Способ определения работоспособности взрывчатых веществ



Способ определения работоспособности взрывчатых веществ
Способ определения работоспособности взрывчатых веществ
Способ определения работоспособности взрывчатых веществ
Способ определения работоспособности взрывчатых веществ

 


Владельцы патента RU 2486512:

Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университет (RU)

Изобретение относится к области испытаний взрывчатых веществ, в частности к определению работоспособности взрывчатых веществ. Принцип испытания заключается в том, что инициируют навеску взрывчатого вещества определенной массы и регистрируют уровень давления среды в точке, удаленной от испытуемого образца взрывчатого вещества на определенном расстоянии. Благодаря реализации настоящего изобретения реализуется улучшение определенных характеристик, таких как повышение точности оценки свойств взрывчатых веществ, уменьшение потребного количества взрывчатых веществ для испытаний, а также упрощение процедуры испытаний. 2 ил.

 

Изобретение относится к области испытаний взрывчатых веществ (ВВ), в частности к определению работоспособности ВВ.

Аналогом предлагаемого способа является способ определения работоспособности ВВ в свинцовой бомбе, описанный в [1]. Данный способ основан на определении расширения канала бомбы продуктами взрыва заряда ВВ и распространяется на порошкообразные, гранулированные, жидкие, вязкотекучие и пластичные ВВ с критическим диаметром детонации не более 20 мм.

К недостаткам аналогичного способа определения работоспоосбности ВВ относятся:

- большие количества ВВ, используемые для испытаний, например, для проведения испытаний используют три опыта с навесками ВВ по 10 г;

- большие затраты на материалы, используемые при испытаниях, например, применяемое в способе свинцовой бомбы оборудование утилизируется после каждого испытания и повторно не используется;

- недостаточная оперативность способов.

В качестве способа-прототипа выбран способ, описанный в патенте [2]. В способе-прототипе образец ВВ с детонатором устанавливают в герметичную камеру, в корпус которой вмонтирован датчик давления. С помощью детонатора производят подрыв испытуемого ВВ и оценивают его характеристики по величине квазистатического давления в камере после взрыва.

Недостаток прототипа заключается в том, что испытания проводятся в специальной герметичной камере, усложняющей процедуру испытаний, а наличие детонатора снижает точность оценки свойств испытуемого ВВ, кроме того, для испытаний требуются образцы ВВ большой массы (30 г).

Технический результат настоящего изобретения заключается в повышении точности оценки свойств ВВ, уменьшении потребного количества ВВ для испытаний, а также в упрощении процедуры испытаний.

Технический результат достигается тем, что по измеренным значениям давления среды, возникающего под действием энергии взрыва в упругой среде, рассчитывают характеристику мощности акустических колебаний, которую принимают в качестве абсолютной характеристики работоспособности взрывчатого вещества, а затем находят отношение измеренной характеристики мощности акустических колебаний исследуемого взрывчатого вещества к характеристике мощности акустических колебаний эталонного взрывчатого вещества и полученное значение принимают в качестве относительной меры работоспособности взрывчатого вещества.

Сущность заявляемого способа состоит в том, что параметры ударных волн (максимальное давление и импульс фаз сжатия и разрежения во фронте ударной волны) и звуковых колебаний определяются теми же свойствами ВВ, которые определяют их работоспособность (фугасность), включая теплоту взрыва, объем продуктов детонации и скорость детонации [3]. Работоспособность ВВ на основе анализа звука, порождаемого детонацией, предлагается рассчитывать по формуле

σ = max ( 1 t 0 t s 2 d t ) ( 1 )

где s - реализация измеренного сигнала звукового давления, t - время.

На практике, при использовании аналого-цифрового преобразования сигнала звукового давления с равномерной дискретизацией и квантованием, выражение (1) преобразуется к виду (2):

σ = max ( i = 0 j s i 2 j Δ t | j = 0.. N ) ( 2 )

где si - значение отсчета звукового давления, Δt - интервал дискретизации сигнала звукового давления, N - номер последнего отсчета реализации сигнала.

Значения σ, рассчитанные по формуле (2), позволяют однозначно дифференцировать ВВ по их работоспособности, что обосновывает применимость данного способа.

