Способ измерения остаточных напряжений в ободьях цельнокатаных железнодорожных колес

Использование: для измерения остаточных напряжений в ободьях цельнокатаных железнодорожных колес. Сущность: заключается в том, что излучают в боковую стенку обода ультразвуковыми датчиками две акустические волны поперечной поляризации, направления колебаний в которых ориентированы в радиальном и окружном направлениях, измеряют время их распространения между боковыми стенками обода с последующим расчетом остаточных напряжений, при этом дополнительно из колеса той же партии, к которой относится исследуемое колесо, вырезают образец в виде секторной части обода и излучают в его боковую стенку две акустические волны поперечной поляризации, направления колебаний в которых ориентированы в радиальном и окружном направлениях, измеряют времена их распространения между боковыми гранями сектора обода и рассчитывают остаточные напряжения по соответствующему математическому выражению. Технический результат: повышение точности измерения значений остаточных механических напряжений ультразвуковым методом. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к области ультразвукового неразрушающего контроля и предназначено для повышения точности расчета значений остаточных механических напряжений ультразвуковым методом.

Известен ультразвуковой способ измерения остаточных механических напряжений в ободьях цельнокатаных железнодорожных колес по международному стандарту EN 13262-2004 "Продукция для железных дорог - Колесные пары и тележки - Колеса - Требования к изделиям (Railway applications - Wheelsets and bogies - Wheels - Product requirement)", согласно которому остаточные напряжения в колесе определяют измерением скорости (времени распространения) ультразвука, при котором используют эффект акустоупругости, заключающийся в учете влияния упругого напряжения в материале на скорость (время распространения) ультразвуковых волн.

Известен российский стандарт ГОСТ 54093-2010 "Колеса железнодорожного подвижного состава. Методы определения остаточных напряжений", измерения в котором проводят образом, аналогичным международному стандарту. Измерение остаточных механических напряжений в ободе колеса проводят с боковой поверхности обода, обеспечивая распространение ультразвуковых волн между боковыми гранями обода. Поперечно поляризованную акустическую волну излучают с боковой поверхности обода колеса так, чтобы плоскость поляризации излучаемой преобразователем волны была ориентирована в радиальном направлении. Проводится измерение времени распространения волны tрад. После этого проводится измерение времени распространения волны, поляризованной в окружном направлении tокруж, для чего излучают волну, поляризация которой ортогональна исходной. После выполнения всех измерений, по относительной разности времен распространения волн tокруж и tрад с учетом известного коэффициента акустоупругости К по приведенной ниже формуле рассчитывается остаточное напряжение, которое определяется в соответствие с ГОСТом как разница основных напряжений σокружрад:

σ о к р у ж σ р а д = К ( t о к р у ж t р а д t р а д ) .

В стандартах указано, что для получения эпюры распределения остаточных напряжений по высоте обода, измерения должны быть выполнены в нескольких точках, расположенных по ободу колеса в радиальном направлении.

Достоинством известного способа является учет акустоупругости материала (коэффициент K).

Недостатком известного способа является отсутствие учета влияния текстурированности материала обода колеса, свойственной производимой продукции и являющейся причиной проявления собственной анизотропии материала, которая, в свою очередь, влияет на значения измеренных времен распространения tокруж и tрад. За счет этого точность способа недостаточно высока.

Задачей настоящего изобретения является разработка способа, учитывающего влияние анизотропии материала на величину остаточных напряжений.

Поставленная задача решается за счет того, что предлагаемый способ, также как и известный, осуществляют путем излучения в боковую стенку обода ультразвуковым датчиком двух акустических волн поперечной поляризации, направления колебаний в которых ориентированы в радиальном и окружном направлениях, измерения времени их распространения между боковыми стенками обода с последующим расчетом остаточных напряжений, отличающийся тем, что дополнительно из колеса той же партии, к которой относится исследуемое колесо, вырезают образец в виде секторной части обода и излучают в его боковую стенку две акустические волны поперечной поляризации, направления колебаний в которых ориентированы в радиальном и окружном направлениях, измеряют времена их распространения между боковыми гранями сектора обода и рассчитывают остаточные напряжения по формуле:

σ о к р у ж σ р а д = K L t о к р у ж 0 L 0 ( 1 t р а д ( 1 + Δ а ) 1 t о к р у ж ) ,

где σокруж, σрад - главные напряжения в окружном и радиальном направлениях;

K - коэффициент акустоупругости;

L, L0 - путь, пройденный ультразвуком в материале;

tрад, tокруж - время распространения поперечных волн, поляризованных в радиальном и окружном направлениях;

Δ a = t о к р у ж 0 t р а д 0 t р а д 0 - коэффициент собственной анизотропии.

