Способ нанесения эластичного покрытия на внутреннюю поверхность корпуса



Способ нанесения эластичного покрытия на внутреннюю поверхность корпуса
Способ нанесения эластичного покрытия на внутреннюю поверхность корпуса
Способ нанесения эластичного покрытия на внутреннюю поверхность корпуса
Способ нанесения эластичного покрытия на внутреннюю поверхность корпуса

 


Владельцы патента RU 2527009:

Открытое акционерное общество "Пермский завод "Машиностроитель" (RU)

Изобретение относится к области машиностроения, а именно к способам нанесения эластичного покрытия, например теплозащитного, на внутреннюю поверхность корпуса. При нанесении эластичного покрытия на внутреннюю поверхность корпуса, изготавливают эластичную оболочку на оправке и проводят вакуумирование полости между оболочкой и поверхностью оправки, причем площадь поверхности оправки соответствует площади внутренней поверхности корпуса. Подготавливают наружную поверхность оболочки к вклейке, устанавливают ее внутрь корпуса и вакуумируют полость между внутренней поверхностью корпуса и эластичной оболочкой. Одновременно с вакуумированием создают давление в полости между поверхностью оправки и оболочкой. Изобретение позволяет повысить качество покрытия по всей площади внутренней поверхности корпуса. 1 з.п. ф-лы, 4 ил.

 

Изобретение относится к области машиностроения, а именно к способам нанесения эластичного покрытия, например теплозащитного (ТЗП), на внутреннюю поверхность корпуса.

Известен способ изготовления оболочки из вулканизированной резины для облицовки внутренних стенок ракетного двигателя твердого топлива (патент Франции №2098934).

Согласно патенту из смеси, содержащей каучук, прокатываются листы толщиной 2-3 мм, а затем их вулканизируют, обрезают листы по размеру, придавая им соответствующую форму. После обезжиривания и обработки пескоструем на стенки двигателя наносят слой резинового клея, с помощью которого листы приклеиваются к стенкам.

Недостатком известного способа является то, что изготовление оболочки выполняют вручную, в результате в местах стыковки листов возможно нарушение оболочки в виде неприклея, щелей или наложения внахлест, что приводит к прогару двигателя. Способ трудоемок в осуществлении, особенно, при облицовке внутренних стенок ракетного двигателя длинномерной конструкции малого диаметра, имеющего коническую часть и малые полюсные отверстия, а в некоторых случаях невозможен даже с применением вспомогательных устройств.

Известен способ нанесения внутреннего теплозащитного покрытия (ТЗП) по патенту РФ №2064600, МПК F02K 9/34, включающий изготовление и отверждение эластичной оболочки на оправке, снятие оболочки с оправки, установку оболочки внутрь корпуса и склейку ее с внутренней поверхностью корпуса прижатием с помощью терморасширяемой оправки. При этом, естественно, на наружную поверхность оболочки перед ее установкой и внутреннюю поверхность корпуса наносится клеевой состав.

Недостатками способа являются: снятие эластичной оболочки с одной оправки и нанесение ее на терморасширяемую оправку для ввода в корпус; трудоемкий процесс ввода готовой оболочки (теплозащитного рукава) внутрь корпуса (особенно, большого удлинения с малыми полюсными отверстиями), в связи с тем, что оболочка с нанесенным на нее клеевым составом, обладающим высокой ″липкостью″, охватывает терморасширяемую оправку свободно - с провисанием, что затрудняет протягивание рукава через полюсные отверстия без нарушения поверхностного слоя ТЗП. Кроме того, процесс снятия с оправки и введения внутрь корпуса может привести к образованию складок на теплозащитном рукаве и к возможности появления между корпусом и ТЗП воздушных прослоек, которые в рабочем режиме или при длительном хранении могут привести к расслоению и нарушению целостности ТЗП.

