Производные силсесквиоксана, содержащие фосфор, используемые в качестве огнестойких добавок

Настоящее изобретение относится к огнестойкой добавке - силсесквиоксану формулы:

[R13SiO1/2]m[R2SiO3/2]n[R3SiO3/2]p[(R4O)2PO(CH2)xSiO3/2]q,

где R1, R2, R3 и R4 представляют собой углеводородные группы; x представляет собой целое число от 1 до 8; m является положительным числом, меньшим, чем 1,5; n и q являются положительными числами, превышающими 0 и меньшими, чем 1; и p является числом, превышающим или равным 0 и меньшим, чем 1, где (n+p)/q находится в диапазоне от 0,5 до 99 и дополнительно где (n+p+q)=1, а также к композициям, включающим указанный силсесквиоксан и эпоксидные смолы. Предложены новые эффективные огнестойкие добавки для эпоксидных смол. 3 н. и 12 з.п. ф-лы, 4 табл., 1 пр.

 

Область техники, к которой относится изобретение

Настоящее изобретение, в общем, относится к огнестойким добавкам и их применению в эпоксидных смолах.

Уровень техники

Современные огнестойкие добавки, которые применяют в эпоксидных смолах, имеют ряд проблем. Например, бромированные и другие галогенсодержащие огнестойкие добавки типично образуют токсичные и коррозионные продукты горения. Неорганические гидраты, которые типично разлагаются с образованием воды, должны быть типично использованы в таких больших количествах, что они негативно влияют на физические свойства эпоксидной смолы. Дополнительно, огнестойкие добавки на основе галогенов были объектом различных регуляторных исследований окружающей среды.

Сущность изобретения

Настоящее изобретение обеспечивает силсесквиоксан, содержащий фосфор, представленный формулой

[R13SiO1/2]m[R2SiO3/2]n[R3SiO3/2]p[(R4O)2PO(CH2)xSiO3/2]q,

где

каждый из R1, R2, R3 и R4 независимо представляет собой гидрокарбильную группу;

x представляет собой целое число от 1 до 8;

m является положительным числом, меньшим, чем 1,5;

n и q являются положительными числами, превышающими 0 и меньшими, чем 1; и

p является числом, превышающим или равным 0 и меньшим, чем 1, где (n+p)/q находится в диапазоне от 0,5 до 99 и дополнительно где (n+p+q)=1.

В некоторых осуществлениях, каждый из R1, R2, R3 и R4 независимо представляет собой алкильную группу, содержащую от 1 до 8 атомов углерода. В некоторых осуществлениях, каждый R1 представляет собой метильную группу, и каждый R2 и R3 независимо выбирают из группы, состоящей из метильной группы, циклогексильной группы, циклопентильной группы и изопропильной группы. В некоторых осуществлениях, х представляет собой 2. В некоторых осуществлениях, силсесквиоксан, содержащий фосфор, имеет среднечисловую молекулярную массу в диапазоне от 500 до 10000 грамм на моль. В некоторых осуществлениях, силсесквиоксан, содержащий фосфор, имеет среднечисловую молекулярную массу в диапазоне от 1000 до 4000 грамм на моль.

Силсесквиоксаны в соответствии с настоящим изобретением являются полезными, например, в качестве огнестойких добавок и особенно полезными в комбинации с негалогеновыми огнестойкими добавками.

Соответственно, в другом аспекте, настоящее изобретение обеспечивает отверждаемую композицию, содержащую эпоксидную смолу, эффективное количество отвердителя для полиэпоксида, и силсесквиоксан, содержащий фосфор, в соответствии с настоящим изобретением.

В некоторых осуществлениях, отверждаемая композиция дополнительно содержит эффективное количество отвердителя для термоактивной смолы. В некоторых осуществлениях, термоактивная смола содержит отверждаемую эпоксидную смолу.

В еще одном аспекте, настоящее изобретение обеспечивает отвердевшую композицию, содержащую термореактивную смолу и силсесквиоксан, содержащий фосфор, в соответствии с настоящим изобретением.

Как используют в данном описании:

"гидрокарбильная группа" относится к одновалентной группе, образованной путем удаления атома водорода из углеводорода;

"негалогенированный" означает не содержащий атомы галогена;

"термоактивный" означает способность к химическому перекрестному сшиванию; и

"термореактивный" означает достаточно химически перекрестно-сшитый, таким образом, что не будет проявлять вязкость расплава.

