Подъемный механизм оружия башенной установки



Подъемный механизм оружия башенной установки
Подъемный механизм оружия башенной установки

 


Владельцы патента RU 2484410:

Открытое акционерное общество "Ковровский электромеханический завод" (RU)

Изобретение относится к транспортному машиностроению, в частности к подъемным винтовым механизмам оружия башенных установок боевых машин. Устройство размещено в лафете вне обитаемой части башенной установки, содержащем редуктор привода подъемного механизма, привод наведения оружия, выполненный в виде винтовой передачи, состоящей из винта и гайки. При этом гайка связана с лафетом, винт связан с редуктором и имеет кинематическую связь с валом электродвигателя, образуя электромеханический привод, а ручной привод выполнен с механизмом его автоматического отключения при работающем электродвигателе. Кинематическая связь электромеханического привода выполнена, как понижающий редуктор, состоящий из зубчатого колеса, жестко связанного с винтом, другого зубчатого колеса, жестко связанного с валом электродвигателя, и паразитного зубчатого колеса между ними, гайка связана с лафетом и редуктор связан с корпусом башенной установки через шарнирные опоры. Технический результат заключается в снижении момента инерции в кинематической цепи электромеханического привода и уменьшении люфтов в кинематической цепи между местом соединения винта с рабочим органом и двигателем. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к транспортному машиностроению, в частности к подъемным винтовым механизмам оружия башенных установок боевых машин.

Особенность кинематики подъемных винтовых механизмов, преобразующих поступательное перемещение выходного элемента винтовой пары (гайки) в угловое перемещение рабочего органа (оружия), заключается в том, что опора между гайкой и оружием выполняет криволинейное движение. В связи с этим в местах крепления винта и гайки с объектом должны быть предусмотрены дополнительные элементы, обеспечивающие угловые перемещения винтовой пары относительно объекта, например шаровые опоры, карданы и т.д.

Кроме этого, к современным механизмам предъявляются такие требования, как наличие цепи автоматического управления, цепи ручного управления, наличие механизма переключения в автоматический режим управления или ручной. В режиме автоматического управления предъявляются требования обеспечения высокой динамической точности привода и быстродействия, высокой чувствительности и высокой точности отработки управляющих команд. В свою очередь из теории автоматического регулирования известно, что неблагоприятно влияют на динамику автоматического управления люфты в кинематической цепи между местом соединения винта с рабочим органом и двигателями, большие значения моментов инерции вращающихся частей привода, приведенные к валу двигателя, моменты сопротивления вращению, низкая угловая жесткость привода.

Известны механизмы электрические прямоходные [1]. Исполнительные механизмы «СЕРВОМЕХ» предназначены для осуществления поступательного линейного перемещения рабочих регулирующих органов устройств различного назначения в системах автоматического регулирования технологическими процессами и автоматического управления в соответствии с командными сигналами. Рабочим органом механизма является винтовая пара, состоящая из винта и гайки, при этом гайка жестко связана со штоком и регулирующим органом устройства (с нагрузкой), а винт через редуктор связан с электродвигателем. На корпусе редуктора крепится опора, обеспечивающая связь винта с корпусом регулирующего органа устройства. По принципу крепления электродвигателя механизмы бывают двух исполнений:

- ось двигателя перпендикулярна оси механизма и вращает винт винтовой пары механизма через червячный редуктор;

- ось двигателя параллельна оси механизма и вращает винт винтовой пары механизма через зубчато-ременный редуктор.

Достоинствами указанных механизмов являются высокая надежность, обеспеченная простотой конструкции, хорошие массогабаритные показатели, широкие компоновочные возможности, так как за счет шарнирной установки механизм позволяет реализовать как прямолинейное, так и криволинейное движение.

Недостатками этих механизмов являются большие моменты сопротивления вращению, характерные для червячных редукторов, низкая угловая жесткость, присущая зубчато-ременной передаче, большие значения момента инерции приведенного к валу электродвигателя, что в итоге не позволяет обеспечить в режиме автоматического управления требуемые показатели динамической точности привода и быстродействия, высокой чувствительности и высокой точности отработки управляющих команд.