Известен способ нанесения эластичного покрытия на внутреннюю поверхность корпуса (патент РФ на изобретение №2256813, МПК F02K 9/34), включающий в себя изготовление эластичной оболочки, введение ее внутрь корпуса и склейку эластичной оболочки с внутренней поверхностью корпуса. Перед установкой внутрь корпуса эластичную оболочку выворачивают наизнанку, одним концом герметично скрепляют с концом корпуса, а второй конец оболочки герметично заглушают. Внутрь вывернутой наизнанку эластичной оболочки вставляют цилиндрический элемент и скрепляют его с заглушенным концом оболочки. Полость, образованную внутренней поверхностью корпуса, поверхностью эластичной оболочки и цилиндрическим элементом, вакуумируют и выворачивают при этом эластичную оболочку внутрь корпуса, протягивая цилиндрический элемент.

Известный способ применяется для нанесения эластичного покрытия только на цилиндрическую внутреннюю поверхность корпуса, т.к. любые изменения размеров сечения внутренней поверхности корпуса приводят к образованию воздушных полостей, т.е участкам неприклея ТЗП, что ограничивает его технологические возможности. Кроме того, известный способ предусматривает выворачивание эластичной оболочки (ТЗП), - сначала в процессе надевания на цилиндрический элемент, а затем с него на внутреннюю поверхность корпуса. Таким образом, эластичная оболочка дважды подвергается механическому воздействию, что может нарушить целостность оболочки, привести к надрывам и наслоениям, и вследствие этого к неравномерному распределению по толщине покрытия. Недостатком является также сложность введения эластичной оболочки в корпус большого удлинения с малыми полюсными отверстиями, заключающаяся в том, что диаметр цилиндрического стержня ограничен диаметром полюсного отверстия корпуса, а площадь эластичной оболочки превышает площадь цилиндрического стержня и, как следствие, приводит к образованию складок и провисанию оболочки на стержне. При нанесении эластичной оболочки на внутреннюю криволинейную поверхность корпуса путем выворачивания с помощью цилиндрического элемента, как предлагается в прототипе, не обеспечивается равномерное распределение эластичного покрытия без надрывов, наслоений, залипов и воздушных полостей в местах перехода от цилиндрической части к малым полюсным отверстиям. Способ трудоемок в осуществлении, не технологичен, применим только для корпусов с двумя полюсными отверстиями.

Задачей изобретения является устранение указанных недостатков, повышение технологичности, надежности и качества нанесения эластичного покрытия на внутреннюю поверхность корпуса, расширение технологических возможностей.

Достигаемый технический результат

Равномерное распределение и прижатие эластичной оболочки по всей внутренней поверхности корпуса без наслоений, складок и воздушных полостей. Расширение технологических возможностей - нанесение эластичного покрытия на внутреннюю поверхность корпуса, включая поверхности сложной конфигурации и переменного диаметра по длине корпуса как с двумя, так и с одним полюсными отверстиями различного диаметра. При вводе оправки с оболочкой в корпус через полюсные отверстия сохраняется целостность поверхностного слоя ТЗП. Процесс формирования эластичного покрытия, ввода в корпус и приклеивание оболочки к поверхности осуществляют с использованием одного технического средства без переустановки оболочки.

Технический результат достигается за счет того, что в способе нанесения эластичного покрытия на внутреннюю поверхность корпуса, включающем изготовление эластичной оболочки на оправке, подготовку наружной поверхности оболочки к вклейке, герметизизацию концов оболочки, установку ее внутрь корпуса, вакуумирование полости между внутренней поверхностью корпуса и эластичной оболочки, до подготовки наружной поверхности эластичной оболочки к вклейке проводят вакуумирование полости между оболочкой и поверхностью оправки, площадь поверхности которой соответствует площади внутренней поверхности корпуса, затем оправку вводят в корпус и соосно фиксируют, после чего одновременно с вакуумированием полости между внутренней поверхностью корпуса и эластичной оболочкой создают давление в полости между поверхностью оправки и оболочкой.