Подробное описание изобретения

Силсесквиоксаны имеют каркасы, сформированные из Si-O-Si звеньев. Они, в общем, образуются путем конденсации одного или более органосиланов (например, производных триалкоксисилана).

Силсесквиоксаны, в соответствии с настоящим изобретением, представлены формулой

[R13SiO1/2]m[R2SiO3/2]n[R3SiO3/2]p[(R4O)2PO(CH2)xSiO3/2]q.

Каждый из R1, R2, R3 и R4 независимо представляет собой гидрокарбильную группу. Полезные гидрокарбильные группы включают алифатические группы (например, линейные, циклические и/или разветвленные алкильные группы) и ароматические (например, арильные, аралкильные или алкарильные группы) группы. Иллюстративные гидрокарбильные группы включают: алкильные группы, содержащие от 1 до 8 атомов углерода, такие как, например, метальная, этильная, пропильная, изопропильная, бутильная, пентильная, гексильная, изооктильная, циклогексильная, метилциклогексильная и циклопентильная группы; арильные группы, такие как, например, фенил; аралкильные группы, такие как, например, метилфенильная и этилфенильная группы; и аралкильные группы, такие как фенилэтильная и фенилметильная группы. Такие осуществления, в которых R1 представляет собой метильную группу, являются типично желаемыми. Аналогично, такие осуществления, в которых R2 и R3 независимо представляют метильную группу (группы), циклогексильную группу (группы), циклопентильную группу (группы) и изопропильную группу (группы) являются типично желаемыми, особенно в комбинации с R1, который представляет собой метильную группу.

Переменная x представляет собой целое число от 1 до 8; например, 1, 2, 3, 4, 5, 6, 7 или 8. Те осуществления, в которых x представляет собой 2, являются типично желаемыми.

Переменная m представляет собой положительное число (то есть, любое число, превышающее ноль), меньшее, чем 1,5; например, 0,001, 0,01, 0,1, 0,3, 0,5, 0,75, 1, 1,25 или 1,49.

Переменные n и q представляют собой положительные числа, превышающие 0 и меньшие, чем 1; например, 0,01, 0,1, 0,3 или 0,5.

Переменная р представляет собой число, превышающее или равное 0 и меньшее, чем 1; например 0, 0,01, 0,1, 0,3, 0,5, 0,75 или 0,99.

Переменные х, m, n, р и q могут быть использованы в любой комбинации при условии двух ограничений:

(1) количество (n+p)/q находится в диапазоне от 0,5 до 99; и

(2) количество (n+р+q) равно 1.

Силсесквиоксан, содержащий фосфор, может иметь любую молекулярную массу, соответствующую приведенным выше критериям. Как это типично для силсесквиоксанов, они могут существовать в виде одного соединения или в виде смеси силсесквиоксанов с различными молекулярными массами. В таких случаях, общепринятой практикой в данной области техники является обращение к средней молекулярной массе (например, среднечисловой молекулярной массе). Силсесквиоксаны, имеющие среднечисловую молекулярную массу в диапазоне от 500 до 10000 грамм на моль (например, от 1000 до 4000 грамм на моль) являются типично особенно приемлемыми для применения в качестве огнестойких добавок в термоактивных смолах.

Силсесквиоксаны в соответствии с настоящим изобретением могут быть получены, например, путем конденсации соответствующих триалкоксисиланов, которые могут быть получены в соответствии с известными способами или приобретены из коммерческих источников. В репрезентативном синтезе, производные триалкоксисилана соединяют с муравьиной кислотой и нагревают при повышенной температуре (например, приблизительно 80°С), достаточной для удаления спиртовых побочных продуктов, образованных при конденсации триалкоксисиланов, с получением соответствующего силсесквиоксана. Любые остаточные силанольные группы могут быть закрыты на конце (CH3)3Si-группами; например, путем добавления гексаметилдисилазана или гексаметилдисилоксана. Летучие вещества (включая любые непрореагировавшие исходные вещества) могут быть удалены путем нагревания в вакууме.

Соответствующие количества n, р и q могут быть проконтролированы путем контроля количества соответствующих триалкоксисиланов.

