Способ образования теплозащитного покрытия для камеры сгорания твердотопливного ракетного двигателя

Изобретение относится к области машиностроения, в частности, к изготовлению теплозащитных покрытий камер сгорания ракетных двигателей твердого топлива, имеющих металлические фланцы. При образовании теплозащитного покрытия формируют на оправках теплозащитное покрытие, соединяют с ним металлический фланец и осуществляют вулканизацию. В подфланцевой зоне после нанесения второго и перед нанесением двух последних слоев теплозащитного материала на его поверхности равномерно размещают продольные и поперечные сегменты предварительно «натренированной» идентично кривизне фланца нитиноловой проволоки диаметром 0,2-0,3 мм. Затем выкладывают другие слои теплозащитного покрытия с последующей вулканизацией образованного пакета. Изобретение позволяет повысить надежность теплозащитного покрытия. 2 ил.

 

Изобретение относится к области машиностроения, в частности к изготовлению теплозащитных покрытий (ТЗП) камер сгорания ракетных двигателей твердого топлива, имеющих металлические фланцы. Известен способ образования внутреннего теплозащитного покрытия камер сгорания ракетных двигателей (патент Франции №2098934, F02K 9/34, 1983 г.), по которому листы из смеси, содержащей каучук, вулканизуют, приклеивают с помощью резинового клея к стенкам камеры сгорания, предварительно обезжиренным и обработанным пескоструем.

Известен способ образования теплозащитного покрытия (патент РФ №2266422 - прототип) для камеры сгорания твердотопливного ракетного двигателя, включающий формирование на оправках теплозащитного покрытия, соединение с ним металлического фланца и последующую вулканизацию.

Недостатком данного способа является низкая адгезия между металлом фланца и эластомерным покрытием в краевой зоне.

Технической задачей изобретения является повышение надежности соединения теплозащитного покрытия с металлическим фланцем камеры сгорания ракетного двигателя за счет улучшения адгезионных характеристик теплозащитного покрытия по всей поверхности фланца, включая торцевые поверхности.

Технический результат достигается тем, что в способе образования теплозащитного покрытия для камеры сгорания твердотопливного двигателя, включающем формирование на оправках теплозащитного покрытия, соединение с ним металлического фланца и последующую вулканизацию, в подфланцевой зоне после выкладки (нанесения) второго и перед нанесением двух последних слоев теплозащитного материала размещают материал с памятью формы - нитиноловую проволоку Ø0,2-0,3 мм, с температурой фазового перехода мартенсит-аустенит 110-120°C, что соответствует температуре подвулканизации второго слоя ТЗП. Проволоку размещают в виде равномерно расположенных продольных и поперечных сегментов. Для внедряемой проволоки предварительно осуществляют «тренировку» на специальной технологической оснастке, повторяющей форму профиля фланца в радиальном и осевом направлениях, путем термостатирования при температуре 400-450°C. После установки нитиноловой проволоки формируют основной слой теплозащитного покрытия с последующей вулканизацией образованного пакета.

На фиг.1 представлено теплозащитное покрытие для камеры сгорания ракетного двигателя с металлическим фланцем, выложенное на оправке.

На фиг.2 представлен вид A фиг.1 - схема размещения структурных элементов с памятью формы - сегментов нитиноловой проволоки.

На фиг.1 и 2 изображены:

многослойное теплозащитное покрытие 1, металлический фланец 2, металлическая оправка 3, а на развертке теплозащитного слоя - схема размещения структурных элементов - сегментов нитиноловой проволоки 4.

Способ заключается в следующем.

Сегменты проволоки перед выкладкой подвергают термостатированию на технологической форме, повторяющей кривизну фланца в радиальном и осевом направлениях, при температуре t=400-450°C в течение 25-30 минут.

На металлическую оправку 3 наносят два слоя теплозащитного покрытия 1. В зоне размещения фланца перед выкладкой последующего слоя продольно и поперечно размещают сегменты обезжиренной этил ацетатом нитиноловой проволоки 4 по схеме, указанной на фиг.2.