Для усиления эффекта равномерного раскрытия оболочки и прижатия ее к внутренней поверхности корпуса вакуумирование полости между внутренней поверхностью корпуса и эластичной оболочкой осуществляют при вертикальном положении корпуса.

Заявляемое техническое решение обладает новизной и изобретательским уровнем, т.к. имеет существенные отличительные признаки по сравнению с прототипом и другими близкими по технической сущности аналогами, и в своей новой совокупности и взаимосвязи существенных признаков проявляет при использовании новые технические свойства, достигаются новые результаты, не присущие аналогам.

Способ осуществляется следующим образом.

На фиг.1 представлен способ нанесения эластичного покрытия на внутреннюю поверхность корпуса, на фиг.2 - оправка с эластичной оболочкой в разрезе, на фиг.3 вид А фиг.2, на фиг.4 вид Б фиг.1.

На наружной поверхности оправки 1 формируют эластичную оболочку 2 до начальной стадии полимеризации. Вакуумируют полость 3 между эластичной оболочкой 2 и оправкой 1, площадь поверхности которой соответствует площади внутренней поверхности корпуса для обеспечения равномерного распределения эластичной оболочки 2 по всей площади оправки 1, исключая провисание оболочки на оправке 1, а также образование гофр и складок. На внутреннюю поверхность корпуса 4 и на наружную поверхность эластичной оболочки 2 наносят клеевой состав. В полость корпуса 4 вводят оправку 1, соосно фиксируют ее относительно корпуса 4, производят герметизацию. Затем вакуумируют внутреннюю полость 5 между внутренней поверхностью корпуса 4 и эластичной оболочкой 2 с одновременной подачей давления в полость 6 оправки 1, выдерживают под давлением, для обеспечения равномерного приклеивания к внутренней поверхности корпуса 4 по всей площади эластичной оболочки 2.

Для усиления эффекта равномерного нанесения эластичного покрытия на внутреннюю поверхность корпусов, особенно длинномерных, вакуумирование полости между внутренней поверхностью корпуса 4 и эластичной оболочкой 2 осуществляют при вертикальном положении корпуса 4.

Вакуумирование полости между поверхностью оправки 1 и оболочки 2 проводят для равномерного распределения эластичной оболочки 2 по поверхности оправки 1 без наслоений и складок и последующего равномерного нанесения клея на поверхность оболочки, а также для обеспечения ввода оправки 1 в корпус 4 через полюсные отверстия 6, в том числе малого диаметра, не нарушая поверхностного слоя покрытия.

Вакуумирование полости между внутренней поверхностью корпуса 4 и эластичной оболочкой 2 и одновременное создание давления в полости между поверхностью оправки 1 и оболочки 2 проводят для равномерного распределения и прижатия эластичной оболочки 2 к внутренней поверхности корпуса 4 без наслоений, складок и воздушных полостей. Равномерное прижатие эластичной оболочки 2 по внутренней поверхности корпуса 4 обеспечивает качественное приклеивание по всей площади контактируемых поверхностей.

При нанесении покрытия на внутреннюю поверхность, преимущественно длинномерных корпусов, вакуумирование полости между внутренней поверхностью корпуса 4 и эластичной оболочкой 2 и одновременное создание давления в полости между поверхностью оправки 1 и оболочки 2 осуществляют при вертикальном положении корпуса 4. За счет вертикального расположения оправки 1 с эластичной оболочкой 2 обеспечивается более равномерная подача рабочей среды через отверстия 5 по всей длине оправки 1, в результате обеспечивается более равномерное раскрытие оболочки 2 и прижатие ее к внутренней поверхности корпуса 4.

