предоставляет топливный расходомер, пригодный для измерения потока топлива первой и второй очереди.

Важно, что стоимость топливного расходомера оказывается ниже благодаря совместному использованию компонентов. В одном варианте реализации, в рамках изобретения, могут использоваться один корпус и ввод. Поскольку два независимых сенсорных элемента потока расположены в одной оболочке, то общий размер топливного расходомера (и всей измерительной системы) может быть уменьшен, что снижает стоимость установки сенсора в газовом насосе. Кроме того, размещение в пределах одной оболочки сдвоенной системы сенсорных элементов дает возможность использования одного электронного устройства для питания и для измерения расхода двух потоков.

1. Расходомер (200) с одним вводом и множественным выводом, содержащий
приемный трубопровод (202) для приема входного потока флюида,
распределитель (203) потока, связанный с приемным трубопроводом (202), сенсорный элемент (204) расходомера Кориолиса, связанный с распределителем (203) потока и включающий в себя первый выходной трубопровод (206), и конфигурированный для формирования первого сигнала расхода, соответствующего потоку через первый выходной трубопровод (206),
по меньшей мере, второй сенсорный элемент (205) расходомера Кориолиса, связанный с распределителем (203) потока и включающий в себя второй выходной трубопровод (207), и конфигурированный для формирования второго сигнала расхода, соответствующего потоку через второй выходной трубопровод (207),
электронный измеритель (20), который принимает первый сигнал расхода и второй сигнал расхода и формирует соответствующий сигнал измерения первого потока и соответствующий сигнал измерения второго потока,
при этом входной поток может быть измерен сенсорным элементом (204) расходомера Кориолиса на первом выходном трубопроводе (206) или сенсорным элементом (205) расходомера Кориолиса на втором выходном трубопроводе (207) или может быть измерен одновременно сенсорным элементом (204) расходомера Кориолиса на первом выходном трубопроводе (206) и сенсорным элементом (205) расходомера Кориолиса на втором выходном трубопроводе (207).

2. Расходомер по п.1, отличающийся тем, что он конфигурирован для измерения потока флюида, содержащего традиционное топливо или альтернативное топливо, например сжатый природный газ (CNG) или сжиженный нефтяной газ (LPG).

3. Расходомер по п.1, отличающийся тем, что дополнительно содержит корпус (201), в котором размещены распределитель (203) расхода, сенсорный элемент (204) расходомера Кориолиса, сенсорный элемент (205) расходомера Кориолиса, по меньшей мере, часть приемного трубопровода (202), по меньшей мере, часть первого выходного трубопровода (206) и, по меньшей мере, часть второго выходного трубопровода(207).

4. Расходомер по п.1, отличающийся тем, что распределитель (203) расхода делит флюидный поток на первый поток и второй поток, причем угол между первым потоком и вторым потоком составляет около 45°.

5. Расходомер по п.1, отличающийся тем, что распределитель (203) потока делит флюидный поток на первый поток и второй поток, при этом угол между первым потоком и вторым потоком составляет около 90°.

6. Расходомер по п.1, отличающийся тем, что
сенсорный элемент (204) расходомера Кориолиса содержит
по меньшей мере, один трубопровод (103a) для транспортировки первого потока,
первый возбудитель (104a) для возбуждения колебаний, по меньшей мере, в одном трубопроводе (103a),
два или более первых датчиков (105a) и (105a') для измерения результирующего колебательного движения, по меньшей мере, одного трубопровода (103a) первого потока и формирования первого сигнала расхода,
сенсорный элемент (205) расходомера Кориолиса, содержащий
по меньшей мере, один трубопровод (103b) для транспортировки второго потока,
второй возбудитель (104a) для возбуждения колебаний, по меньшей мере, в одном трубопроводе (103a),
два или более вторых датчиков (105b) и (105b') для измерения результирующего колебательного движения, по меньшей мере, одного трубопровода (103b) второго потока и формирования второго сигнала расхода.