Для создания колебаний среды с уровнями, надежно регистрируемыми измерительной аппаратурой, требуются гораздо меньшие количества ВВ (десятые и сотые доли грамма), чем в стандартных методиках испытания энергонасыщенных материалов (от 10 г до 200 г). Это позволяет предельно минимизировать количество ВВ, потребное для проведения испытаний.

Кроме того, в заявляемом способе подрыв испытуемого образца ВВ предлагается осуществлять без инициирующего ВВ (например, с помощью луча огня, ударного воздействия на копре и т.д.), что позволяет исключить из измеряемой величины звукового давления вклад инициирующего ВВ.

При этом заявляемый способ не требует дополнительного специального оборудования в виде камер, бомб и т.д., что упрощает его практическую реализацию.

Предлагаемый способ осуществляется по следующим этапам. Берут навеску испытуемого ВВ определенной массы, минимальное значение которой обусловлено критическим размером детонации, размещенную в оболочку (например, колпачок) или без оболочки (например, в виде шашки). Подвешивают образец в воздухе, таким образом, чтобы он находился на определенном расстоянии от датчика звукового давления, при условии, чтобы отраженные волны были слабее, чем прямая волна. Далее инициируют ВВ и измеряют, оцифровывают и регистрируют величину звукового давления. Затем по характеристикам измеренного сигнала рассчитывают величину абсолютной работоспособности по формуле (2). Для оценки величины относительной работоспособности дополнительно измеряют величину абсолютной работоспособности вышеуказанным способом для вещества, которое принимают за эталон (например, тротил). Затем находят отношение работоспособности испытуемого ВВ к работоспособности эталонного ВВ.

B = i = 0 n s x i 2 i = 0 n s 0 i 2 , ( 2 )

где sx - сигнал, полученный при «пробе» вещества с искомой работоспособностью, s0 - сигнал, полученный при «пробе» вещества с эталонной работоспособностью (тротил).

Пример. Схема эксперимента приведена на фиг.1, где 1 - датчик звукового давления (микрофон), 2 - усилитель, 3 - источник питания и напряжения поляризации, 4 - АЦП, 5 - ЭВМ, 6 - колонна копра, 7 - груз, 8 - роликовый прибор с испытуемым образцом, 9 - наковальня.

Испытания ВВ на работоспособность, в соответствии с заявляемым способом, осуществлялись следующим образом. Для инициирования взрывчатого превращения навесок ВВ использовалось механическое воздействие падающего груза массой 10 кг с высоты 1 м. Для создания указанных ударных нагрузок использовался копер К-44-2. Отбор, подготовка и взвешивание проб осуществлялись в соответствии с методикой, описанной в ГОСТ 4545-88. При проведении опытов, навеска испытуемого вещества массой 50 мг взвешивалась на весах, обеспечивающих абсолютную погрешность не более 1 мг, и размещалась в роликовом приборе по ГОСТ 4545-88. Сигнал звукового давления, вызываемого взрывным превращением ВВ, регистрировался микрофоном свободного поля с чувствительностью 4 мВ/Па типа 40BF фирмы GRAS с предусилителем 26АА. Микрофон устанавливался по направлению на испытуемый образец на расстоянии 1 метр. Выход предусилителя соединяли со входом источника питания и напряжения поляризации типа 12AR. Выходной сигнал подвергали аналого-цифровому преобразованию с точностью, соответствующей 13 двоичным разрядам на диапазон напряжений ±10 B.

В процессе испытаний инициировали по 10 образцов тротила, ТЭНа, гексогена и тетрила. Зарегистрированные сигналы звукового давления в цифровой форме выравнивались по времени, усреднялись и определялись накопленные суммы квадратов отсчетов сигнала.

В результате обработки сигналов звукового давления по формуле (2) получили значения относительной работоспособности, нормированной по тротилу. Сравнение нормированных данных работоспособности по значению работоспосбности ТЭНа, рассчитанной в соответствии с предлагаемым способом и стандартным методом свинцовой бомбы, отображено на фиг.2.

Используемая литература

1. ГОСТ 4546-81. Вещества взрывчатые. Методы определения фугасности.