Известен подъемный механизм оружия, размещенного в лафете вне обитаемой части башенной установки [2] - прототип, содержащий редуктор ручного привода, электромеханический привод наведения оружия, выполненный в виде винтовой передачи, где винт соединен с редуктором, а гайка с лафетом. Электродвигатель электромеханического привода установлен на корпусе редуктора, при этом ротор электродвигателя закреплен на винте через карданную передачу, которая обеспечивает силовую связь между валом двигателя и винтом, взаимное угловое положение которых меняется в процессе работы. Механизм автоматического отключения редуктора ручного привода содержит электромагнит, муфту, пружину. Редуктор ручного привода приводится в действие вращением рукоятки.

При включении электромеханического привода ток подается на электромагнит, который выводит муфту, поджатую пружиной, из зацепления с шестерней, что обеспечивает отключение редуктора ручного привода от привода наведения оружия, одновременно концевой выключатель включает цепь электродвигателя.

При работе электродвигателя ротор вращает винт через карданную передачу, при этом вращательное движение винта преобразуется в поступательное движение гайки, что обеспечивает качание лафета и наведение оружия по вертикали.

При выключении электромеханического привода муфта входит в зацепление с шестерней под действием пружины, что обеспечивает подключение редуктора ручного привода к приводу наведения оружия, одновременно концевой выключатель выключает цепь электродвигателя.

При работе редуктора ручного привода вращение рукоятки передается через редуктор на винт, при этом вращательное движение винта преобразуется в поступательное движение гайки, что обеспечивает качание лафета и наведение оружия по вертикали.

Недостатками известного подъемного механизма являются, во-первых, использование карданной передачи в кинематической цепи электромеханического привода. Это, во-первых, приводит к существенному увеличению момента инерции вращающихся частей, так как он практически соизмерим с моментом инерции вала винтовой пары, как наиболее массивного элемента в приводе, во-вторых, увеличивает люфты в кинематической цепи между местом соединения винта с рабочим органом и двигателем. Люфты приводят к снижению степени чувствительности, динамической точности и быстродействия, неблагоприятно влияют на динамику автоматического управления.

Во-вторых, при определенных преимуществах соосного размещения электродвигателя и винтовой пары с креплением ротора электродвигателя на винте имеется недостаток в части увеличения осевого габарита механизма, что при ограниченных размерах объекта является критичным.

В-третьих, конструкция механизма автоматического отключения ручного привода предусматривает разрыв кинематической цепи перед выходным зубчатым колесом ручного привода, оставляя выходное зубчатое колесо ручного привода в постоянном зацеплении с винтовой парой, что существенно увеличивает момент инерции подвижных частей в цепи электромеханического привода, приведенный к валу электродвигателя.

Целью изобретения является улучшение эксплуатационных характеристик подъемного механизма оружия за счет снижения момента инерции в кинематической цепи электромеханического привода и уменьшения люфтов в кинематической цепи между местом соединения винта с рабочим органом и двигателем.

Указанная цель достигается тем, что в подъемном механизме оружия, размещенного в лафете вне обитаемой части башенной установки, содержащем редуктор привода подъемного механизма, привод наведения оружия, выполненный в виде винтовой передачи, состоящей из винта и гайки, при этом гайка связана с лафетом, винт связан с редуктором и имеет кинематическую связь с валом электродвигателя, образуя электромеханический привод, а ручной привод выполнен с механизмом его автоматического отключения при работающем электродвигателе, согласно заявляемому изобретению кинематическая связь электромеханического привода выполнена как понижающий редуктор, состоящий из зубчатого колеса, жестко связанного с винтом, другого зубчатого колеса, жестко связанного с валом электродвигателя, и паразитного зубчатого колеса между ними, гайка связана с лафетом, а редуктор связан с корпусом башенной установки через шарнирные опоры. Кроме того, ручной привод с механизмом его автоматического отключения содержит зубчатое колесо, закрепленное на оси входного вала ручного привода, второе зубчатое колесо, закрепленное на оси винта, а также третье зубчатое колесо, расположенное между ними и закрепленное на конце коромысла, которое имеет ось вращения, совмещенную с осью вращения входного вала ручного привода, а другой конец коромысла через пружину связан с корпусом редуктора и с электромагнитом, рабочий ход которого выбран из условия обеспечения поворота коромысла и линейного перемещения зубчатого колеса, расположенного на его конце, на величину не менее высоты зуба зубчатого колеса.