Силсесквиоксаны в соответствии с настоящим изобретением являются полезными, например, в качестве огнестойких добавок и являются особенно полезными в комбинации с негалогенированными огнестойкими добавками, где может быть возможным понизить общее количество по массе огнестойкой добавки, что является необходимым для соответствия стандартным промышленным тестам на замедление распространения пламени; например, с получением UL94-V0 рейтинга для термореактивной смолы (в соответствии со способом UL 94 "Standard for Tests for Flammability of Plastic Materials for Parts in Devices and Appliances", Section 8, 20 mm Vertical Burning Test (обновленным от 22 мая 2001 г.), выданным Underwriters Laboratories, Northbrook, Illinois). Примеры негалогенированных огнестойких добавок включают: боэмит, органобораты, органофосфаты, органофосфиты и органофосфинаты (например, такие, как EXOLIT OP1230 и EXOLIT OP930, доступные от Clariant Corp., Charlotte, North Carolina).

Настоящее изобретение также обеспечивает отверждаемую композицию, содержащую термоактивную смолу, необязательно эффективное количество отвердителя для термоактивной смолы и силсесквиоксан, содержащий фосфор, в соответствии с настоящим изобретением. Примеры термоактивных смол включают эпоксидные смолы (однокомпонентные и/или двухкомпонентные), уретановые смолы (однокомпонентные и/или двухкомпонентные), цианатные смолы, фенольные смолы и акриловые смолы. Желательно, для применения в электронике термоактивная смола имеет степень чистоты для электронных применений.

Примеры термоактивных смол включают двухкомпонентную эпоксидную смолу, доступную как 3М SCOTCHCAST ELECTRICAL INSULATING RESIN 4 от 3М Company, Saint Paul, Minnesota. Примеры полезных эпоксидных смол включают 2,2-бис[4-(2,3-эпоксипропокси)-фенил]пропан(диглицидиловый эфир бисфенола А) и вещества, доступные как EPON 828, EPON 1004 и EPON 100 IF, коммерчески доступные от Shell Chemical Co., DER-331, DER-332 и DER-334, коммерчески доступные от Dow Chemical Co. Другие приемлемые эпоксидные смолы включают глицидиловые эфиры фенол-формальдегидного новолака (например, DEN-43 и DEN-428, коммерчески доступные от Dow Chemical Co.).

Необязательно, термоактивная смола может содержать один или более отвердителей, инициаторов и/или катализаторов (которые вместе в данной заявке имеют название "отвердитель"), типично в количестве, эффективном для химического перекрестного сшивания термоактивной смолы (то есть, эффективное количество отвердителя). Выбор отвердителя и количество для использования будут типично зависеть от типа выбранной термоактивной смолы, и будут хорошо известны специалистам в данной области техники. Иллюстративные отвердители для эпоксидных смол включают амины (включая имидазолы), меркаптаны и кислоты Льюиса.

Силсесквиоксан, содержащий фосфор, может быть применен в любом количестве в отверждаемых и/или отвержденных композициях в соответствии с настоящим изобретением. Например, силсесквиоксан, содержащий фосфор, может присутствовать в количестве в диапазоне от 1 до 20 процентов по массе, типично от 4 до 10 процентов по массе, и более типично 4-8 процента по массе, исходя из общей массы отверждаемой и/или отвержденной композиции.

Отверждаемые композиции могут быть образованы простым смешиванием; однако, в общем желательно применять метод, способный к образованию однородной композиции. В одном методе, огнестойкая добавка и/или силсесквиоксан, содержащий фосфор, смешивают с термоактивной смолой при помощи мешалки с большим сдвиговым усилием, например, высокоскоростной мешалки, доступной как SPEEDMIXER DAC 150FVZ от FlackTek, Inc., Landrum, South Carolina.

Отверждаемые композиции могут быть отверждены, например традиционными способами, хорошо известными в данной области техники, включая смешивание (в случае двухкомпонентных термоактивных смол), нагревание, воздействие актинического или термического излучения, или их любую комбинацию, приводя к получению отвержденной композиции.

Объекты и преимущества настоящего изобретения дополнительно проиллюстрированы при помощи следующих неограничивающих примеров, но конкретные вещества и их количества, приведенные в данных примерах, а также другие условия и подробности проведения не должны быть истолкованы как ненадлежащим образом ограничивающие настоящее изобретение.

ПРИМЕРЫ

Если не указано иное, все части, процентные содержания и соотношения и т.д., в Примерах и в остальной части данного описания, приведены по массе.

Вещества, которые применяли в данном примере, перечислены в Таблице 1 (ниже).

