Корпус твердотопливного ракетного двигателя из композиционного материала



Корпус твердотопливного ракетного двигателя из композиционного материала
Корпус твердотопливного ракетного двигателя из композиционного материала
Корпус твердотопливного ракетного двигателя из композиционного материала

 


Владельцы патента RU 2496020:

Открытое акционерное общество Научно-производственное объединение "Искра" (RU)

Корпус твердотопливного ракетного двигателя из композиционного материала содержит силовую цельномотанную оболочку типа «кокон» и оболочку второго кокона. Между наружной поверхностью днища силовой оболочки в зоне экватора и оболочкой второго кокона установлен кольцевой эластичный клин. В эластичном клине с торца выполнена кольцевая щель, внутренняя поверхность которой покрыта эластичной тканью, а внутри щели проложена фторопластовая пленка. Изобретение позволяет повысить надежность корпуса ракетного двигателя за счет исключения расслоения по контактным поверхностям эластичного клина. 3 ил.

 

Изобретение относится к машиностроению, а именно к корпусам твердотопливных ракетных двигателей из композиционного материала, содержащих силовую цельномотанную оболочку типа «кокон», оболочку второго кокона, в котором между наружной поверхностью днища силовой оболочки в зоне экватора и оболочкой второго кокона установлен кольцевой эластичный клин.

Из технической литературы известен корпус РДТТ, содержащий силовую цельномотанную оболочку типа «кокон», оболочку второго кокона, в котором между наружной поверхностью днища силовой оболочки в зоне экватора и оболочкой второго кокона установлен кольцевой эластичный клин (см. «Конструкции ракетных двигателей на твердом топливе»./ Под общ. ред. чл.-корр. Российской академии наук, д-ра техн. наук, проф. Л.Н.Лаврова. - М.: Машиностроение, 1993, рис.2.1 на стр.54, поз.21).

Эластичный клин в конструкции корпуса играет двойную роль:

- обеспечивает прямолинейность образующей второго кокона в зоне экватора днища при изготовлении;

- обеспечивает плавность перехода наружного воздействия на днище по жесткостным характеристикам от оболочки второго кокона к свободному деформированию при нагружении внутренним давлением, уменьшая изгибные деформации днища.

Однако после изготовления корпус в процессе его дальнейшей эксплуатации подвергается ряду силовых воздействий (испытание на рабочее давление, формование заряда твердого топлива под давлением при повышенной температуре), которые за счет остаточного формоизменения днища (перемещение внутрь) могут приводить к отслоениям эластичного клина как от второго кокона, так и от наружной поверхности днища. В этом случае возможно смещение эластичного клина от своего начального положения и увеличение изгибных деформаций днища, что в итоге снижает его прочность.

Технической задачей изобретения является исключение возможных расслоений по контактным поверхностям эластичного клина.

Технический результат достигается тем, что в корпусе твердотопливного ракетного двигателя из композиционного материала, содержащем силовую цельномотанную оболочку типа «кокон», оболочку второго кокона, в котором между наружной поверхностью днища силовой оболочки в зоне экватора и узлом стыка установлен кольцевой эластичный клин, в клине с торца выполнена кольцевая щель, внутренняя поверхность которой покрыта эластичной тканью, а внутри щели проложена фторопластовая пленка.

На фиг.1 показано сечение корпуса в зоне экватора днища силовой оболочки.

На фиг.2 показана в сечении предлагаемая конструкция эластичного клина.

На фиг.3 показана форма эластичного клина при остаточных деформациях днища.

Сущность изобретения заключается в следующем.

Эластичный клин 1 (фиг.1) расположен в зоне экватора днища силовой оболочки 2 между днищем и оболочкой второго кокона 3 и скреплен с ними по контактным поверхностям 4.

Эластичный клин 1 обеспечивает плавность перехода наружного воздействия на днище по жесткостным характеристикам от оболочки второго кокона в точке 5 сечения (фиг.2) к свободному деформированию днища в точке 6 при нагружении внутренним давлением, уменьшая изгибные деформации днища.