Заявленный способ по сравнению с прототипом более технологичен в осуществлении, имеет расширенные технологические возможности, обеспечивает надежное, качественное нанесение эластичного покрытия на внутреннюю поверхность корпуса, в том числе сложной формы, а также применим для корпусов, в том числе длинномерных, с одним или двумя полюсными отверстиями как большого, так и малого диаметра.

1. Способ нанесения эластичного покрытия на внутреннюю поверхность корпуса, включающий изготовление эластичной оболочки на оправке, подготовку наружной поверхности оболочки к вклейке, герметизацию концов оболочки, установку ее внутрь корпуса, вакуумирование полости между внутренней поверхностью корпуса и эластичной оболочкой, отличающийся тем, что до подготовки наружной поверхности эластичной оболочки к вклейке проводят вакуумирование полости между оболочкой и поверхностью оправки, площадь поверхности которой соответствует площади внутренней поверхности корпуса, затем оправку вводят в корпус и соосно фиксируют, после чего одновременно с вакуумированием полости между внутренней поверхностью корпуса и эластичной оболочкой создают давление в полости между поверхностью оправки и оболочкой.

2. Способ по п.1, отличающийся тем, что вакуумирование полости между внутренней поверхностью корпуса и эластичной оболочкой осуществляют при вертикальном положении корпуса.



 

Похожие патенты:

Изобретение относится к машиностроению и может быть использовано при изготовлении оболочек корпусов из композиционных материалов, требующих по условиям эксплуатации нанесения на поверхность оболочек влагозащитных покрытий с антистатическими свойствами.

Изобретение относится к области ракетостроения и может быть использовано при изготовлении корпусов ракетных двигателей, в частности при нанесении теплозащитного покрытия на внутреннюю поверхность корпусов ракетных двигателей.

Изобретение относится к бессопловым ракетным двигателям твердого топлива. Ракетный двигатель содержит корпус и ракетное топливо.

При изготовлении корпуса ракетного двигателя из полимерных композиционных материалов наматывают силовую оболочку в виде кокона спирально-кольцевой намоткой из жгутов арамидных волокон, а перед задним удаляемым днищем на цилиндрической части нарезают резьбу для соединения с сопловым блоком двигателя.

Корпус твердотопливного ракетного двигателя из композиционного материала содержит силовую цельномотанную оболочку типа «кокон» и оболочку второго кокона. Между наружной поверхностью днища силовой оболочки в зоне экватора и оболочкой второго кокона установлен кольцевой эластичный клин.
Предлагаемый способ относится к ракетной технике и предназначен для подготовки внутренней поверхности корпуса твердотопливного ракетного двигателя перед заливкой в корпус смесевого топлива.

Изобретение относится к области ракетной техники и может быть использовано при изготовлении внутреннего теплозащитного покрытия корпусов ракетных двигателей. .

Изобретение относится к области ракетной техники, в частности к способам непрерывного контроля над состоянием конструкции корпуса ракетного двигателя, выполненного из полимерного композитного материала.

Изобретение относится к области ракетной техники и может быть использовано при изготовлении корпусов ракетных двигателей твердого топлива из композиционного материала.

Изобретение относится к ракетной технике и может быть использовано при создании корпуса ракетного двигателя твердого топлива (РДТТ) малого удлинения и заряда скрепленного, содержащего данный корпус.

Изобретение относится к области машиностроения, в частности, к изготовлению теплозащитных покрытий камер сгорания ракетных двигателей твердого топлива, имеющих металлические фланцы. При образовании теплозащитного покрытия формируют на оправках теплозащитное покрытие, соединяют с ним металлический фланец и осуществляют вулканизацию. В подфланцевой зоне после нанесения второго и перед нанесением двух последних слоев теплозащитного материала на его поверхности равномерно размещают продольные и поперечные сегменты предварительно «натренированной» идентично кривизне фланца нитиноловой проволоки диаметром 0,2-0,3 мм. Затем выкладывают другие слои теплозащитного покрытия с последующей вулканизацией образованного пакета. Изобретение позволяет повысить надежность теплозащитного покрытия. 2 ил.