ТАБЛИЦА 1
Гексилтриметоксисилан был получен от TCI America, Portland, Oregon
Метилтриметоксисилан был получен от Aldrich Chemical Co., Milwaukee, Wisconsin
Гексаметилдисилоксан, гексаметилдисилазан и муравьиная кислота были получены от Alfa-Aesar Co., Ward Hill, Massachusets
Диэтилфосфатоэтилтриэтоксисилан был получен от Gelest Inc., Morrisville, Pennsylvania
SC4 относится к 3М SCOTCHCAST ELECTRICAL INSULATING RESIN 4, которая является двухкомпонентной эпоксидной смолой, полученной от 3М Company, St. Paul, Minnesota
OP 1230 относится к огнестойкой добавке EXOLIT OP1230 на основе металоорганофосфинатной соли, полученной от Clariant Corp., Charlotte, North Carolina

UL94 20 мм Тест на вертикальное горение

Был использован UL 94 "Standard for Tests for Flammability of Plastic Materials for Parts in Devices and Appliances", Раздел 8, 20 мм Тест на вертикальное горение (обновленный 8 июня 2000 г.), изданный Underwriters Laboratories, Northbrook, IL, за исключением того, что анализировали только указанное количество репликатов. Суммарные критерии для теста приведены в таблице 2 (ниже).

ТАБЛИЦА 2
Критерии условий 94V-0 94V-1 94 V-2
Время горения Т1 или Т2 ≤10 секунд ≤30 секунд ≤30 секунд
Время горения Т1+Т2 ≤50 секунд ≤250 секунд ≤250 секунд
Время тления, Т3 ≤30 секунд ≤60 секунд ≤60 секунд
Сгорел ли образец до удерживающего зажима? Да/Нет Нет Нет Нет
Капали ли с образца горящие частицы, которые поджигали хлопковый индикатор? Да/Нет Нет Нет Да

В Таблице 2 (выше) T1 относится ко времени остаточного горения после первого воспламенения. Т2 относится ко времени остаточного горения после второго воспламенения. Т3 относится ко времени остаточного тления после второго воспламенения.

Тест на горение на коническом калориметре

Тест на горение на коническом калориметре был произведен в соответствии с ASTM E1354-08, "Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter" (2008). Скорость развития пожара (FIGRA), которая не включена в ASTM E1354-08, была рассчитана как пиковая скорость высвобождения тепла, разделенная на время до пикового высвобождения тепла. Процент уменьшения FIGRA определяли при помощи контрольного образца, который анализировали в тот же день, что и тестовый образец.

Сравнительный пример А

Метилтриметоксисилан (100 грамм, 0,73 моля), гексилтриметоксисилан (151,5 грамма, 0,73 моля) и муравьиную кислоту (202,7 грамма, 4,40 моля) помещали в круглодонную колбу на 1 литр при перемешивании магнитной мешалкой. Колбу нагревали на масляной бане при 70°С в течение 35 минут с отгонкой, собирая летучие побочные продукты. Затем добавляли гексаметилдисилоксан (96 грамм, 0,59 моля) и раствор нагревали на масляной бане при 65°С в течение 50 минут. Затем летучие побочные продукты удаляли в вакууме. Добавляли гексан (200 мл) и гексаметилдисилазан (97 г, 0,60 моля) и раствор фильтровали в вакууме. Летучие компоненты фильтрата удаляли в вакууме, сначала при комнатной температуре, а затем при нагревании на масляной бане при 90°С. Полученный в результате продукт, Сравнительный Силсесквиоксан А, представлял собой вязкую бесцветную жидкость. 1Н ЯМР анализ соответствовал следующей формуле:

[(СН3)3SiO1/2]0,4[CH3SiO3/2]0,5[C6H13SiO3/2]0,5.

Среднечисловую молекулярную массу измеряли при помощи гельпроникающей хроматографии относительно полистироловых стандартов как 680 грамм/моль.

Пример 1

Метилтриметоксисилан (15 грамм, 0,110 моля), гексилтриметоксисилан (22,7 грамма, 0,110 моля), диэтилфосфатоэтилтриэтоксисилан (11,9 грамма, 0,036 моля) и муравьиную кислоту (35,4 грамма, 0,770 моля) соединяли в круглодонной колбе на 250 миллилитров и перемешивали на магнитной мешалке на масляной бане при 80°С с отгонкой летучих побочных продуктов в течение 25 минут. Добавляли гексаметилдисилоксан (32 грамма, 0,197 моля) и смесь перемешивали еще 65 минут на масляной бане при 80°С. Летучие побочные продукты удаляли в вакууме. Затем добавляли гексан (25 г) и гексаметилдисилазан (25 г, 0,155 моля) и раствор перемешивали в течение 35 минут. Летучие продукты удаляли в вакууме с получением Силсесквиоксана 1 в виде вязкой бесцветной жидкости. 1H ЯМР анализ соответствовал формуле:

[(CH3)3SiO1/2]0,38[CH3SiO3/2]0,43[C6H13SiO3/2]0,43[(C2H5O)2РО(СН2)2SiO3/2]0,14

Среднечисловую молекулярную массу измеряли при помощи GPC относительно полистироловых стандартов как 1600 грамм/моль.