В предлагаемой конструкции щель 7 (фиг.2) уменьшает жесткость клина при его растяжении в радиальном направлении. Жесткость клина при сжатии практически не меняется и при перемещениях днища под давлением наружу клин работает так же, как и в известной конструкции. Эластичная ткань 8 обеспечивает прочность поверхности щели, а фторопластовая пленка 9 исключает «спекание» слоев ткани между собой при высокой температуре полимеризации пластика. В предлагаемой конструкции клина в случае остаточных деформаций днища внутрь (фиг.3) отрывные напряжения по контактным поверхностям 4 существенно снижаются, в связи с чем исключаются отслоения клина от днища и от второго кокона и исключаются смещения клина от начального положения, что обеспечивает расчетную работу силовой оболочки при давлении.

Таким образом, данное изобретение позволяет исключить отслоения эластичного клина от наружной поверхности днища и повышается надежность работы корпуса.

Корпус твердотопливного ракетного двигателя из композиционного материала, содержащий силовую цельномотанную оболочку типа «кокон», оболочку второго кокона, в котором между наружной поверхностью днища силовой оболочки в зоне экватора и оболочкой второго кокона установлен кольцевой эластичный клин, отличающийся тем, что в эластичном клине с торца выполнена кольцевая щель, внутренняя поверхность которой покрыта эластичной тканью, а внутри щели проложена фторопластовая пленка.



 

Похожие патенты:
Предлагаемый способ относится к ракетной технике и предназначен для подготовки внутренней поверхности корпуса твердотопливного ракетного двигателя перед заливкой в корпус смесевого топлива.

Изобретение относится к области ракетной техники и может быть использовано при изготовлении внутреннего теплозащитного покрытия корпусов ракетных двигателей. .

Изобретение относится к области ракетной техники, в частности к способам непрерывного контроля над состоянием конструкции корпуса ракетного двигателя, выполненного из полимерного композитного материала.

Изобретение относится к области ракетной техники и может быть использовано при изготовлении корпусов ракетных двигателей твердого топлива из композиционного материала.

Изобретение относится к ракетной технике и может быть использовано при создании корпуса ракетного двигателя твердого топлива (РДТТ) малого удлинения и заряда скрепленного, содержащего данный корпус.

Изобретение относится к технологии изготовления теплозащитных покрытий (ТЗП) поверхностей, подвергающихся воздействию высоких температур и скоростных потоков, и может быть использовано для изготовления ТЗП металлических корпусов РДТТ и вдвинутых в камеру сгорания металлических корпусов сопел РДТТ.

Изобретение относится к области ракетной техники и может быть использовано при разработке корпусов ракетных двигателей твердого топлива ракет и реактивных снарядов, в том числе снарядов систем залпового огня.

Изобретение относится к области ракетных или реактивных двигательных установок. .

Изобретение относится к машиностроению, а именно к снаряженным корпусам ракетных двигателей на твердом топливе (РДТТ), и может быть использовано при создании твердотопливных двигателей ракет.

Изобретение относится к области ракетной техники, преимущественно к таким системам, как неуправляемые авиационные ракеты, реактивные системы залпового огня и стартовые ступени зенитных управляемых ракет.