Существенными отличительными признаками являются:

- выполнение кинематической связи электромеханического привода механизма в виде понижающего редуктора, с использованием паразитного зубчатого колеса, установленного перед валом электродвигателя, что позволяет за счет оптимизации размеров зубчатых колес в пределах заданного общего передаточного отношения редуктора достигнуть максимального эффекта по снижению приведенного момента инерции вращающихся элементов электромеханического привода к валу электродвигателя;

- выполнение связи гайки с лафетом и редуктора с корпусом башенной установки через шарнирные опоры;

- использование для автоматического отключения ручного привода коромысла с зубчатым колесом на одном его конце и электромагнитом на другом его конце, при этом рабочий ход электромагнита выбран равным или более величины высоты зуба зубчатого колеса, что позволяет полностью исключить влияние элементов ручного привода на момент инерции электромеханического привода.

Проведенный анализ уровня техники, включающий поиск по патентным и научно-техническим источникам информации, позволил установить, что не обнаружено аналогов, характеризующихся признаками, тождественными всей совокупности существенных признаков заявляемого изобретения. Это позволяет сделать вывод о соответствии заявляемого устройства критерию изобретения «новизна».

Не обнаружено также применения указанных признаков в заявляемой совокупности с другими признаками для достижения указанного результата, следовательно, заявляемое устройство соответствует критерию изобретения «изобретательский уровень».

Техническая сущность предложенного подъемного механизма оружия башенной установки поясняется чертежами, на которых:

На фиг.1 представлена кинематическая схема предлагаемого варианта подъемного механизма оружия башенной установки.

На фиг.2 представлена схема шарнирной опоры.

Подъемный механизм оружия, размещенного в лафете 1 вне обитаемой части башенной установки, содержит привод 2 наведения оружия, выполненный в виде винтовой передачи, где винт 3 соединен с редуктором 4, а гайка 5 - с лафетом 1. Электродвигатель 6, установленный на корпусе редуктора 4, зубчатое колесо 7, установленное на валу электродвигателя 6, паразитное зубчатое колесо 8 и зубчатое колесо 9, установленное на винте 3, составляют электромеханический привод. Вал 10, зубчатое колесо 11, установленное на валу 10, зубчатое колесо 12, установленное на одном конце коромысла 13, с зубчатым колесом 9 составляют ручной привод, при этом коромысло 13, пружина 14 и электромагнит 15 составляют механизм автоматического выключения ручного привода при работающем электродвигателе. Соединение гайки 5 с лафетом 1 и винта 3 через корпус редуктора 4 с основанием башенной установки осуществляется с применением шарнирных опор 16.

Шарнирная опора в соединении гайки 5 с лафетом 1 состоит из корпуса подшипника 16 и установленного внутри него подшипника 17, имеющего три вращательные степени свободы. Подшипник связан с проушиной 18 лафета 1 при помощи оси 19. Аналогичная шарнирная опора используется для связи редуктора 4 с корпусом башенной установки 23 и состоит из подшипника 20, оси 21 и проушины 22 корпуса башенной установки 23 (см. фиг.2, виды А и Б).

Подъемный механизм оружия может работать в режиме электромеханического наведения или в режиме ручного наведения.

В режиме электромеханического наведения подается питание на электромагнит 15, шток которого, преодолевая усилие пружины 14, воздействует на конец коромысла 13 и поворачивает его относительно оси вращения вала 10 таким образом, чтобы зубчатое колесо 12, установленное на другом конце коромысла, вышло из зацепления с зубчатым колесом 9, установленным на винте 3. С этой целью рабочий ход «X» (см. фиг.1 вариант Б) штока электромагнита 15 выбран из условия, чтобы перемещение зубчатого колеса 12 при повороте коромысла 13 было на величину не менее высоты «h» (см. фиг.1 выносной элемент II) зуба зубчатых колес 12 и 9, что обеспечивает полный разрыв кинематической цепи ручного привода и исключает влияние элементов ручного привода на момент инерции электромеханического привода. Далее при подаче управляющего сигнала на электродвигатель 6 вал электродвигателя через зубчатые колеса 7, 8, 9 обеспечивает вращение винта 3, которое преобразуется в поступательное перемещение гайки 5, что обеспечивает качание лафета 1 и наведение оружия по вертикали. Использование в кинематической цепи редуктора паразитного зубчатого колеса 8 позволяет обеспечить значительное снижение момента инерции вращающихся частей приведенного к валу электродвигателя. Так, например, если необходимое по условиям энергетического расчета передаточное отношение редуктора между винтом 3 и валом электродвигателя 6 должно быть равным i=3, то при минимально возможном межцентровом расстоянии А, то есть расстоянии между осью винта 3 и осью вала электродвигателя 6, ограниченном габаритами винтовой пары и электродвигателя, данное передаточное отношение может быть выполнено либо в варианте с паразитным колесом, либо без него:

- для варианта без паразитного колеса с диаметром колеса 9 D9=1,5A и диаметром колеса 7 D7=0,5A передаточное отношение будет определяться выражением i=D9/D7=1,5/0,5=3;

- для варианта с паразитным колесом с диаметром колеса 9 D9=A, колеса 7 D7=0,33A и колеса 8 D8=0,4A передаточное отношение будет определяться выражением i=(D9/D8)·(D8/D7)=D9/D7=A/0,33A=3.

Учитывая известную формулу для определения момента инерции диска, как аналога зубчатого колеса

J=mr2/2,

где J - момент инерции диска;

m - масса диска;

r - радиус диска,

и сравнивая размеры колес 7 и 9 для рассматриваемых вариантов, следует вывод, что в варианте редуктора с паразитным колесом диаметры колес 7 и 9 меньше в 1,5 раза, соответственно и масса меньше и, учитывая квадратичную зависимость момента инерции от радиуса, суммарный момент инерции их, приведенный к валу электродвигателя, будет в несколько раз меньше. Выше отмечалось, что снижение момента инерции способствует улучшению характеристик привода.

При выключении электромеханического привода отключается питание от электромагнита 15 и электродвигателя 6. Под действием усилия пружины 14 коромысло 13 поворачивается таким образом, чтобы обеспечить нормальное зацепление зубчатых колес 12 и 9 (см. фиг.1 выносной элемент I) и этим образовать кинематическую цепь ручного привода.

В режиме ручного наведения вращение вала 10 передается через зубчатые колеса 11, 12 и 9 на винт 3, вращательное движение которого преобразуется в поступательное перемещение гайки 5, что обеспечивает качание лафета 1 и наведение оружия по вертикали.

Применение шарнирных опор для соединения гайки 5 с лафетом 1 и винта 3 через корпус редуктора 4 с основанием башенной установки 23 позволяет обеспечить компенсацию возможного перекоса оси I-I проушины лафета относительно оси II-II проушины корпуса башни на угол Y (см. фиг.2, виды А и Б). Данный перекос имеет место в силу того, что проушины 18 и 22 расположены на разных частях машины. Во-вторых, применение шарнирных опор позволяет обеспечить криволинейное движение опоры между гайкой 5 и лафетом 1, которое имеется при данной кинематической схеме поворота оружия и для реализации которого в прототипе был использован кардан. Исключение кардана решает задачу снижения момента инерции и люфтов в электромеханическом приводе.

Предлагаемое техническое решение предполагается использовать на бронетранспортерах БТР-82, выпускаемых ОАО «Арзамасский машиностроительный завод».

Источники информации

1. Буклет продукции «Сервомех», информация на сайте WWW.SERVOMECH.RU:

2. Патент на изобретение ОАО «ГАЗ» №2241194 С1 «Подъемный механизм оружия».

1. Подъемный механизм оружия башенной установки, размещенного в лафете вне обитаемой части башенной установки, содержащем редуктор привода подъемного механизма, привод наведения оружия, выполненный в виде винтовой передачи, состоящей из винта и гайки, при этом гайка связана с лафетом, винт связан с редуктором и имеет кинематическую связь с валом электродвигателя, образуя электромеханический привод, а ручной привод выполнен с механизмом его автоматического отключения при работающем электродвигателе, отличающийся тем, что кинематическая связь электромеханического привода выполнена как понижающий редуктор, состоящий из зубчатого колеса, жестко связанного с винтом, другого зубчатого колеса, жестко связанного с валом электродвигателя, и паразитного зубчатого колеса между ними, а гайка связана с лафетом, и редуктор связан с корпусом башенной установки через шарнирные опоры.

2. Подъемный механизм оружия башенной установки по п.1, отличающийся тем, что ручной привод с механизмом его автоматического отключения содержит зубчатое колесо, закрепленное на оси входного вала ручного привода, второе зубчатое колесо, закрепленное на оси винта, и расположенное между ними третье зубчатое колесо, закрепленное на конце коромысла, которое имеет ось вращения, совмещенную с осью вращения входного вала ручного привода, а другой конец коромысла через пружину связан с корпусом редуктора и с электромагнитом, рабочий ход которого выбран из условия обеспечения поворота коромысла и линейного перемещения зубчатого колеса на его конце на величину не менее высоты зуба зубчатого колеса.