Далее выкладывают последующие слои теплозащитного материала до выкладки двух последних слоев и повторяют операцию размещения структурных элементов материала с памятью формы (сегментов нитиноловой проволоки) согласно схеме (фиг.2).

Выкладывают два последних слоя теплозащитного покрытия перед установкой фланца.

После установки фланца продолжают наносить слои теплозащитного покрытия в надфланцевой зоне.

Проводят вулканизацию образованного пакета при температуре 150±5°C в течение 160 минут, создавая монолит между теплозащитным материалом и структурными элементами с памятью формы, принявшими форму, заложенную при «тренировке».

Использование изобретения в связи со снижением уровня усадки теплозащитного материала и исключением отрывных напряжений на торцевых поверхностях позволит улучшить адгезионные характеристики соединения теплозащитного покрытия с металлическим фланцем, тем самым повысить надежность работы теплозащитного покрытия камеры сгорания ракетного двигателя.

Способ образования теплозащитного покрытия для камеры сгорания твердотопливного ракетного двигателя, включающий формирование на оправках теплозащитного покрытия, соединение с ним металлического фланца и последующую вулканизацию, отличающийся тем, что в подфланцевой зоне после нанесения второго и перед нанесением двух последних слоев теплозащитного материала на его поверхности равномерно размещают продольные и поперечные сегменты предварительно «натренированной» идентично кривизне фланца нитиноловой проволоки диаметром 0,2-0,3 мм, после чего выкладывают другие слои теплозащитного покрытия с последующей вулканизацией образованного пакета.



 

Похожие патенты:

Изобретение относится к области машиностроения, а именно к способам нанесения эластичного покрытия, например теплозащитного, на внутреннюю поверхность корпуса. При нанесении эластичного покрытия на внутреннюю поверхность корпуса, изготавливают эластичную оболочку на оправке и проводят вакуумирование полости между оболочкой и поверхностью оправки, причем площадь поверхности оправки соответствует площади внутренней поверхности корпуса.

Изобретение относится к машиностроению и может быть использовано при изготовлении оболочек корпусов из композиционных материалов, требующих по условиям эксплуатации нанесения на поверхность оболочек влагозащитных покрытий с антистатическими свойствами.

Изобретение относится к области ракетостроения и может быть использовано при изготовлении корпусов ракетных двигателей, в частности при нанесении теплозащитного покрытия на внутреннюю поверхность корпусов ракетных двигателей.

Изобретение относится к бессопловым ракетным двигателям твердого топлива. Ракетный двигатель содержит корпус и ракетное топливо.

При изготовлении корпуса ракетного двигателя из полимерных композиционных материалов наматывают силовую оболочку в виде кокона спирально-кольцевой намоткой из жгутов арамидных волокон, а перед задним удаляемым днищем на цилиндрической части нарезают резьбу для соединения с сопловым блоком двигателя.

Корпус твердотопливного ракетного двигателя из композиционного материала содержит силовую цельномотанную оболочку типа «кокон» и оболочку второго кокона. Между наружной поверхностью днища силовой оболочки в зоне экватора и оболочкой второго кокона установлен кольцевой эластичный клин.
Предлагаемый способ относится к ракетной технике и предназначен для подготовки внутренней поверхности корпуса твердотопливного ракетного двигателя перед заливкой в корпус смесевого топлива.

Изобретение относится к области ракетной техники и может быть использовано при изготовлении внутреннего теплозащитного покрытия корпусов ракетных двигателей. .

Изобретение относится к области ракетной техники, в частности к способам непрерывного контроля над состоянием конструкции корпуса ракетного двигателя, выполненного из полимерного композитного материала.

Изобретение относится к области ракетной техники и может быть использовано при изготовлении корпусов ракетных двигателей твердого топлива из композиционного материала.