Анализ замедления распространения пламени

Получали различные термоактивные композиции, которые анализировали в соответствии с UL94, 20 мм Тест на вертикальное горение, путем сочетания указанной огнестойкой добавки (добавок) в SC4 эпоксидной смоле в количествах, указанных в Таблицах 3 и 4 (ниже). Все композиции, указанные в Таблице 3 (ниже) имели Т3=0 секунд, не сгорали до удерживающего зажима и не поджигали хлопок, как в UL 94 выше. Все параметры в Таблице 4 являются такими, как определено в ASTM E1354-08, за исключением FIGRA (колонка 7 в Таблице 4). FIGRA = скорость развития пожара и рассчитана как пиковая скорость высвобождения тепла (колонка 5 в Таблице 4), разделенная на время до пикового высвобождения тепла (колонка 6 в Таблице 4). Уменьшение FIGRA в Таблице 4 является разницей в процентах FIGRA для каждой строки по сравнению с контрольными 100 частями SC4 (строка 1). В Таблице 4, МДж = мегаджоули; м2 = квадратный метр и кВ = киловатты. Измерения на коническом калориметре были произведены с известной ошибкой порядка +/-10 процентов.

ТАБЛИЦА 3
ПРИМЕР ТЕРМОАКТИВНАЯ КОМПОЗИЦИЯ РЕПЛИКАТ UL94, 20 мм Тест на вертикальное горение
Капает? Соответствует/Не соответствует
V0-V2
Сравнительный пример В1 94 части SC4, 6 частей ОР 1230 1 Нет Не соответствует
2 Нет Не соответствует
3 Нет Не соответствует
4 Нет Не соответствует
Сравнительный пример В2 93 части SC4, 7 частей ОР 1230 1 Нет Не соответствует
2 Нет V1
Сравнительный пример В3 92 части SC4, 8 частей ОР 1230 1 Нет V1
2 Нет V1
Сравнительный пример С 93 части SC4, 6 частей ОР 1230,
1 часть Сравнительного Силсесквиоксана А
1 Нет V1
2 Нет V0
Пример 2 93 части SC4, 6 частей ОР 1230,
1 часть Силсесквиоксана 1
1 Нет V0
2 Нет V0
Пример 3 99 частей SC4,
1 часть Силсесквиоксана 1
1 Нет Не соответствует
2 Нет Не соответствует
Пример 4 93 части SC4,
7 частей Силсесквиоксана 1
1 Нет Не соответствует
2 Нет V1
ТАБЛИЦА 4
Пример Термоактивная композиция Общее высвобождение тепла, МДж/м2 Средняя скорость высвобождения тепла, кВ/м2 Пиковая скорость высвобождения тепла, кВ/м2 Пик при времени, секунд FIGRA Процент уменьшения FIGRA
Сравнитель
ный пример D
100 частей SC4 175 920 2006 145 13,83 0,0
Сравнитель
ный пример В1
94 части SC4, 6 частей ОР 1230 150 484 707 205 3,45 75,6
Сравнитель
ный пример В2
93 части SC4, 7 частей ОР 1230 133 408 852 215 3,96 71,6
Сравнитель
ный пример В3
92 части SC4, 8 частей ОР 1230 129 389 710 230 3,09 77,8
Сравнитель
ный пример С
93 части SC4, 6 частей ОР 1230, 1 часть Сравнительного Силсесквиоксана А 150 698 1379 155 8,90 37,1
Пример 2 93 части SC4, 6 частей
ОР 1230, 1 часть Силсесквиоксана 1,1% S-2
145 425 639 210 3,04 78,0
Пример 3 99 частей SC4, 1 часть Силсесквиоксана 1 162 662 1515 165 9,18 34,1
Пример 4 93 части SC4, 7 частей Силсесквиоксана 1 155 378 613 110 5,57 60,0

Все патенты и публикации, процитированные в данной заявке, настоящим полностью включены в данную заявку путем ссылки. Различные модификации и изменения настоящего изобретения могут быть произведены специалистами в данной области техники, не выходя за объем и суть настоящего изобретения, и должно быть понятно, что настоящее изобретение не должно быть ненадлежащим образом ограничено иллюстративными осуществлениями, приведенными в данной заявке.