7. Способ формирования расходомера (200) с одним вводом и множественным выводом, содержащий следующие шаги
используют приемный трубопровод (202) для приема входного потока флюида,
используют распределитель (203) потока, связанный с приемным трубопроводом (202),
используют сенсорный элемент (204) расходомера Кориолиса, связанный с распределителем (203) и включающий в себя первый выходной трубопровод (206), и конфигурированный для формирования первого сигнала расхода, соответствующего потоку через первый выходной трубопровод (206),
используют, по меньшей мере, сенсорный элемент (205) расходомера Кориолиса, связанный с распределителем (203) потока и включающий в себя второй выходной трубопровод (207) и конфигурированный для формирования второго сигнала расхода, соответствующего потоку через второй выходной трубопровод (207),
используют электронный измеритель (20), посредством которого принимают первый сигнал расхода и второй сигнал расхода и формируют соответствующий сигнал измерения первого потока и соответствующий сигнал измерения второго потока,
при этом входной поток может быть измерен сенсорным элементом (204) расходомера Кориолиса на первом выходном трубопроводе (206), может быть измерен сенсорным элементом (205) расходомера Кориолиса на втором выходном трубопроводе (207) или может быть измерен одновременно сенсорным элементом (204) расходомера Кориолиса на первом выходном трубопроводе (206) и сенсорным элементом (205) расходомера Кориолиса на втором выходном трубопроводе (207).

8. Способ по п.7, отличающийся тем, что расходомер конфигурирован для измерения потока флюида, содержащего традиционное топливо или альтернативное топливо, например сжатый природный газ (CNG) или сжиженный нефтяной газ (LPG).

9. Способ по п.7, отличающийся тем, что дополнительно используют корпус (201), в котором размещают распределитель (203) потока, сенсорный элемент (204) расходомера Кориолиса, сенсорный элемент (205) расходомера Кориолиса, по меньшей мере, часть приемного трубопровода (202), по меньшей мере, часть первого выходного трубопровода (206) и, по меньшей мере, часть второго выходного трубопровода (207).

10. Способ по п.7, отличающийся тем, что посредством распределителя (203) потока делят флюидный поток на первый поток и второй поток, причем угол между первым потоком и вторым потоком устанавливают около 45°.

11. Способ по п.7, отличающийся тем, что посредством распределителя (203) потока делят флюидный поток на первый поток и второй поток, причем угол между первым потоком и вторым потоком устанавливают около 90°.

12. Способ по п.7, отличающийся тем, что
на шаге использования сенсорного элемента (204) расходомера Кориолиса используют, по меньшей мере, один трубопровод (103a) для транспортировки первого потока, первый возбудитель (104a) для возбуждения колебаний, по меньшей мере, в одном трубопроводе (103a), два или более первых датчиков (105a) и (105a') для измерения результирующего колебательного движения, по меньшей мере, одного трубопровода (103a) первого потока и формирования первого сигнала расхода,
на шаге использования сенсорного элемента (205) расходомера Кориолиса используют, по меньшей мере, один трубопровод (103b) для транспортировки второго потока, второй возбудитель (104a) для возбуждения колебаний, по меньшей мере, в одном трубопроводе (103a), два или более вторых датчиков (105b) и (105b') для измерения результирующего колебательного движения, по меньшей мере, одного трубопровода (103b) второго потока и формирования второго сигнала расхода.



 

Похожие патенты:

Вибрационный расходомер (205) состоит из трубопровода (210), содержащего первый концевой участок (211) и второй концевой участок (212). Вибрационный расходомер (205) затем подсоединяют к корпусу (300), который окружает, по меньшей мере, участок трубопровода (210).

Предложен способ эксплуатации системы вибрационного расходомера. Способ включает в себя этап приема сигнала первого датчика от первого вибрационного расходомера.

Вибрационный расходомер включает в себя трубопровод (210), по меньшей мере, один измерительный преобразователь (230, 231), приводной элемент (250); по меньшей мере, один привод (220) и основание (260).