Техническим результатом является повышение точности измеренных значений остаточных механических напряжений ультразвуковым методом за счет учета влияния анизотропности материала.

Технический результат достигается за счет того, что проведение дополнительных измерений в образце, свободном от остаточных напряжений, позволяет выявить анизотропность материала, влекущую за собой погрешность измерения.

Совокупность признаков, сформулированных в п.2, характеризует способ определения остаточных напряжений в ободьях колес, в котором производят последовательное перемещение ультразвукового датчика по боковой поверхности в радиальном направлении обода, проводя измерение в каждой точке контроля. Сканирование по ободу колеса позволяет определить распределение остаточных напряжений в нем.

Известны уравнения, связывающие напряжения и скорость ультразвуковых поперечных волн (Е.Schneider in Hauk V.Structural and Residual Stress Analysis by Nondestructive Methods, Elsevier Sci. B.V., Amsterdam, The Netherlands 1997. - 527 p.; Е. Schneider, R. Herzer, G. Hubschen, M. Wildau, K. Steinhoff. Bestimmung des oberflachennahen Spannungszustandes von Walzen, DGZfP-Jahrestagung 2009, Munster, 2009 - P31.):

C р а д С t C t = D K σ о с е в + E K σ р а д + F K σ о к р у ж ;

C о к р у ж С t C t = D K σ о с е в + F K σ р а д + E K σ о к р у ж ;

где Срад, Сокруж - скорости поперечных волн, поляризованных в радиальном и окружном направлениях;

Ct - скорость поперечной волны в изотропном материале;

σосев, σрад, σокруж - основные напряжения в осевом, радиальном и окружном направлениях;

D, Е, F, K - комбинации упругих констант второго и третьего порядка для материала, рассчитываемые по известным формулам с помощью коэффициентов Ламе (второго порядка) и упругих постоянных Мурнагана (третьего порядка) для изотропного материала.

При выявлении собственной (текстурной) анизотропии в материале эти уравнения корректно записать в следующем виде:

C р а д С р а д 0 C р а д 0 = D K σ о с е в + E K σ р а д + F K σ о к р у ж ;

C о к р у ж С о к р у ж 0 C о к р у ж 0 = D K σ о с е в + F K σ р а д + E K σ о к р у ж ,

где C р а д 0 , С о к р у ж 0 - скорости поперечных волн, поляризованных в радиальном и окружном направлениях, в анизотропном материале.

Записав разность двух последних выражений и выразив скорости через время распространения ультразвука и путь, который одинаков для каждой пары сдвиговых волн и подставив комбинации упругих постоянных второго и третьего порядка для материала, получим:

4 μ + n 8 μ 2 ( σ о к р у ж σ р а д ) = L L 0 ( t р а д 0 t р а д t о к р у ж 0 t о к р у ж ) ,

где L, L0 - путь, пройденный ультразвуком в материале исследуемого колеса и в образце соответственно;

tрад, tокруж - время распространения поперечных волн, поляризованных в радиальном и окружном направлениях;

t р а д 0 , t о к р у ж 0 - время распространения поперечных волн, поляризованных в радиальном и окружном направлениях, в анизотропном материале;

8 μ 2 4 μ + n - коэффициент акустоупругости K.

Выделив в последнем уравнении коэффициент собственной анизотропии, показывающий величину собственной анизотропии материала, уравнение можно записать в следующем виде:

σ о к р у ж σ р а д = K L t о к р у ж 0 L 0 ( 1 t р а д ( 1 + Δ а ) 1 t о к р у ж ) ,

где Δ a = t о к р у ж 0 t р а д 0 t р а д 0 - коэффициент собственной анизотропии.

Изобретение иллюстрируется фиг.1, на которой показано расположение датчика 1 на контролируемом ободе 2 колеса.

Изобретение основывается на том, что на металлургических предприятиях колеса одной плавки, т.е. изготовленные из объема стали, выплавленной единовременно в сталеплавильном агрегате, имеют одинаковые акустические характеристики материала колес.

В предлагаемом способе для определения остаточных напряжений в ободьях колес проводят измерения в контролируемом ободе и в образце, вырезанном из колеса той же плавки. Измерение в ободе контролируемого колеса проводят с боковой поверхности обода, обеспечивая распространение ультразвуковых волн между боковыми гранями обода. Поперечно поляризованную акустическую волну излучают с боковой поверхности обода колеса так, чтобы плоскость поляризации излучаемой преобразователем волны была ориентирована в радиальном направлении. Проводится измерение времени распространения волны tрад. После этого проводится измерение времени распространения волны, поляризованной в окружном направлении tокруж,, для чего в этой же точке излучают волну, поляризация которой ортогональна исходной.