При изготовлении корпуса ракетного двигателя из полимерных композиционных материалов наматывают силовую оболочку в виде кокона спирально-кольцевой намоткой из жгутов арамидных волокон, а перед задним удаляемым днищем на цилиндрической части нарезают резьбу для соединения с сопловым блоком двигателя. Намотку кокона завершают двойным спиральным слоем наружным диаметром, превышающим внутренний диаметр резьбы и не превышающим средний диаметр резьбы. В зоне нарезаемой впоследствии резьбы в арамидных волокнах проминают винтовую канавку с шагом, равным 1,4-1,6 шага резьбы кокона намоткой с максимальной силой натяжения сухого, предварительно скрученного, стекложгута диаметром сечения, превышающим четверть шага его намотки и не превышающим половину шага. Затем поверх сухого стекложгута наматывают сплошные слои пропитанного стекложгута с шагом, равным шагу резьбы, до наружного диаметра, превышающего наружный диаметр резьбы, причем намотку стекложгутов осуществляют с направлением, совпадающим с направлением резьбы кокона. Другое изобретение группы относится к корпусу ракетного двигателя из полимерных композиционных материалов. Корпус содержит силовую оболочку в виде кокона без заднего днища, выполненного спирально-кольцевой намоткой из арамидных жгутов, пропитанных эпоксидным связующим, и сопловой блок, скрепленный с силовой оболочкой резьбовым соединением. Наружный арамидный слой кокона выполнен двойным спиральным. Витки резьбы кокона выполнены преимущественно из непрерывных, пропитанных эпоксидным связующим, стекловолокон, снабженных в зоне над внутренним диаметром резьбы расположенными в различных направлениях отрезками волокон арамида и стекловолокон, образованными проминанием не совпадающих с шагом резьбы канавок в арамидном слое намотанным стекложгутом с последующей нарезкой резьбы с частичным перерезанием этих волокон. Резьбовое соединение зафиксировано эластичным клеем, армированным ворсами арамидных волокон, образованными при упомянутом их перерезании. Группа изобретений позволяет повысить технологичность изготовления корпуса ракетного двигателя. 2 н. и 5 з.п. ф-лы, 5 ил.

Изобретение относится к бессопловым ракетным двигателям твердого топлива. Ракетный двигатель содержит корпус и ракетное топливо. Прочность корпуса на разрыв от внутреннего давления в каждом конкретном поперечном сечении соответствует максимальному внутреннему давлению в этом сечении, причем в передней части корпуса она максимальна, а в районе заднего среза постепенно уменьшается. Изобретение позволяет снизить массу ракетного двигателя.

Изобретение относится к области ракетостроения и может быть использовано при изготовлении корпусов ракетных двигателей, в частности при нанесении теплозащитного покрытия на внутреннюю поверхность корпусов ракетных двигателей. Оправка для нанесения эластичного покрытия на внутреннюю поверхность корпуса включает центральную жесткую часть, эластичную технологическую оболочку и систему подачи рабочей среды. Центральная жесткая часть оправки выполнена с продольными ребрами жесткости с закрепленными на них формообразующими элементами - профилями и сменными накладками, образуя изолированные камеры, связанные с системой подачи рабочей среды. Периметры поперечного сечения центральной жесткой части оправки и эластичной технологической оболочки соответствуют внутреннему периметру поперечного сечения корпуса по всей его длине. Вдоль формообразующих элементов - профилей и сменных накладок - выполнены отверстия. Изобретение позволяет повысить технологичность и надежность покрытия. 4 ил.

Изобретение относится к машиностроению и может быть использовано при изготовлении оболочек корпусов из композиционных материалов, требующих по условиям эксплуатации нанесения на поверхность оболочек влагозащитных покрытий с антистатическими свойствами. Для защиты от влаги корпуса из композиционного материала на него наносят наружное влагозащитное покрытие с антистатическими свойствами. Влагозащитное покрытие формируют из 2-х слоев эмали на основе хлорсульфированного полиэтилена с добавкой комбинированного протекторного наполнителя в количестве 30 мас.ч. на 100 мас.ч. эмали. В качестве комбинированного протекторного наполнителя используют ультрадисперсный цинк пластинчатой и сферической формы при соотношении 1:1. Затем наносят 1-2 слоя эмали на основе хлорсульфированного полиэтилена с токопроводящим наполнителем, например эмали марки ХП-5237. Изобретение позволяет повысить надежность влагозащитного покрытия с антистатическими свойствами за счет снижения трещинообразования. 2 ил., 1 табл.