1. Силсесквиоксан, содержащий фосфор, представленный формулой
[R13SiO1/2]m[R2SiO3/2]n[R3SiO3/2]p[(R4O)2PO(CH2)xSiO3/2]q,
где каждый из R1, R2, R3 и R4 независимо представляет собой гидрокарбильную группу;
x представляет собой целое число от 1 до 8;
m является положительным числом, меньшим, чем 1,5;
n и q являются положительными числами, превышающими 0 и меньшими, чем 1; и
p является числом, превышающим или равным 0 и меньшим, чем 1, где (n+p)/q находится в диапазоне от 0,5 до 99, и дополнительно где (n+p+q)=1.

2. Силсесквиоксан, содержащий фосфор, по п.1, где каждый из R1, R2, R3, R4 независимо представляет собой алкильную группу, содержащую от 1 до 8 атомов углерода.

3. Силсесквиоксан, содержащий фосфор, по п.1, где каждый R1 представляет собой метильную группу; и каждый R2 и R3 независимо выбран из группы, состоящей из метильной группы и изопропильной группы.

4. Силсесквиоксан, содержащий фосфор, по п.3, где x представляет собой 2.

5. Силсесквиоксан, содержащий фосфор, по п.1, где силсесквиоксан, содержащий фосфор, имеет среднечисловую молекулярную массу в диапазоне от 500 до 10000 грамм на моль.

6. Силсесквиоксан, содержащий фосфор, по п.1, где силсесквиоксан, содержащий фосфор, имеет среднечисловую молекулярную массу в диапазоне от 1000 до 4000 грамм на моль.

7. Отверждаемая композиция, содержащая:
термоактивную смолу; и
силсесквиоксан, содержащий фосфор, представленный формулой
[R13SiO1/2]m[R2SiO3/2]n[R3SiO3/2]p[(R4O)2PO(CH2)xSiO3/2]q,
где каждый из R1, R2, R3 и R4 независимо представляет собой гидрокарбильную группу;
x представляет собой целое число от 1 до 8;
m является положительным числом, меньшим, чем 1,5;
n и q являются положительными числами, превышающими 0 и меньшими, чем 1;
и p является числом, превышающим или равным 0 и меньшим, чем 1, где (n+p)/q находится в диапазоне от 0,5 до 99, и дополнительно где (n+p+q)=1.

8. Отверждаемая композиция по п.7, дополнительно содержащая эффективное количество отвердителя для термоактивной смолы.

9. Отверждаемая композиция по п.7, в которой термоактивная смола содержит отверждаемую эпоксидную смолу.

10. Отверждаемая композиция по п.7, в которой каждый R1 представляет собой метильную группу; и каждый R2 и R3 независимо выбран из группы, состоящей из метильной группы и изопропильной группы, и x представляет собой 2.

11. Отверждаемая композиция по п.7, в которой силсесквиоксан, содержащий фосфор, имеет среднечисловую молекулярную массу в диапазоне от 500 до 10000 грамм на моль.

12. Отвержденная композиция, содержащая:
термореактивную смолу; и
силсесквиоксан, содержащий фосфор, представленный формулой
[R13SiO1/2]m[R2SiO3/2]n[R3SiO3/2]p[(R4O)2PO(СН2)xSiO3/2]q,
где каждый из R1, R2, R3 и R4 независимо представляет собой гидрокарбильную группу;
x представляет собой целое число от 1 до 8;
m является положительным числом, меньшим, чем 1,5;
n и q являются положительными числами, превышающими 0 и меньшими, чем 1; и
p является числом, превышающим или равным 0 и меньшим, чем 1, где (n+p)/q находится в диапазоне от 0,5 до 99, и дополнительно где (n+p+q)=1.

13. Отвержденная композиция по п.12, в которой термоактивная смола содержит отвержденную эпоксидную смолу.

14. Отвержденная композиция по п.12, в которой каждый R1 представляет собой метильную группу; и каждый R2 и R3 независимо выбран из группы, состоящей из метильной группы и изопропильной группы, и x представляет собой 2.

15. Отвержденная композиция по п.12, в которой силсесквиоксан, содержащий фосфор, имеет среднечисловую молекулярную массу в диапазоне от 500 до 10000 грамм на моль.