Корпус ракетного двигателя содержит силовую оболочку, облицованную теплозащитным покрытием с раскрепляющими эластичными манжетами. В месте соединения манжеты и теплозащитного покрытия выполнена кольцевая полость, образованная разнесенными эквидистантно кольцевыми поясками, сопряженными со стороны внешних кромок по дуге и снабженными со стороны внутренних кромок коническими участками. В кольцевой полости расположены скрепленные между собой слои упругоэластичного тканого материала, эквидистантно повторяющие противолежащую часть поверхности полости. Слои тканого материала выполнены переменной, нарастающей от внутреннего к наружному, поперечной длины, в основном с конгруэнтным расположением обращенных друг к другу поверхностей соседних слоев или частей одного слоя. Наружный слой тканого материала скреплен по наружной поверхности с манжетой и теплозащитным покрытием. В другом варианте корпуса дополнительный слой упругоэластичного материала расположен в массиве материалов манжеты и теплозащитного покрытия. При изготовлении корпуса ракетного двигателя на форме выкладывают из листового материала манжету и, вне манжеты, частично, теплозащитное покрытие. Собирают продольный пакет из лент упругоэластичного тканого материала с последовательно увеличивающейся шириной по толщине пакета. С широкой стороны пакета укладывают ленту из резиноподобного материала. Подпрессовывают пакет при повышенной температуре до внедрения резиноподобного материала в структуру прилегающей ткани. Пакет укладывают на форме по окружности границы манжеты слоем резиноподобного материала к форме и сшивают между собой торцевые части слоев пакета. Затем перегибают половину пакета от большего радиуса к меньшему до соприкосновения двух половин между собой и выкладывают оставшиеся части теплозащитного покрытия. Вулканизируют теплозащитное покрытие с манжетой и наматывают силовую оболочку из полимерного композитного материала. В другом варианте способа изготовления корпуса с широкой стороны пакета из лент тканого материала дополнительно укладывают набор лент из тканого и резиноподобного материалов, последним наружу. Группа изобретений позволяет повысить надежность ракетного двигателя твердого топлива за счет равномерного распределения напряжений в соединении манжеты с теплозащитным покрытием. 4 н.п. ф-лы, 3 ил.

Изобретение относится к области машиностроения и может быть использовано в конструкциях корпусов ракетных двигателей твердого топлива из композиционных материалов. Корпус ракетного двигателя содержит силовую оболочку с фланцами, расположенными в полюсных отверстиях днищ, облицованную изнутри теплозащитным покрытием из резиноподобного материала с кольцами в своих торцевых частях у центральных отверстий фланцев. Со стороны внутренней поверхности, по меньшей мере, в одном фланце выполнены расположенные по соосной фланцу окружности ряд глухих резьбовых отверстий, а в кольце, соосные с отверстиями фланца, сквозные отверстия с зенковочными поверхностями с внутренней стороны. В отверстиях расположены винты, ввернутые во фланец без выступания за поверхность кольца и закрытые материалом теплозащитного покрытия. Отверстия в кольце выполнены диаметром, позволяющим смещаться винтам относительно оси отверстия при различных тепловых деформациях фланца и кольца. Кольцо выполнено из слоистого композиционного материала и расположено в массе материала теплозащитного покрытия с выходом на центральное отверстие фланца, образуя с последним единую поверхность центрального отверстия. Изобретение позволяет повысить надежность корпуса ракетного двигателя твердого топлива. 7 з.п. ф-лы, 4 ил.