Корпус ракетного двигателя содержит силовую оболочку, облицованную теплозащитным покрытием с раскрепляющими эластичными манжетами. В месте соединения манжеты и теплозащитного покрытия выполнена кольцевая полость, образованная разнесенными эквидистантно кольцевыми поясками, сопряженными со стороны внешних кромок по дуге и снабженными со стороны внутренних кромок коническими участками. В кольцевой полости расположены скрепленные между собой слои упругоэластичного тканого материала, эквидистантно повторяющие противолежащую часть поверхности полости. Слои тканого материала выполнены переменной, нарастающей от внутреннего к наружному, поперечной длины, в основном с конгруэнтным расположением обращенных друг к другу поверхностей соседних слоев или частей одного слоя. Наружный слой тканого материала скреплен по наружной поверхности с манжетой и теплозащитным покрытием. В другом варианте корпуса дополнительный слой упругоэластичного материала расположен в массиве материалов манжеты и теплозащитного покрытия. При изготовлении корпуса ракетного двигателя на форме выкладывают из листового материала манжету и, вне манжеты, частично, теплозащитное покрытие. Собирают продольный пакет из лент упругоэластичного тканого материала с последовательно увеличивающейся шириной по толщине пакета. С широкой стороны пакета укладывают ленту из резиноподобного материала. Подпрессовывают пакет при повышенной температуре до внедрения резиноподобного материала в структуру прилегающей ткани. Пакет укладывают на форме по окружности границы манжеты слоем резиноподобного материала к форме и сшивают между собой торцевые части слоев пакета. Затем перегибают половину пакета от большего радиуса к меньшему до соприкосновения двух половин между собой и выкладывают оставшиеся части теплозащитного покрытия. Вулканизируют теплозащитное покрытие с манжетой и наматывают силовую оболочку из полимерного композитного материала. В другом варианте способа изготовления корпуса с широкой стороны пакета из лент тканого материала дополнительно укладывают набор лент из тканого и резиноподобного материалов, последним наружу. Группа изобретений позволяет повысить надежность ракетного двигателя твердого топлива за счет равномерного распределения напряжений в соединении манжеты с теплозащитным покрытием. 4 н.п. ф-лы, 3 ил.

Изобретение относится к области машиностроения и может быть использовано в конструкциях корпусов ракетных двигателей твердого топлива из композиционных материалов. Корпус ракетного двигателя содержит силовую оболочку с фланцами, расположенными в полюсных отверстиях днищ, облицованную изнутри теплозащитным покрытием из резиноподобного материала с кольцами в своих торцевых частях у центральных отверстий фланцев. Со стороны внутренней поверхности, по меньшей мере, в одном фланце выполнены расположенные по соосной фланцу окружности ряд глухих резьбовых отверстий, а в кольце, соосные с отверстиями фланца, сквозные отверстия с зенковочными поверхностями с внутренней стороны. В отверстиях расположены винты, ввернутые во фланец без выступания за поверхность кольца и закрытые материалом теплозащитного покрытия. Отверстия в кольце выполнены диаметром, позволяющим смещаться винтам относительно оси отверстия при различных тепловых деформациях фланца и кольца. Кольцо выполнено из слоистого композиционного материала и расположено в массе материала теплозащитного покрытия с выходом на центральное отверстие фланца, образуя с последним единую поверхность центрального отверстия. Изобретение позволяет повысить надежность корпуса ракетного двигателя твердого топлива. 7 з.п. ф-лы, 4 ил.

Изобретение относится к технологии изготовления внутреннего теплозащитного покрытия корпусов ракетных двигателей из композиционных материалов. При изготовлении теплозащитного покрытия корпуса ракетного двигателя с удлиненной цилиндрической частью и с закладными элементами наносят на внутреннюю поверхность закладного элемента корпуса покрытие из невулканизованной резины. Устанавливают закладной элемент на жесткую оправку, наносят на нее слои невулканизованной резины для формирования основного массива теплозащитного покрытия и осуществляют вулканизацию. Покрытие закладного элемента предварительно вулканизуют в отдельном приспособлении. После установки закладного элемента на жесткую оправку слои невулканизованной резины выкладывают встык со слоями вулканизованного покрытия закладного элемента. При выкладке завершающего слоя невулканизованной резины перекрывают наружную поверхность закладного элемента, после чего проводят совместную вулканизацию. Изобретение позволяет повысить качество изготовления теплозащитного покрытия корпуса ракетного двигателя. 6 ил.