 

Похожие патенты:

Изобретение относится к способу нанесения покрытия на алюминиевые подложки с помощью анионного электроосаждения фосфатированной эпоксидной смолы. .

Изобретение относится к композиции эпоксидного порошкового покрытия и к способу ее получения. .

Изобретение относится к политиоэфирам с концевой эпокси-группой. .

Изобретение относится к модифицированным фосфором эпоксидным смолам с эпоксидным числом от 0,02 до 1 моль/100 г общей структурной формулы I где R2 обозначает остаток полиэпоксидного соединения, уменьшенный на глицидильные группы; n - целое число от 1 до 5; m - целое число от 1 до 5, причем сумма (n+m) является целым числом от 2 до 6; В обозначает остатки ангидридов фосфиновых и/или фосфоновых кислот формул II, III, IV, V, VI, VII, VIII где R, R1 и R3 независимо друг от друга обозначают углеводородный остаток с 1-20 С-атомами, предпочтительно 1-6 С-атомами; А - двухвалентный углеводородный остаток с 1-10 С-атомами; У - целое числе, по меньшей мере I, предпочтительно 1-100; Z - целое число, по меньшей мере 3, предпочтительно 3-100.

Изобретение относится к новым формам А и В кристаллического адефовира дипивоксила, которые обладают улучшенными свойствами при их использовании, в частности имеют высокую скорость растворения и повышенную стабильность.

Изобретение относится к ингибиторам протеинтирозинфосфатазы 1В формулы, пригодным для лечения диабета 2 типа и рака или его фармацевтически приемлемым солям, в которых X выбирают из СН и N; R1 выбирают из С1-3алкила, необязательно замещенного 1-3 галогенами или одной группой -ОН, -CN, -С(=О)Н, -С(=О)С1-3алкилом, -HC=NOH, -(CH3)C=NOH,-НС=NОС 1-3алкилом, -(СН3)С=NOC1-3алкила, -С(=О)ОС1-3алкила, -C(=O)NHR6 , -СН=СН-фенила, в котором фенил замещен -С(=О)ОН; R3 - галоген; R6 выбран из Н, С1-3алкила, фенила, и СН2-фенила, где фенил в обоих случаях необязательно замещен галогеном.

Изобретение относится к области органической химии, в частности к синтезу новых химических соединений с практически полезными свойствами, конкретнее к новым производным известных лекарственных препаратов изониазида и димефосфона.

Изобретение относится к способу получения адамантилалкиловых и адамантилоксиалкиловых эфиров тозилоксиметилфосфоновой кислоты формулы I, используемых для синтеза фармацевтических препаратов с противовирусной активностью, из соединений формулы II где Х - отсутствует, R=H, R'=H, n=1; или X - отсутствует, R=H, R'=H, n=2; или X - отсутствует, R=H, R'=CH3, n=1; или Х=O, R=H, R'=H, n=2; или Х=O, R=C2H5, R'=H, n=2; Ts - тозил (n-толуолсульфонил).

Изобретение относится к улучшенному способу получения С-фосфорилированных динитрилов малоновой кислоты формулы (I), которые могут быть использованы для получения биологически активных соединений для нужд медицины и сельского хозяйства.

Изобретение относится к улучшенному способу получения фосфорхлорсодержащих метакрилатов (ФМАК) общей формулы: где R=низший алкил, хлоралкил, алкоксил, феноксил или группа - R1=низший алкоксил, феноксил или группа которые могут быть использованы для получения полимерных, в том числе, неокрашенных, оптически прозрачных, а также композиционных материалов с пониженной горючестью.

Изобретение относится к области молекулярной биологии, химической технологии и медицины и касается усовершенствования способа получения 5'-аминокарбонилфосфонатов нуклеозидов.

Изобретение относится к области защиты металла от коррозии лакокрасочными покрытиями. .
Изобретение относится к области защиты металла от коррозии лакокрасочными покрытиями, а именно к способу получения противокоррозионных пигментов. .