2. US Patent №7669460. Small-scale shock reactivity and internal blast test / Harold W.Sandusky, Richard H.Granholm, Douglas G.Bohl. Date of patent: Mar. 2, 2010.

3. Физика взрыва / Под. Ред. Л.П.Орленко. - Изд. 3-е, перераб. - В 2 т. - М.: ФИЗМАТЛИТ, 2002. - 832 с.

Способ определения работоспособности взрывчатых веществ, заключающийся в том, что инициируют навеску взрывчатого вещества определенной массы и регистрируют уровень давления среды в точке, удаленной от испытуемого образца взрывчатого вещества на определенном расстоянии, отличающийся тем, что по измеренным значениям давления среды, возникающего под действием энергии взрыва в упругой среде, рассчитывают характеристику мощности акустических колебаний, которую принимают в качестве абсолютной характеристики работоспособности взрывчатого вещества, а затем находят отношение измеренной характеристики мощности акустических колебаний исследуемого взрывчатого вещества к характеристике мощности акустических колебаний эталонного взрывчатого вещества и полученное значение принимают в качестве относительной меры работоспособности взрывчатого вещества.



 

Похожие патенты:

Изобретение относится к области обнаружения взрывчатых веществ (ВВ) и компонентов взрывчатых составов на основе неорганических и органических перхлоратов химическим индикаторным анализом с использованием адсорбционных методов разделения с визуальным контролем.
Изобретение относится к контролю качества моторных топлив и может быть использовано для определения содержания тяжелых фракций углеводородов в моторных маслах и топливах.

Изобретение относится к способу регулирования параметров впрыска, сгорания и доочистки двигателя внутреннего сгорания (ДВС) с самовоспламенением, содержащего биотопливо в горючем.

Изобретение относится к ракетно-космической технике и может быть использовано при проведении физического моделирования процессов газификации остатков жидкого топлива в баках отделяющихся частей (ОЧ) ступеней ракет-носителей (РН) в условиях малой гравитации с использованием экспериментальных модельных установок в земных условиях, а также и при натурных пусках РН с системами газификации.

Изобретение относится к способу определения чувствительной или нечувствительной природы кристаллического гексогена. .

Изобретение относится к автотракторной технике, в частности к способам контроля качества биотоплива и подготовки топлива к сгоранию. .

Изобретение относится к приготовлению реактивного топлива с заданным содержанием воды для летных сертификационных испытаний на обледенение топливной системы летательных аппаратов.

Изобретение относится к области контроля и анализа с помощью оптических средств мазутов, используемых в котельных установках, и остаточных топлив, используемых в судовых дизелях.

Изобретение относится к области химического анализа органических соединений, а именно его применения для определения наличия выкристаллизованного взрывчатого вещества на поверхности сгорающих гильз, сгорающих цилиндров, из которых изготовлены метательные заряды к танковым пушкам

Изобретение относится к способу получения фракции полиметилзамещенных алканов C18-C36 формулы: ,где n=4-10, путем взаимодействия расплава атактического полипропилена с кислородом воздуха при 150-250°С в течение 1-6 ч при расходе воздуха 0,6-1,9 л/(мин·кг) с использованием в качестве сырья побочных низкомолекулярных продуктов окисления

Изобретение относится к контролю качества автомобильного бензина

Изобретение относится к угольной промышленности, а именно к контролю качества углей

Изобретение относится к области химического анализа органических соединений, а именно его применения для определения наличия жидкого нитроглицерина на поверхности баллиститных порохов. Способ, предназначенный для установления безопасного применения и боевой пригодности артиллерийских боеприпасов, включает отбор проб путем прикладывания фильтровальной бумаги к капелькам жидкости на поверхности баллиститных порохов с последующим растворением отобранной пробы в ацетоне или воде, нагретой до 80°C, с добавлением 10% раствора едкого калия после растворения в ацетоне или гидроксида меди после растворения в воде и с оценкой полученного результата по цвету окрашивания растворов в красно-фиолетовый цвет в первом случае или ярко-синий цвет во втором случае. Достигается экспрессность подтверждения обнаружения. 1 ил.