Образец представляет собой сектор колеса без диска и ступицы минимальной длины дуги окружности, вырезанный из колеса той же плавки, что и контролируемые ободья. Разрезкой остаточные напряжения в ободе снимаются, и на время распространения ультразвука оказывает влияние только собственная анизотропия материала. Измерения опорных значений времен распространения поперечных волн t о к р у ж 0 и t р а д 0 производятся аналогичным способом, как и в контролируемом колесе, в той же точке, в которой проводится измерение времен распространения tокруж и tрад. Величину собственной анизотропии предложено характеризовать коэффициентом, равным относительной разности значений времен распространения двух ортогонально поляризованных поперечных волн между боковыми гранями обода ненапряженного колеса Δ a = t о к р у ж 0 t р а д 0 t р а д 0 . С учетом этого были модифицированные известные и опубликованные в литературе уравнения, связывающие напряжения и скорость (время) распространения ультразвуковых поперечных волн, и получено выражение, позволяющее рассчитывать значения остаточных механических напряжений в ободе колеса с учетом собственной анизотропии материала.

Для получения распределения остаточных напряжений сканируют ультразвуковым датчиком боковую поверхность обода в радиальном направлении, проводя измерения в каждой точке контроля.

Методика измерений отличается от традиционной и описанной в стандартах дополнительным измерением опорных значений времен распространения поперечных волн в образце ( t о к р у ж 0 и t р а д 0 ), вырезанном из колеса данной плавки, определением коэффициента анизотропии (Δа), а также его учетом при расчете остаточных напряжений по значениям времени распространения волн, измеренным в контролируемом колесе (tокруж и tрад)

σ о к р у ж σ р а д = K L t о к р у ж 0 L 0 ( 1 t р а д ( 1 + Δ а ) 1 t о к р у ж ) .

Поскольку по техническим условиям на изготовление колес по ГОСТ 10791-2011 «Колеса цельнокатаные. Технические условия» из колес текущей плавки всегда отбирается колесо для проведения заводских испытаний, то изготовление соответствующего образца из колеса, назначенного на проведение испытаний, не требует дополнительных материальных затрат.

1. Способ измерения остаточных напряжений в ободьях цельнокатаных железнодорожных колес, который осуществляют путем излучения в боковую стенку обода ультразвуковыми датчиками двух акустических волн поперечной поляризации, направления колебаний в которых ориентированы в радиальном и окружном направлениях, измерения времени их распространения между боковыми стенками обода с последующим расчетом остаточных напряжений, отличающийся тем, что дополнительно из колеса той же партии, к которой относится исследуемое колесо, вырезают образец в виде секторной части обода и излучают в его боковую стенку две акустические волны поперечной поляризации, направления колебаний в которых ориентированы в радиальном и окружном направлениях, измеряют времена их распространения между боковыми гранями сектора обода и рассчитывают остаточные напряжения по формуле:
σ о к р у ж σ р а д = K L t о к р у ж 0 L 0 ( 1 t р а д ( 1 + Δ а ) 1 t о к р у ж ) ,
где σокруж, σрад - главные напряжения в окружном и радиальном направлениях;
K - коэффициент акустоупругости;
L, L0 - путь, пройденный ультразвуком в материале;
tрад, tокруж - время распространения поперечных волн, поляризованных в радиальном и окружном направлениях;
Δ a = t о к р у ж 0 t р а д 0 t р а д 0 - коэффициент собственной анизотропии.

2. Способ измерения остаточных напряжений по п.1, отличающийся тем, что производят последовательное перемещение ультразвукового датчика по боковой поверхности в радиальном направлении обода, проводя измерение в каждой точке контроля.



 

Похожие патенты:

Изобретение относится к способу и системе для обнаружения дефектов в стенке трубы, содержащим ультразвуковой преобразователь, приспособленный для излучения через выходное отверстие ультразвуковых сигналов из внутренней части трубы в направлении ее стенки и для приема через входное отверстие сигналов обратного рассеяния от ее стенки.

Изобретение относится к области неразрушающего контроля и может быть использовано для неразрушающего контроля труднодоступных элементов конструкции из немагнитных материалов, например: из полимерных композиционных материалов (угле-, стекло-, органопластиков и других) в авиационной, судостроительной и других отраслях машиностроения.