Настоящее изобретение относится к способу получения диарилалкилфосфоната из триарилфосфита и триалкилфосфита или алканола, который может использоваться в химической промышленности. Предложенный способ состоит в том, что объединяют по меньшей мере один триарилфосфит и один катализатор с образованием триарилфосфитной каталитической смеси, нагревают триарилфосфитную каталитическую смесь до температуры реакции от примерно 210°С до примерно 260°С, добавляют к нагретой триарилфосфитной каталитической смеси (i) по меньшей мере один триалкилфосфит в молярном избытке от 0,01% до примерно 3% в расчете на триарилфосфит; или (ii) по меньшей мере один алканол в молярном избытке от 0,01% до примерно 3% в расчете на триарилфосфит; и проводят взаимодействие триарилфосфитной смеси с триалкилфосфитом или алканолом с образованием диарилалкилфосфоната. Предложен новый эффективный способ получения диарилалкилфосфоната. 19 з.п. ф-лы, 11 пр., 3 табл.

Изобретение относится к противоопухолевому соединению формулы Предложено новое противоопухолевое соединение, обладающее высоким индексом селективности по отношению к раковым клеткам в сравнении с клетками нормального фенотипа и выраженным противоопухолевым действием в отношении опухолей человека и животных, которое может применяться в медицине и ветеринарии для лечения раковых заболеваний и профилактики метастазирования опухолей, в том числе с поражением костной ткани. 2 пр., 2 табл.

Изобретение относится к фуллеренам формулы 1 и способам их получения, которые могут использоваться в химической промышленности и солнечной энергетике, где Х означает: атом водорода или алкильный (CnH2n+1; n=1-20) радикал, где R1 означает: атом водорода, алкильный (CnH2n+1; n=1-20), алкенильный (CnH2n-1; n=1-20) или алкинильный радикал (СnН2n-3; n=1-20); остаток алкилгалогенида -(СН2)nНаl (Hal=F, Cl, Вr, I), простого эфира -(CH2)nOR'1 или -(СН2СН2O)nR'1, для которых n=0-20, a R'1 - это атомы водорода или линейные или разветвленные алкильные (CmH2m+1; n=1-20), алкенильные (CmH2m-1; n=1-20) или алкинильные радикалы (СmН2m-3, n=1-20). Предложенный способ заключается в том, что проводят реакцию Арбузова, в которую с соответствующими органическими фосфитами вводится хлорид фуллерена С60Сl6. Предложены новые фуррелены, пригодные для использования в органических солнечных батареях, а также новый эффективный способ их получения. 2 н.п. ф-лы, 20 ил., 6 пр.

Изобретение относится к способу энантиоселективного аллильного аминирования производных α,β-ненасыщенных карбоновых кислот с получением энантиомерно обогащенных производных, описываемых формулами II, III, VII и VIII. Способ осуществляют путем взаимодействия рацемической смеси производного карбоновой кислоты с хиральным лигандом на катализаторе [Pd(аллил)Cl]2 в присутствии нуклеофильного реагента, выбранного из фталимида калия или амина формулы R1R2NH, где R1 представляет собой бензильную, н-бутильную или циклогексильную группу, R2 представляет собой водород или бензильную группу. Технический результат - энантиоселективное катализируемое палладием аллильное аминирование производных α,β-ненасыщенных карбоновых кислот с получением продуктов с увеличенным энантиомерным избытком. 2 н. и 8 з.п. ф-лы, 6 ил., 3 табл., 48 пр.

Изобретение относится к способу получения триметилового эфира фосфонуксусной кислоты, который может быть использован как полупродукт для синтеза соединений, применяемых в медицине и ветеринарии. Предложенный способ состоит в том, что триметиловый эфир фосфонуксусной кислоты получают реакцией межфазного алкилирования диметилфосфита метилхлорацетатом в гетерогенной системе «органическая фаза/твердая фаза» в присутствии карбоната калия при молярном соотношении диметилфосфит, метилхлорацетат и карбонат калия, соответственно, равном (1-1,3):1:(1,5-2). При этом свежеперегнанный метилхлорацетат добавляют по каплям к смеси диметилфосфита и карбоната калия многократными порциями, оптимально 3-6 равными порциями через каждые 2,5-3,5 часа. Синтез проводят в течение 10-18 часов при перемешивании реакционной массы со скоростью 300-450 оборотов в минуту и при температуре 20-50°C. Для выделения целевого продукта реакционную массу обрабатывают смесью хлороформа и воды, содержащей воду в количестве от 1 до 3% по объему от общего объема смеси. Затем реакционную массу фильтруют, промывают осадок хлороформом, фильтрат упаривают и выделяют целевой продукт вакуумной перегонкой. Предложен новый экономичный, энергосберегающий и экологичный способ получения триметилового эфира фосфонуксусной кислоты. 1 з.п. ф-лы, 1 табл., 14 пр.
Наверх