Изобретение относится к области машиностроения, а именно к способам нанесения эластичного покрытия, например теплозащитного, на внутреннюю поверхность корпуса. При нанесении эластичного покрытия на внутреннюю поверхность корпуса, изготавливают эластичную оболочку на оправке и проводят вакуумирование полости между оболочкой и поверхностью оправки, причем площадь поверхности оправки соответствует площади внутренней поверхности корпуса. Подготавливают наружную поверхность оболочки к вклейке, устанавливают ее внутрь корпуса и вакуумируют полость между внутренней поверхностью корпуса и эластичной оболочкой. Одновременно с вакуумированием создают давление в полости между поверхностью оправки и оболочкой. Изобретение позволяет повысить качество покрытия по всей площади внутренней поверхности корпуса. 1 з.п. ф-лы, 4 ил.

Изобретение относится к области машиностроения, в частности, к изготовлению теплозащитных покрытий камер сгорания ракетных двигателей твердого топлива, имеющих металлические фланцы. При образовании теплозащитного покрытия формируют на оправках теплозащитное покрытие, соединяют с ним металлический фланец и осуществляют вулканизацию. В подфланцевой зоне после нанесения второго и перед нанесением двух последних слоев теплозащитного материала на его поверхности равномерно размещают продольные и поперечные сегменты предварительно «натренированной» идентично кривизне фланца нитиноловой проволоки диаметром 0,2-0,3 мм. Затем выкладывают другие слои теплозащитного покрытия с последующей вулканизацией образованного пакета. Изобретение позволяет повысить надежность теплозащитного покрытия. 2 ил.

Корпус ракетного двигателя содержит силовую оболочку, облицованную теплозащитным покрытием с раскрепляющими эластичными манжетами. В месте соединения манжеты и теплозащитного покрытия выполнена кольцевая полость, образованная разнесенными эквидистантно кольцевыми поясками, сопряженными со стороны внешних кромок по дуге и снабженными со стороны внутренних кромок коническими участками. В кольцевой полости расположены скрепленные между собой слои упругоэластичного тканого материала, эквидистантно повторяющие противолежащую часть поверхности полости. Слои тканого материала выполнены переменной, нарастающей от внутреннего к наружному, поперечной длины, в основном с конгруэнтным расположением обращенных друг к другу поверхностей соседних слоев или частей одного слоя. Наружный слой тканого материала скреплен по наружной поверхности с манжетой и теплозащитным покрытием. В другом варианте корпуса дополнительный слой упругоэластичного материала расположен в массиве материалов манжеты и теплозащитного покрытия. При изготовлении корпуса ракетного двигателя на форме выкладывают из листового материала манжету и, вне манжеты, частично, теплозащитное покрытие. Собирают продольный пакет из лент упругоэластичного тканого материала с последовательно увеличивающейся шириной по толщине пакета. С широкой стороны пакета укладывают ленту из резиноподобного материала. Подпрессовывают пакет при повышенной температуре до внедрения резиноподобного материала в структуру прилегающей ткани. Пакет укладывают на форме по окружности границы манжеты слоем резиноподобного материала к форме и сшивают между собой торцевые части слоев пакета. Затем перегибают половину пакета от большего радиуса к меньшему до соприкосновения двух половин между собой и выкладывают оставшиеся части теплозащитного покрытия. Вулканизируют теплозащитное покрытие с манжетой и наматывают силовую оболочку из полимерного композитного материала. В другом варианте способа изготовления корпуса с широкой стороны пакета из лент тканого материала дополнительно укладывают набор лент из тканого и резиноподобного материалов, последним наружу. Группа изобретений позволяет повысить надежность ракетного двигателя твердого топлива за счет равномерного распределения напряжений в соединении манжеты с теплозащитным покрытием. 4 н.п. ф-лы, 3 ил.