Изобретение относится к измерительной технике и предназначено для испытаний аэродинамических конструкций, в частности для определения характеристик лопаток турбины с помощью измерения деформаций, путем использования активного сопротивления электрических тензометров.

Изобретение относится к контролю безопасности рельсового пути и предназначено для дистанционного обнаружения отклонений его параметров от нормальных, вызванных нарушением структуры рельсов и появлением опасных объектов в полотне.

Изобретение относится к области железнодорожного транспорта, а именно к способам определения неровностей и других дефектов рельсового пути. .

Изобретение относится к области контроля пьезокерамических элементов и приборов с использованием пьезокерамических элементов на наличие дефектов в них в процессе изготовления и может быть использовано на предприятиях-изготовителях пьезокерамических элементов и на предприятиях, изготавливающих приборы с использованием пьезокерамических элементов.

Изобретение относится к способам неразрушающего контроля и предназначено для диагностики состояния трубопроводов, используемых при добыче или для транспортировки нефти или газа, а именно для обнаружения и определения размеров различных типов неоднородных образований (структурных неоднородностей) на внутренних и внешних поверхностях стенки трубопровода.

Использование: для ультразвуковой дефектоскопии. Сущность изобретения заключается в том, что щуп (2) расположен внутри отверстия (26) и проходит в аксиальном направлении (L). Щуп (2) имеет множество расположенных в аксиальном направлении (L) следом друг за другом и на расстоянии друг от друга сенсорных колец (81-88), которые располагаются в плоскости перпендикулярно аксиальному направлению (L), и множество расположенных на расстоянии друг от друга ультразвуковых преобразователей (10). Ультразвуковые преобразователи (10) расположены в сегменте (30) соответствующего сенсорного кольца (81-88), который в направлении по периферии соответствующего сенсорного кольца (81-88) располагается, по меньшей мере, на одном участке периферии соответствующего сенсорного кольца (81-88). Для ультразвуковой дефектоскопии исследуемого объекта (6) исходящий от ультразвуковых преобразователей (10) сегмента (30) сенсорного кольца (81-88) ультразвуковой контрольный импульс вводится в исследуемый объект (6). Затем несколько эхо-сигналов (20) принимаются первым и вторым ультразвуковыми преобразователями (10), причем эти ультразвуковые преобразователи расположены на расстоянии друг от друга. Эхо-сигналы (20) вызваны отражением введенного ультразвукового контрольного импульса от одного и того же имеющегося в исследуемом объекте (6) дефекта (16). Технический результат: уменьшение времени проведения контроля исследуемого объекта, имеющего проходящее в аксиальном направлении высверленное отверстие, а также повышение достоверности при обнаружении и анализе дефектов. 2 н. и 20 з.п. ф-лы, 7 ил.

Использование: для выявления внутренних расслоений стенок труб. Сущность заключается в том, что осуществляют подготовку поверхности трубы к ультразвуковому контролю, сканирование ее ультразвуковым преобразователем, подключенным к прибору, и выявление мест расслоений по показаниям прибора, при этом на контролируемую поверхность наносят координатную сетку, выполняют измерения толщины стенки трубы в каждой ячейке координатной сетки последовательно двумя преобразователями с разными рабочими частотами, определяют наличие внутреннего расслоения на основании разности значений толщины стенки, регистрируемых в каждой ячейке координатной сетки двумя преобразователями, и изменения количества ячеек со значениями толщины, составляющими 20…80% от номинального значения толщины стенки трубы. Технический результат: повышение точности выявления внутренних расслоений стенок труб при наличии доступа только к наружной поверхности трубы. 3 з.п. ф-лы, 2 ил.
Использование: для контроля средних параметров волокон в волоконной массе. Сущность заключается в том, что волоконную массу заданного веса прочесывают, формируют в ленту, пропускают через фильеру, снабженную акустическими датчиками, и последовательно расположенные по направлению движения ленты, пластины воздушного конденсатора, отличающийся тем, что, с целью повышения точности, объективности и оперативности контроля датчики акустических колебаний и пластины воздушного конденсатора располагают взаимно перпендикулярно друг другу в плоскости, нормальной к направлению движения ленты, воздушный конденсатор включают в колебательный контур генератора акустических колебаний, подстройкой индуктивности в LC-контуре или резистора в RC-контуре добиваются требуемой опорной частоты генерируемых акустических колебаний на эталонном образце волоконной массы, пропускают через указанную систему акустических датчиков и конденсатора контролируемую волоконную массу в виде ленты, а о средних параметрах волокон судят по среднему акустическому сигналу и среднему отклонению частоты излучаемых колебаний от опорной по всей длине контролируемой ленты. Технический результат: повышение точности, объективности и оперативности контроля.