Группа изобретений относится к определению свойств многофазной технологической текучей среды. Способ определения свойств многофазной технологической текучей среды содержит этапы, на которых: пропускают многофазную текучую среду по колебательно подвижной расходомерной трубке и расходомеру переменного перепада давления; вызывают движение расходомерной трубки и определяют первое кажущееся свойство текучей среды; определяют, по меньшей мере, одно кажущееся промежуточное значение, которое представляет собой первый критерий Фруда для негазообразной фазы текучей среды и второй критерий Фруда для газообразной фазы текучей среды; определяют степень влажности текучей среды на основе преобразования между первым и вторым критериями Фруда и степенью влажности; определяют второе кажущееся свойство текучей среды с использованием расходомера переменного перепада давления; определяют фазозависимое свойство текучей среды на основе степени влажности и второго кажущегося свойства.

Изобретение относится к вибрационному измерительному преобразователю для измерения проходящей по трубопроводу текучей среды, в частности газа, жидкости, порошка или других текучих материалов, в частности, для измерения плотности и/или массового расхода, а также, в частности, суммарного за интервал времени массового расхода носителя, протекающей в трубопроводе, по меньшей мере, временно, с интенсивностью расхода более 2200 т/ч, в частности, более 2500 т/ч.

Изобретение относится к расходомерам, включающим в себя балансный элемент. .

Измерительный прибор включает в себя, по меньшей мере, частично помещенный, в частности, в заземленный корпус (100) измерительный преобразователь (MW) для регистрации, по меньшей мере, одного измеряемого параметра, а также, по меньшей мере, периодически электрически связанный с измерительным преобразователем электронный блок (ME) измерительного прибора. Электронный блок (ME) измерительного прибора имеет, по меньшей мере, один измерительный канал для регистрации и дальнейшей обработки, по меньшей мере, одного генерированного посредством измерительного преобразователя первичного сигнала (s1), а также схему (20В) для измерения тока для регистрации протекающих внутри измерительного прибора электрических токов. Далее предусмотрено, что схема для измерения тока в процессе работы, по меньшей мере, периодически, в частности, время от времени регистрирует электрический ток (IL) утечки, который течет вследствие, по меньшей мере, периодически имеющейся между корпусом и электронным блоком измерительного прибора разности потенциалов (ΔU12), а также имеющегося между корпусом и электронным блоком измерительного прибора, в частности, нежелательного и/или образованного посредством поразившего корпус отложения, электропроводящего соединения (RF). С учетом зарегистрированного тока утечки электронный блок измерительного прибора генерирует далее, по меньшей мере, один выражающий собой, в частности, неправильное рабочее состояние измерительного прибора в данный момент времени, в частности, цифровой параметр (Z) состояния. Технический результат - улучшение проверки рабочих состояний и/или эксплуатационной безопасности электрических проборов вышеуказанного типа. 2 н. и 25 з.п. ф-лы, 3 ил.

Способ для расчета скорости звука флюида, текущего через вибрационный расходомер содержит возбуждение колебаний расходомера на одной или нескольких частотах и прием колебательного отклика. Способ дополнительно содержит получение первого свойства флюида и получение, по меньшей мере, второго свойства флюида. Способ дополнительно содержит расчет скорости звука флюида, исходя из первого свойства флюида и, по меньшей мере, второго свойства флюида. Вибрационный расходомер для расчета скорости звука текущего флюида содержит измерительную сборку, включающую в себя вибродатчики и связанную с ними измерительную электронику. При этом измерительная электроника сконфигурирована для реализации этапов способа. Система вибрационного расходомера для расчета скорости звука текущего флюида содержит первый расходомер и, по меньшей мере, второй расходомер, систему обработки, связанную с первым и, по меньшей мере, вторым расходомерами, с системой вибрационного расходомера. Технический результат - повышение точности определения скорости звука в флюиде. 3 н. и 45 з.п. ф-лы, 8 ил.