 

Похожие патенты:
Изобретение относится к военной технике, а более конкретно, к способам наведения управляемых ракет, в частности, устанавливаемых в составе противотанковых ракетных комплексов (ПТРК) управляемого ракетного вооружения, как на наземных установках, так и на различных объектах, таких, например, как танки, боевые машины пехоты, самоходные пусковые установки и др.
Изобретение относится к военной технике, а более конкретно, к способам наведения управляемых ракет, в частности, устанавливаемых в составе комплексов управляемого ракетного вооружения как на наземных установках, так и на различных объектах, таких, например, как танки, боевые машины пехоты, самоходные пусковые установки и др.
Изобретение относится к военной технике, а более конкретно к способам управления стрельбой ракетно-пушечного вооружения, в частности устанавливаемого в составе комплексов ракетно-пушечного вооружения, как на наземных пусковых установках, так и на различных объектах, таких, например, как танки, боевые машины пехоты, самоходные пусковые установки, боевые катера и др.

Изобретение относится к области вооружения и военной техники, в частности к стрельбе из артиллерийского вооружения боевой машины (БМ), например 100 и 30-мм пушек. .
Изобретение относится к способам управления военной техникой. .
Изобретение относится к области управления военной техникой. .

Изобретение относится к области боевых машин, оснащенных прицельными комплексами. .

Изобретение относится к автоматизированным системам управления вооружением. .

Изобретение относится к области вооружения и военной техники, в частности к защите боевой машины (БМ) от средств воздушного нападения, например, с помощью пулеметных (пушечных) установок.

Изобретение относится к технике автоматической наводки орудий, а именно к системам автоматического наведения и стабилизации пакета направляющих с реактивными снарядами (PC), размещенного на боевой машине реактивной системы залпового огня (БМ РСЗО). В систему стабилизации пакета направляющих, содержащую регулируемый насос с датчиком положения его люльки, гидробак, гидродвигатель, кинематически связанный с пакетом направляющих, два суммирующих усилителя, введены формирователь ошибки, задающее устройство, третий суммирующий усилитель, датчик давления, установленный в напорной гидролинии регулируемого насоса, два дросселирующих гидрораспределителя с электромагнитным управлением, два гидроцилиндра, кинематически связанных с пакетом направляющих, датчики абсолютного положения и абсолютной скорости, установленные на пакете направляющих. За счет обеспечения режима стабилизации пакета направляющих с PC и отработки приводами наведения отклонений пакета направляющих, возникающих при пуске PC, повышаются точность наведения пакета направляющих с PC на заданные координаты и скорострельность вооружения БМ РСЗО. 1 з.п. ф-лы, 4 ил.

Изобретение относится к области военной техники, в частности к способам повышения эффективности наблюдения за местностью, распознавания целей, определения дальности до целей, целеуказания и корректирования пулеметного огня боевой машины. Согласно предлагаемому способу на башню машины неподвижно устанавливают телескопическую штангу. На штанге закрепляют оптико-электронный прибор наблюдения. Затем раздвигают штангу, обеспечивая поднятие оптико-электронного прибора наблюдения выше уровня препятствий. В вертикальной плоскости прибор наблюдения стабилизируют электромеханическим стабилизатором, в горизонтальной плоскости - вращением башни машины. Информацию о наблюдении посылают по электропроводам на дисплей. Достигается обеспечение наблюдения за местностью в дневное и ночное время суток, в условиях ограниченной видимости (молодой лес, кустарник, холмы, пригорки), снижение заметности машины на поле боя и, как следствие, повышение защищенности. 1 ил.