При изготовлении корпуса воспламенителя заряда ракетного двигателя из композиционных материалов выполняют цилиндрическую оболочку. Изготовление всех разнотипных элементов оболочки ведут из разложенного на подогреваемую поверхность расчетного для каждого последовательно выполняемого технологического передела количества препрега легко деформируемой ткани, причем армирующие волокна располагают под углом. Изготовление всех разнотипных элементов оболочки выполняют закаткой на оправку с уплотнением необходимым числом циклов повторения ее до расчетного диаметра оболочки. Подогреваемая поверхность имеет рельеф, соответствующий перепадам диаметров оправки на длине, равной длине препрега ткани при выполнении данного технологического передела. Корпус воспламенителя заряда ракетного двигателя из композиционных материалов содержит цилиндрическую оболочку с наружным теплозащитным покрытием и плоским донышком с одной стороны и свободным торцом с внутренней резьбой, закрытым съемным колпачком, с другой, образующими в совокупности внутренний объем для размещения заряда с элементами его воспламенения. Внутренняя часть цилиндрической оболочки выполнена из расчетного, конструктивно объединяющего резьбу и донышко, числа слоев препрега легко деформируемой ткани с расположением армирующих волокон под углом. Внутренняя часть цилиндрической оболочки имеет в составе внутренней резьбы кольцевые слои формирующей ее профиль нити с распространением ее на цилиндрическую часть и донышко, оформленное закладной деталью с плоским торцом со стороны внутреннего объема и резьбовым хвостовиком с наружной стороны. Группа изобретений позволяет упростить конструкцию корпуса воспламенителя и повысить его технологичность. 2 н. и 6 з.п. ф-лы, 5 ил.

Изобретение относится к области ракетной техники и может быть использовано в ракетных двигателях твердого топлива с зарядами из смесевых топлив, скрепленных с корпусом по цилиндрической части и раскрепленных манжетами по эллиптическим торцевым поверхностям. Скрепленный заряд ракетного твердого топлива содержит корпус, топливный заряд, теплозащитное покрытие и защитно-крепящий слой. Топливный заряд жестко скреплен с корпусом в средней части его цилиндрической поверхности через склеенные между собой теплозащитное покрытие и защитно-крепящий слой и подвижно скреплен с корпусом в остальной части его цилиндрической поверхности. Топливный заряд подвижно скреплен с корпусом посредством контактирующих между собой через смазку выступов, которыми оснащен защитно-крепящий слой, и имеющих ответную форму пазов, выполненных в теплозащитном покрытии. Изобретение позволяет повысить надежность ракетного двигателя твердого топлива. 3 з.п. ф-лы, 3 ил.

Изобретение относится к области ракетной техники и может быть использовано в ракетных двигателях твердого топлива с зарядами из смесевых топлив, скрепленных со стенками корпуса. Скрепленный заряд ракетного твердого топлива содержит корпус, топливный заряд и теплозащитное покрытие с выступами, обращенными внутрь заряда. Каждый выступ выполнен с возможностью принимать форму кольца в собранном заряде. Теплозащитное покрытие выполнено из материала, химически совместимого с топливом и исключающего диффузию в него компонентов топлива. Изобретение позволяет повысить технологичность изготовления и эксплуатационную надежность заряда. 1 з.п. ф-лы, 5 ил.