Способ содержит этапы приема сигналов датчика от вибрационного расходомера и определения текущего нулевого смещения для вибрационного расходомера. Текущее нулевое смещение может быть определено исходя из принятых сигналов датчика. Способ также содержит этап определения одного или нескольких текущих эксплуатационных условий. Одно или несколько текущих эксплуатационных условий могут быть сравнены с эксплуатационными условиями предварительно установленной корреляции смещения. Способ также включает в себя этап формирования среднего нулевого смещения исходя из текущего нулевого смещения и нулевого смещения предварительно установленной корреляции смещения, если предварительно установленная корреляция смещения включает в себя нулевое смещение, соответствующее текущим эксплуатационным условиям. Технический результат - возможность определения и компенсации дрейфа смещения нуля при работе датчика в течение нормального его использования. 2 н. и 8 з.п. ф-лы, 7 ил., 1 табл.

Изобретения относятся к измерительной технике, в частности к вибрационным расходомерам, и могут быть использованы для измерения параметров текучих сред. Расходомер включает в себя трубопровод и привод, сконфигурированный для колебания трубопровода. Также расходомер включает в себя первый датчик. Первый датчик включает в себя первую составляющую часть датчика и вторую составляющую часть датчика. Вибрационный расходомер также включает в себя опорную деталь. Первая составляющая часть датчика присоединяется к опорной детали, тогда как вторая составляющая часть датчика присоединяется к трубопроводу вблизи первой составляющей части датчика. Вибрационный расходомер также включает в себя балансирующий элемент, присоединенный к опорной детали. Балансирующий элемент подобран по размеру и расположен так, что механический момент элемента по существу равен и противоположен или больше, чем механический момент активного участка опорной детали. Опорная деталь содержит опорный участок, приспособленный для колебаний около изгибной оси, и балансирующий элемент, присоединенный к опорной детали и приспособленный для колебаний около изгибной оси по существу в противофазе с активным участком. Технический результат заключается в возможности проведения измерений параметров при значительных изменениях давления и плотности текучей среды. 3 н. и 16 з.п. ф-лы, 4 ил.

В расходомере Кориолиса, в котором, по меньшей мере, детектируется одно из разности фаз и частоты колебаний, пропорциональные силе Кориолиса, действующей, по меньшей мере, на одну расходомерную трубку или пару расходомерных трубок, чтобы, тем самым, получить, по меньшей мере, одно из массового расхода и плотности измеряемого флюида, устройство обработки сигналов включает в себя: аналого-цифровые преобразователи для преобразования аналоговых сигналов, которые выводятся от пары датчиков детектирования колебаний, в цифровые сигналы, соответственно; модуль измерения частоты для измерения частоты θ колебаний, по меньшей мере, одной расходомерной трубки или пары расходомерных трубок; трансмиттер для создания частотно-кодированного сигнала, имеющего частоту, установленную как θ(1-1/N) частоты цифрового частотно-кодированного сигнала, выводимого из модуля измерения частоты; и пару ортогональных преобразователей частоты для преобразования, на основании частотно-кодированного сигнала, сгенерированного трансмиттером, частоты двух цифровых сигналов, соответствующих паре датчиков детектирования колебаний, которые выводятся из аналого-цифровых преобразователей, соответственно, и генерирования цифровых сигналов с частотами, установленными как 1/N частот двух цифровых сигналов, соответственно. В результате разность фаз получается с использованием цифровых сигналов, генерируемых парой ортогональных преобразователей частоты. Технический результат - непрерывное измерение с постоянной точностью и выполнение измерения фазы с высокой эффективностью фильтрации и малым объемом вычислений. 8 н.п. ф-лы, 32 ил.