Изобретение относится к области машиностроения и может быть использовано в конструкциях корпусов ракетных двигателей твердого топлива из композиционных материалов. Корпус ракетного двигателя содержит силовую оболочку с фланцами, расположенными в полюсных отверстиях днищ, облицованную изнутри теплозащитным покрытием из резиноподобного материала с кольцами в своих торцевых частях у центральных отверстий фланцев. Со стороны внутренней поверхности, по меньшей мере, в одном фланце выполнены расположенные по соосной фланцу окружности ряд глухих резьбовых отверстий, а в кольце, соосные с отверстиями фланца, сквозные отверстия с зенковочными поверхностями с внутренней стороны. В отверстиях расположены винты, ввернутые во фланец без выступания за поверхность кольца и закрытые материалом теплозащитного покрытия. Отверстия в кольце выполнены диаметром, позволяющим смещаться винтам относительно оси отверстия при различных тепловых деформациях фланца и кольца. Кольцо выполнено из слоистого композиционного материала и расположено в массе материала теплозащитного покрытия с выходом на центральное отверстие фланца, образуя с последним единую поверхность центрального отверстия. Изобретение позволяет повысить надежность корпуса ракетного двигателя твердого топлива. 7 з.п. ф-лы, 4 ил.

Изобретение относится к технологии изготовления внутреннего теплозащитного покрытия корпусов ракетных двигателей из композиционных материалов. При изготовлении теплозащитного покрытия корпуса ракетного двигателя с удлиненной цилиндрической частью и с закладными элементами наносят на внутреннюю поверхность закладного элемента корпуса покрытие из невулканизованной резины. Устанавливают закладной элемент на жесткую оправку, наносят на нее слои невулканизованной резины для формирования основного массива теплозащитного покрытия и осуществляют вулканизацию. Покрытие закладного элемента предварительно вулканизуют в отдельном приспособлении. После установки закладного элемента на жесткую оправку слои невулканизованной резины выкладывают встык со слоями вулканизованного покрытия закладного элемента. При выкладке завершающего слоя невулканизованной резины перекрывают наружную поверхность закладного элемента, после чего проводят совместную вулканизацию. Изобретение позволяет повысить качество изготовления теплозащитного покрытия корпуса ракетного двигателя. 6 ил.

При изготовлении корпуса воспламенителя заряда ракетного двигателя из композиционных материалов выполняют цилиндрическую оболочку. Изготовление всех разнотипных элементов оболочки ведут из разложенного на подогреваемую поверхность расчетного для каждого последовательно выполняемого технологического передела количества препрега легко деформируемой ткани, причем армирующие волокна располагают под углом. Изготовление всех разнотипных элементов оболочки выполняют закаткой на оправку с уплотнением необходимым числом циклов повторения ее до расчетного диаметра оболочки. Подогреваемая поверхность имеет рельеф, соответствующий перепадам диаметров оправки на длине, равной длине препрега ткани при выполнении данного технологического передела. Корпус воспламенителя заряда ракетного двигателя из композиционных материалов содержит цилиндрическую оболочку с наружным теплозащитным покрытием и плоским донышком с одной стороны и свободным торцом с внутренней резьбой, закрытым съемным колпачком, с другой, образующими в совокупности внутренний объем для размещения заряда с элементами его воспламенения. Внутренняя часть цилиндрической оболочки выполнена из расчетного, конструктивно объединяющего резьбу и донышко, числа слоев препрега легко деформируемой ткани с расположением армирующих волокон под углом. Внутренняя часть цилиндрической оболочки имеет в составе внутренней резьбы кольцевые слои формирующей ее профиль нити с распространением ее на цилиндрическую часть и донышко, оформленное закладной деталью с плоским торцом со стороны внутреннего объема и резьбовым хвостовиком с наружной стороны. Группа изобретений позволяет упростить конструкцию корпуса воспламенителя и повысить его технологичность. 2 н. и 6 з.п. ф-лы, 5 ил.
Наверх