При изготовлении внутреннего теплозащитного покрытия с тканевым защитно-крепящим слоем корпуса ракетного двигателя твердого топлива изготавливают, формуют и вулканизируют внутреннее теплозащитное покрытие с тканевым защитно-крепящим слоем. Из капроновой ткани изготавливают оболочку защитно-крепящего слоя в виде чехла, размеры наружной поверхности которой соответствуют внутренней поверхности корпуса с теплозащитным покрытием. Размещают оболочку защитно-крепящего слоя через разделительный чехол из капроновой ткани на соответствующей длине корпуса жесткой оправке, охватываемой резиновой диафрагмой. Вводят оправку в корпус и расправляют оболочку защитно-крепящего слоя, разделительный чехол и резиновую диафрагму, создавая разряжение между покрытием и резиновой диафрагмой и давление в полости резиновой диафрагмы. Затем выводят оправку из корпуса, а корпус помещают в печь и производят вулканизацию. После окончания вулканизации и охлаждения корпуса с теплозащитным покрытием удаляют из него разделительный чехол и резиновую диафрагму и открывают отверстие в оболочке защитно-крепящего слоя по контуру передней горловины корпуса. Изобретение позволяет снизить трудоемкость изготовления внутреннего теплозащитного покрытия корпуса ракетного двигателя. 3 ил.

Камера сгорания силовой установки крылатой ракеты выполнена в виде многослойного изделия и содержит обечайку, несущую механическую нагрузку внутреннего давления, и слой теплозащитного керамического композиционного материала, контактирующего с образующимися при сжигании топлива газами. Слой теплозащитного керамического композиционного материала имеет коэффициент линейного расширения и модуль упругости, обеспечивающие температурную и механическую совместимость с обечайкой, а также толщину, подобранную таким образом, что дополнительное наружное воздушное охлаждение обечайки не требуется. Обечайка выполнена из керамического композиционного высокотемпературного материала, армированного углеродными волокнами, с коэффициентом линейного расширения не более 5,2·10-6 1/°C, модулем упругости не менее 13·103 МПа, пределом прочности не менее 90 МПа. Слой теплозащитного коррозионно-стойкого керамического материала, контактирующего с газами рабочей температурой не более 2000°С, имеет коэффициент линейного расширения не более 5,5·10-6 1/°C. Изобретение позволяет снизить массу и габариты камеры сгорания силовой установки крылатой ракеты, а так же упростить ее конструкцию и повысить надежность. 1 з.п. ф-лы, 2 ил.

Изобретение относится к ракетной технике и может быть использовано при изготовлении корпусов ракетных двигателей с относительно малым временем работы, например, для двигателей ракетно-артиллерийских боеприпасов. При изготовлении корпуса ракетного двигателя из композиционно-волокнистого материала наматывают слои волокнистого материала со связующим с использованием технологической оснастки, производят термообработку с отверждением связующего и затем удаляют технологическую оснастку. Технологическую оснастку, состоящую из нескольких частей и имеющую форму внутренней поверхности двух корпусов, обращенных друг к другу выходными диаметрами раструбов, собирают с двумя концевыми деталями, содержащими элементы соединения с передними днищами двигателей. Намотку производят псевдолентой, образуемой перекрестными армирующими волокнами, сматываемыми с вращающегося вертлюга и огибающими краевые жгуты. Во время намотки краевые жгуты псевдоленты укладывают окружными витками в зоны концевых деталей. После отверждения разрезают корпуса по месту стыковки обоих раструбов, после чего производят разборку частей оснастки и извлечение корпусов с замотанными концевыми элементами. Изобретение позволяет повысить надежность конструкции ракетного двигателя, работающей под высоким давлением, а также снизить трудоемкость ее изготовления. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области машиностроения, в частности, к изготовлению теплозащитных покрытий камер сгорания ракетных двигателей. При формировании внутреннего теплозащитного покрытия корпуса ракетного двигателя в процессе выкладки слоев невулканизованной резины между слоями размещают оптическое волокно для измерения температуры в процессе вулканизации. Оптическое волокно размещают на поверхностях невулканизованной резины спиральными витками с переходом с одного слоя резины на другой слой. Производят точечное закрепление волокна на поверхностях слоев резины с помощью клея холодного отверждения на основе каучуков. Изобретение позволяет повысить качество теплозащитного покрытия. 2 ил.
Наверх