Вибрационный измеритель включает в себя один или несколько трубопроводов, сформированных из первого материала. Вибрационный измеритель дополнительно включает в себя привод, присоединенный к трубе одного или нескольких трубопроводов и сконфигурированный для возбуждения колебаний, по меньшей мере, участка трубопровода на одной или нескольких приводных частотах, и один или несколько измерительных преобразователей, присоединенных к трубе одного или нескольких трубопроводов и сконфигурированных для регистрации движения колеблющегося участка трубопровода. Вибрационный измеритель дополнительно включает в себя кожух, покрывающий, по меньшей мере, участок одного или нескольких трубопроводов, привод и один или несколько измерительных преобразователей. Кожух сформирован из второго материала, имеющего более высокую характеристику демпфирования колебаний, чем первый материал. Технический результат - снижение риска возбуждения колебательной моды в кожухе измерителя приводной модой вибрационного измерителя. 2 н. и 17 з.п. ф-лы, 8 ил.

Настоящее изобретение относится к вибрационному расходомеру и способу и, более конкретно, к коррозионно-стойкому вибрационному расходомеру и способу. Заявленная группа изобретений включает в себя коррозионно-стойкий вибрационный расходомер (5) и способы формирования коррозионно-стойкого вибрационного расходомера. Причем расходомер (5) содержит сборку (10) расходомера, включающую в себя одну или несколько расходомерных трубок (103), сконфигурированных с возможностью вибраций (колебаний), при этом также содержит диффузионное покрытие (202), нанесенное по всему пути движения потока в сборке (10) расходомера, при этом диффузионное покрытие (202) диффундирует в участок сборки и содержит часть сборки (10) расходомера, указанное диффузионное покрытие (202) нанесено на внутренние поверхности, внешние поверхности и фланцы (101, 101') сборки (10) расходомера. Способ формирования коррозионно-стойкого вибрационного расходомера включает монтаж сборки расходомера, включающего в себя одну или более расходомерных трубок, сконфигурированных с возможностью вибраций (колебаний), при этом наносят по всему пути движения потока сборки расходомера диффузионное покрытие, причем диффузионное покрытие диффундировано в участок сборки и содержит часть сборки расходомера, указанное диффузионное покрытие нанесено на внутренние поверхности, внешние поверхности и фланцы расходомерной сборки. А также способ формирования коррозионно-стойкого вибрационного расходомера, содержащий монтаж сборки расходомера, включающий в себя одну или более расходомерных трубок, сконфигурированных с возможностью совершения вибраций (колебаний), при этом прикрепляют, по меньшей мере, два технологических соединения к сборке расходомера; и наносят путем нанесения на весь путь движения потока сборки расходомера и, по меньшей мере, два технологических соединения, диффузионное покрытие, причем диффузионное покрытие диффундирует в участок сборки и содержит часть сборки расходомера. Технический результат, достигаемый от реализации заявленной группы изобретений, заключается в предотвращении эрозии, предоставлении твердой поверхности, в обеспечении малых коэффициентов трения для потока, в снижении влияния на вибрационные характеристики. 3 н. и 26 з.п. ф-лы, 4 ил.