Предлагаемая группа изобретений относится к области вооружения и военной техники, в частности к стрельбе комплекса вооружения боевой машины (БМ) по цели. Предлагаемый способ стрельбы вооружения БМ по цели включает обнаружение и распознавание цели, взятие на сопровождение и сопровождение цели с одновременным дальнометрированием, определение угловых поправок стрельбы из математических выражений с использованием в качестве входных параметров, в частности, значений угловых скоростей, поступающих с органов управления наводчика или командира. Способ также включает постоянное отклонение с учетом угловых поправок стволов пушечной или пулеметной установки (ПУ) относительно линии визирования и стрельбу по цели. При определении угловых поправок стрельбы используют значения угловых скоростей, скорректированных с учетом предварительно полученной до стрельбы экспериментальной зависимости угловой скорости линии визирования. Согласно изобретению система снабжена последовательно соединенными блоком управления (БУ) и устройством корректирования угловой скорости линии визирования по горизонтальному и вертикальному каналам. Для определения экспериментальной угловой скорости линии визирования последовательно с использованием специально организуемого стенда для измерения угловой скорости для каждой заданной угловой скорости поочередно перемещают башню или блок оружия соответственно по горизонтальному или вертикальному каналам. При каждом перемещении по истечении заданного времени замеряют их углы поворота, определяют искомую угловую скорость линии визирования. По полученным значениям воспроизводят зависимость угловой скорости линии визирования от угловой скорости, поступающей с органов управления ПН или ПК или автомата сопровождения, и запоминают эту зависимость. Достигается повышение точности и соответственно эффективности стрельбы вооружения БМ по подвижным целям, в особенности по скоростным целям, а также при больших полетных временах снаряда, обусловленных, в частности, низкоскоростной баллистикой и большими дальностями стрельбы. 3 н. и 3 з.п. ф-лы, 5 ил.

Изобретение относится к транспортному машиностроению, а именно к механизмам поворота башни, в частности танков и боевых машин пехоты. Механизм поворота башни содержит редуктор. Редуктор имеет связанную с зубчатым венцом погона кинематическую цепь зубчатых пар шестерен, выполненную по двухпоточной схеме с силовым зацеплением двух потоков с зубчатым венцом погона. Два зубчатых колеса соосно установлены на выходе каждого потока, связаны торсионом и люфтовыбирающим устройством. Первое зубчатое колесо - выходное (коренная шестерня), второе зубчатое колесо - промежуточное. Выходное зубчатое колесо выполнено с возможностью разворота относительно промежуточного колеса. Люфтовыбирающее устройство установлено между торсионом и промежуточным зубчатым колесом, выполнено регулируемым по направлению и величине люфтовыбирания. Направление моментов люфтовыбирания первого и второго потоков встречное, момент люфтовыбирания выбирается равным величине момента нагрузки. Технический результат заключается в снижении износа погона, а также в улучшении эксплуатационных характеристик привода поворота. 1 ил.

Изобретение относится к области бронетанковой техники, в частности к системам управления огнем, обеспечивающим наблюдение поля боя и управление вооружением. Технический результат - расширение функциональных возможностей. Для этого система управления огнем (СУО) содержит дневной и ночной прицелы, имеющие независимую стабилизацию полей зрения в плоскостях вертикального и горизонтального наведения. Схема управления полями зрения прицелов в СУО выполнена таким образом, что постоянно обеспечивается совмещение и синхронное перемещение линий визирования двух прицелов. При этом обеспечено совмещение и синхронное слежение линий визирования в СУО с использованием цифровой обработки сигналов, обеспечивая уменьшение погрешности синхронного слежения, обусловленную неточностью установки прицелов в башне из-за непараллельности посадочных поверхностей, компенсацию погрешности передачи угла от датчика положения орудия и датчика угла плоскости вертикального наведения дневного прицела, обусловленную неточностью работы механизмов передачи угла, а также снизить влияние температурной погрешности датчиков. 1 ил.

Изобретение относится к военной технике и может быть использовано в вооружении самоходных объектов. Проводят из неподвижного танка и в движении поиск, обнаружение, опознавание целей, слежение за целями днем и ночью, автоматически заряжают пушку выбранным типом боеприпаса, автоматически вычисляют и вводят поправки на температуру воздуха, износ канала ствола, атмосферное давление, боковой ветер, дополнительно вводят блок оценки эффективности стрельбы, производят анализ сигналов от лазерного дальномера и блока переключения баллистик, выбирают тип выстрела в зависимости от замеренной дальности до цели и дальности эффективного огня, информируют наводчика прерывистым миганием индикатора «выбранный тип баллистики» о нецелесообразности выбора данного типа боеприпаса на замеренной дальности через блок индикации в поле зрения прицела-дальномера - прибора наведения, отличающийся тем, что при групповой стрельбе из вооружения самоходных объектов устанавливают порядок выстрелов, путем определения минимального интервала времени от момента первого выстрела отдельного самоходного объекта до момента разрыва последнего снаряда. Изобретение позволяет повысить вероятность поражения цели. 1 ил.
Наверх