Изобретение относится к технологии изготовления внутреннего теплозащитного покрытия корпусов ракетных двигателей из композиционных материалов. При изготовлении теплозащитного покрытия корпуса ракетного двигателя с удлиненной цилиндрической частью и с закладными элементами наносят на внутреннюю поверхность закладного элемента корпуса покрытие из невулканизованной резины. Устанавливают закладной элемент на жесткую оправку, наносят на нее слои невулканизованной резины для формирования основного массива теплозащитного покрытия и осуществляют вулканизацию. Покрытие закладного элемента предварительно вулканизуют в отдельном приспособлении. После установки закладного элемента на жесткую оправку слои невулканизованной резины выкладывают встык со слоями вулканизованного покрытия закладного элемента. При выкладке завершающего слоя невулканизованной резины перекрывают наружную поверхность закладного элемента, после чего проводят совместную вулканизацию. Изобретение позволяет повысить качество изготовления теплозащитного покрытия корпуса ракетного двигателя. 6 ил.

При изготовлении корпуса воспламенителя заряда ракетного двигателя из композиционных материалов выполняют цилиндрическую оболочку. Изготовление всех разнотипных элементов оболочки ведут из разложенного на подогреваемую поверхность расчетного для каждого последовательно выполняемого технологического передела количества препрега легко деформируемой ткани, причем армирующие волокна располагают под углом. Изготовление всех разнотипных элементов оболочки выполняют закаткой на оправку с уплотнением необходимым числом циклов повторения ее до расчетного диаметра оболочки. Подогреваемая поверхность имеет рельеф, соответствующий перепадам диаметров оправки на длине, равной длине препрега ткани при выполнении данного технологического передела. Корпус воспламенителя заряда ракетного двигателя из композиционных материалов содержит цилиндрическую оболочку с наружным теплозащитным покрытием и плоским донышком с одной стороны и свободным торцом с внутренней резьбой, закрытым съемным колпачком, с другой, образующими в совокупности внутренний объем для размещения заряда с элементами его воспламенения. Внутренняя часть цилиндрической оболочки выполнена из расчетного, конструктивно объединяющего резьбу и донышко, числа слоев препрега легко деформируемой ткани с расположением армирующих волокон под углом. Внутренняя часть цилиндрической оболочки имеет в составе внутренней резьбы кольцевые слои формирующей ее профиль нити с распространением ее на цилиндрическую часть и донышко, оформленное закладной деталью с плоским торцом со стороны внутреннего объема и резьбовым хвостовиком с наружной стороны. Группа изобретений позволяет упростить конструкцию корпуса воспламенителя и повысить его технологичность. 2 н. и 6 з.п. ф-лы, 5 ил.

Изобретение относится к области ракетной техники и может быть использовано в ракетных двигателях твердого топлива с зарядами из смесевых топлив, скрепленных с корпусом по цилиндрической части и раскрепленных манжетами по эллиптическим торцевым поверхностям. Скрепленный заряд ракетного твердого топлива содержит корпус, топливный заряд, теплозащитное покрытие и защитно-крепящий слой. Топливный заряд жестко скреплен с корпусом в средней части его цилиндрической поверхности через склеенные между собой теплозащитное покрытие и защитно-крепящий слой и подвижно скреплен с корпусом в остальной части его цилиндрической поверхности. Топливный заряд подвижно скреплен с корпусом посредством контактирующих между собой через смазку выступов, которыми оснащен защитно-крепящий слой, и имеющих ответную форму пазов, выполненных в теплозащитном покрытии. Изобретение позволяет повысить надежность ракетного двигателя твердого топлива. 3 з.п. ф-лы, 3 ил.

Изобретение относится к области ракетной техники и может быть использовано в ракетных двигателях твердого топлива с зарядами из смесевых топлив, скрепленных со стенками корпуса. Скрепленный заряд ракетного твердого топлива содержит корпус, топливный заряд и теплозащитное покрытие с выступами, обращенными внутрь заряда. Каждый выступ выполнен с возможностью принимать форму кольца в собранном заряде. Теплозащитное покрытие выполнено из материала, химически совместимого с топливом и исключающего диффузию в него компонентов топлива. Изобретение позволяет повысить технологичность изготовления и эксплуатационную надежность заряда. 1 з.п. ф-лы, 5 ил.