Изобретение относится к измерительному датчику вибрационного типа для измерения движущейся в трубопроводе текучей среды, в частности, газа, жидкости, порошка и любого другого текучего материала. Заявленная группа изобретений включает измерительный датчик вибрационного типа, измерительную систему с измерительным датчиком, выполненную в виде проточного измерительного прибора, а также применение измерительного датчика. При этом измерительный датчик содержит корпус (71), у которого расположенный на входе конец образован расположенным на стороне впуска делителем (201) потока с четырьмя разнесенными между собой проточными отверстиями (201A, 201B, 201C, 201D), а расположенный на стороне выпуска конец образован расположенным на стороне выпуска делителем (202) потока с четырьмя разнесенными между собой проточными отверстиями (202А, 202B, 202C, 202D), а также трубное устройство с четырьмя изогнутыми измерительными трубами (181, 182, 183, 184), присоединенными к делителям (201, 202) потока, образующими гидравлические, параллельно расположенные тракты и подводящие текущую среду, причем каждая из четырех измерительных труб заходит своим расположенным на стороне впуска концом в одно из проточных отверстий делителя (201) потока, вторым, расположенным на стороне выпуска концом - в одно из проточных отверстий делителя (202) потока. В измерительном датчике согласно изобретению оба делителя (201, 202) потока выполнены и расположены в нем таким образом, что трубное устройство имеет воображаемую плоскость (YZ) продольного сечения, расположенную между первой и второй измерительными трубами, а также между третьей и четвертой измерительными трубами, в отношении которой трубное устройство является зеркально симметричным, а также имеет воображаемую плоскость (XZ) продольного сечения, расположенную между первой и третьей измерительными трубами, а также между второй и четвертой измерительными трубами, и перпендикулярную к воображаемой плоскости (YZ) продольного сечения, по отношению к которой трубное устройство выполнено также зеркально симметричным. Электромеханическое устройство возбуждения (5) измерительного датчика служит для образования и/или поддержания механических колебаний четырех измерительных труб (181, 182, 183, 184). Технический результат, достигаемый от реализации заявленной группы изобретений, заключается в создании измерительного датчика с высокой чувствительностью и высоким качеством колебаний, характеризующегося даже при больших количествах массового расхода свыше 1000 т/ч незначительной потерей давления, составляющей по возможности менее 3 бар, имеющего даже при большом номинальном внутреннем диаметре свыше 100 мм по возможности компактную конструкцию и пригодного, в частности, для применения в условиях чрезвычайно горячей или чрезвычайно холодной среды и/или при значительно колеблющихся температурах среды. 3 н. и 46 з.п. ф-лы, 7 ил.

Устройство обработки сигналов для расходомера Кориолиса, в котором, по меньшей мере, одна расходомерная трубка или пара расходомерных трубок поочередно возбуждаются посредством вибратора, приводимого в действие приводным устройством, чтобы возбудить колебания, по меньшей мере, одной расходомерной трубки или пары расходомерных трубок, и, по меньшей мере, одно - разность фаз и частота колебаний, пропорциональные силе Кориолиса, действующей, по меньшей мере, на одну расходомерную трубку или пару расходомерных трубок, регистрируется датчиками скорости или датчиками ускорения, которые являются датчиками регистрации колебаний, чтобы тем самым получить, по меньшей мере, одно - массовый расход и плотность измеряемого флюида, включает в себя трансмиттер (90) для передачи частотно-кодированного сигнала, который является модулируемым, и блок (85) преобразования частоты для выполнения преобразования частоты, чтобы добавить (или вычесть) частоту Fx выходного сигнала от трансмиттера (90) к (или из) частоте входного сигнала, регистрируемой датчиком скорости или датчиком ускорения, и смещения значения частоты, полученного преобразованием частоты, к постоянному значению. Технический результат - возможность измерения с неизменной точностью, измерение фазы и частоты с высоким качеством фильтрации и существенное сокращение количества вычислительных операций. 5 н. и 39 з.п. ф-лы, 17 ил.

Измерительное устройство кориолисова типа снабжено возбудителем крутильных колебаний, вмонтированным между расходомерными трубками во впускном разъеме, приемником крутильных колебаний, вмонтированным между расходомерными трубками в выпускном разъеме, блоком вычисления передаточной функции крутильных колебаний с подключенным к его выходу блоком аппроксимации передаточной функции крутильных колебаний, а также блоком вычисления температуры, при этом генератор широкополосных сигналов выполнен двухканальным с обеспечением генерации на первом канале сигнала в окрестности резонансной частоты изгибных колебаний, а на втором канале - в окрестности резонансной частоты крутильных колебаний, причем выход второго канала подключен к возбудителю крутильных колебаний, приемник крутильных колебаний соединен с входом блока вычисления передаточной функции крутильных колебаний, входы блока вычисления температуры подключены к соответствующим выходам блоков аппроксимации изгибных и крутильных колебаний, а его выходы подключены к соответствующим входам блоков вычисления передаточной функции изгибных и крутильных колебаний. Технический результат - повышение точности и стабильности измерений физических параметров жидкости, а также обеспечение возможности одновременно с измерением массового расхода и плотности жидкости измерять вязкость и температуру жидкости без использования термодатчиков. 1 ил.
Наверх