Изобретение относится к измерению характеристик твердых топлив для ракетных двигателей. Способ включает измерение реактивной силы продуктов газификации при сжигании образца твердого топлива, бронированного по боковой поверхности, причем измеряют реактивную силу и время полного сгорания образца твердого топлива, помещенного в бомбу постоянного объема, при давлении в диапазоне (0.5÷15)МПа, создаваемом инертным газом, например азотом или аргоном, причем объем бомбы и масса образца находятся в заданном соотношении, а величину единичного импульса определяют по расчетной формуле. Достигается возможность определения единичного импульса при использовании малоразмерных образцов топлива в лабораторных условиях без использования крупногабаритного стендового оборудования и взрывозащищенных боксов. 2 ил.
Изобретение относится к лабораторным методам исследования присадок к автомобильным бензинам. Способ заключается в определении смол, промытых н-гептаном в бензине до и после введения исследуемой присадки по ГОСТ 1567, при этом используют бензин с содержанием промытых смол не менее 5 мг на 100 мл бензина (например, бензины вторичного происхождения - каталитического и термического крекинга, висбрекинга, коксования, полимеризации и т.д., как правило, с большим содержанием олефиновых углеводородов). Исследуемую присадку вводят в количестве 0,03-0,1% масс. По разнице в количестве промытых смол в бензине до и после введения исследуемой присадки судят о наличии моющих свойств у исследуемой присадки. Достигается повышение надежности определения. 1 табл.

Изобретение относится к химическим способам экспертизы взрывчатых веществ и криминалистических идентификационных препаратов. Способ маркировки взрывчатого вещества (ВВ) заключается во введении во взрывчатое вещество маркирующей композиции, содержащей идентификаторы, количество которых равно количеству технических показателей, подлежащих маркировке. В качестве идентификаторов используют смесь полиорганосилоксанов с различными длинами молекулярных цепочек, в которой каждому одному техническому показателю соответствует идентификатор в виде полиорганосилоксана с соответствующей длиной молекулярной цепочки и соответствующим «временем выхода» («удерживания») на хроматограмме. Таким образом, в составе взрывчатого вещества формируется «химический штрих-код», считывание которого осуществляют на хроматограмме по принципу наличия или отсутствия компонента при определенном значении времени его «выхода» («удерживания»). Способ подходит для маркировки смесевых и индивидуальных ВВ, а также их компонентов, например, неорганических окислителей, в частности аммиачную селитру. Способ обеспечивает высокую достоверность идентификации ВВ при упрощении процесса определения его кода. 4 ил., 1 табл.
Изобретение относится к лабораторным методам исследования автомобильных бензинов. Способ заключается в том, что определяют количество смол до и после промывки н-гептаном (промытых смол) по ГОСТ 1567 и по разнице в количестве смол до и после промывки н-гептаном судят о наличии моющей присадки в автомобильном бензине. Отсутствие разницы между количеством смол до промывки н-гептаном и смол после промывки н-гептаном свидетельствует об отсутствии моющих присадок в автомобильном бензине. Наоборот, если в бензин была введена моющая присадка, разница в количестве смол до и после промывки н-гептаном составит значительную величину. Достигается повышение надежности определения. 1 табл.

Группа изобретений относится к определению воды в потоке углеводородных жидких и газообразных топлив. Способ характеризуется тем, что пропускают поток топлива или воздуха при постоянном расходе через водоотделитель, состоящий из нескольких ячеек, расположенных последовательно одна за другой, образованных коагулятором и сепарирующей сеткой, а воду, полученную в результате сепарирования на пористой перегородке отводят в отстойник, при этом постоянно или периодически измеряют давление перед пористой перегородкой и давление за ней, передают сведения об измеренных величинах давления на аналитический блок-регистратор, вычисляют на основании разности давлений гидравлическое сопротивление пористой перегородки, затем по полученным данным определяют количество воды, удержанной пористым поливинилформалем коагулятора, на основе предварительно полученных тарировочных данных об изменении гидравлического сопротивления пористой перегородки в зависимости от содержания воды в коагуляторе и в потоке топлива, и на основе этих данных определяют количество воды, содержащейся в топливе. Также описано устройство для осуществления способа. Достигается повышение надежности и точности, а также - упрощения определения. 2 н. и 6 з.п. ф-лы, 2 ил.
Наверх