При изготовлении внутреннего теплозащитного покрытия с тканевым защитно-крепящим слоем корпуса ракетного двигателя твердого топлива изготавливают, формуют и вулканизируют внутреннее теплозащитное покрытие с тканевым защитно-крепящим слоем. Из капроновой ткани изготавливают оболочку защитно-крепящего слоя в виде чехла, размеры наружной поверхности которой соответствуют внутренней поверхности корпуса с теплозащитным покрытием. Размещают оболочку защитно-крепящего слоя через разделительный чехол из капроновой ткани на соответствующей длине корпуса жесткой оправке, охватываемой резиновой диафрагмой. Вводят оправку в корпус и расправляют оболочку защитно-крепящего слоя, разделительный чехол и резиновую диафрагму, создавая разряжение между покрытием и резиновой диафрагмой и давление в полости резиновой диафрагмы. Затем выводят оправку из корпуса, а корпус помещают в печь и производят вулканизацию. После окончания вулканизации и охлаждения корпуса с теплозащитным покрытием удаляют из него разделительный чехол и резиновую диафрагму и открывают отверстие в оболочке защитно-крепящего слоя по контуру передней горловины корпуса. Изобретение позволяет снизить трудоемкость изготовления внутреннего теплозащитного покрытия корпуса ракетного двигателя. 3 ил.

Камера сгорания силовой установки крылатой ракеты выполнена в виде многослойного изделия и содержит обечайку, несущую механическую нагрузку внутреннего давления, и слой теплозащитного керамического композиционного материала, контактирующего с образующимися при сжигании топлива газами. Слой теплозащитного керамического композиционного материала имеет коэффициент линейного расширения и модуль упругости, обеспечивающие температурную и механическую совместимость с обечайкой, а также толщину, подобранную таким образом, что дополнительное наружное воздушное охлаждение обечайки не требуется. Обечайка выполнена из керамического композиционного высокотемпературного материала, армированного углеродными волокнами, с коэффициентом линейного расширения не более 5,2·10-6 1/°C, модулем упругости не менее 13·103 МПа, пределом прочности не менее 90 МПа. Слой теплозащитного коррозионно-стойкого керамического материала, контактирующего с газами рабочей температурой не более 2000°С, имеет коэффициент линейного расширения не более 5,5·10-6 1/°C. Изобретение позволяет снизить массу и габариты камеры сгорания силовой установки крылатой ракеты, а так же упростить ее конструкцию и повысить надежность. 1 з.п. ф-лы, 2 ил.

Изобретение относится к ракетной технике и может быть использовано при изготовлении корпусов ракетных двигателей с относительно малым временем работы, например, для двигателей ракетно-артиллерийских боеприпасов. При изготовлении корпуса ракетного двигателя из композиционно-волокнистого материала наматывают слои волокнистого материала со связующим с использованием технологической оснастки, производят термообработку с отверждением связующего и затем удаляют технологическую оснастку. Технологическую оснастку, состоящую из нескольких частей и имеющую форму внутренней поверхности двух корпусов, обращенных друг к другу выходными диаметрами раструбов, собирают с двумя концевыми деталями, содержащими элементы соединения с передними днищами двигателей. Намотку производят псевдолентой, образуемой перекрестными армирующими волокнами, сматываемыми с вращающегося вертлюга и огибающими краевые жгуты. Во время намотки краевые жгуты псевдоленты укладывают окружными витками в зоны концевых деталей. После отверждения разрезают корпуса по месту стыковки обоих раструбов, после чего производят разборку частей оснастки и извлечение корпусов с замотанными концевыми элементами. Изобретение позволяет повысить надежность конструкции ракетного двигателя, работающей под высоким давлением, а также снизить трудоемкость ее изготовления. 2 з.п. ф-лы, 3 ил.
Наверх