Использование: для контроля средних параметров волокон в волоконной массе. Сущность: заключается в том, что подготавливают три пакета прочеса волокна: два пакета волокна, принятого за эталон, и один - контролируемого волокна, причем один пакет из эталонного волокна должен иметь количество слоев, обеспечивающий максимальное, а второй - обеспечивающий минимальное изменение акустического сигнала в диапазоне контроля, из пакетов эталонного и контролируемого волокна вырезают требуемое количество образцов заданного размера и конфигурации, все полученные образцы выдерживают необходимое время в одинаковых климатических условиях, закладывают в кассету с двумя ячейками, первая из которых служит для закладки эталонного образца, а вторая, имеющая акустически прозрачные крышки-обкладки воздушного конденсатора, для закладки контролируемого образца, закладывают в первую ячейку эталонный образец с максимальным количеством слоев, во вторую закладывают эталонный образец с минимальным количеством слоев, прозвучивают последовательно первую и вторую ячейки, калибруют диапазон контроля акустического сигнала, затем эталонное волокно из второй ячейки заменяют на контролируемое, прозвучивают, по показаниям импеданса и известной характеристике импеданса воздушного конденсатора от веса, полученный акустический сигнал нормируют по весу до нормативного, а результат находят как отношение сигналов через максимальный эталонный образец к сигналу через контрольный образец. Технический результат: повышение точности, объективности и оперативности контроля в лабораторных условиях. 3 ил.

Использование: для ультразвукового контроля изделий. Сущность: способ, заключающийся в том, что выполняют ввод ультразвуковых колебаний в изделие, теневое прозвучивание изделия импульсами ультразвуковых колебаний и прием прошедших свод изделия ультразвуковых колебаний в воздушной среде приемным преобразователем, отличается тем, что ультразвуковой контроль изделия проводят не одним, а двумя ультразвуковыми приборами или двумя блоками одного прибора, из которых один используют для излучения и ввода ультразвуковых колебаний в изделие, а другой - для приема прошедших свод изделия ультразвуковых колебаний и отображения их на экране прибора, при этом работу блоков каждого из приборов не синхронизируют друг с другом, в частности, частоту следования импульсов ультразвуковых колебаний на излучающем блоке прибора устанавливают не равной, а более высокой по сравнению с частотой следования импульсов, синхронизирующих работу блоков приемного прибора, в том числе блока развертки, обеспечивающего отображение принятых ультразвуковых колебаний на экране прибора, и не кратной частоте следования синхроимпульсов, а о качестве изделия судят по наличию и амплитуде движущихся в соответствии с определенным соотношением на экране прибора импульсов. Технический результат: обеспечение возможности качественного и надежного ультразвукового контроля различных изделий.

Использование: для эхо-локации. Сущность заключается в том, что устройство для излучения и приема ультразвуковых волн содержит источник напряжения, к которому подключены последовательно в указанной очередности первый резистор, конденсатор и второй резистор, пьезоэлектрический преобразователь, одним своим выводом соединенный с «землей» источника напряжения, электронный ключ, подключенный одним выводом к точке соединения первого резистора с конденсатором, а вторым выводом к первому выводу третьего резистора, второй вывод которого соединен с «землей» источника напряжения, схему управления, выход которой подключен к управляющему входу электронного ключа, два встречно-параллельных диода, включенных параллельно третьему резистору, и приемно-усилительный тракт, вход которого подключен к первому выводу третьего резистора, при этом оно выполнено с возможностью создания на пьезоэлектрическом преобразователе перепада напряжения, превышающего напряжение источника питания, для генерации ультразвуковой волны за счет включения индуктивности, один из выводов которой подключен к точке соединения конденсатора и второго резистора, а второй вывод - к свободному выводу пьезоэлектрического преобразователя. Технический результат: повышение эффективности использования напряжения источника питания. 1 ил.

Использование: для контроля средних параметров волокон в волоконной массе. Сущность: заключается в том, что массу волокон, принятых за эталон, прочесывают с выходом на барабан с акустически прозрачной, например, сетчатой поверхностью, под поверхностью и над поверхностью сетчатой стенки барабана соосно, нормально к поверхности стенки, устанавливают излучающий и воспринимающий датчики акустических колебаний и обкладки воздушного конденсатора, после каждого полного оборота барабана фиксируют величину акустического сигнала и величину емкости воздушного конденсатора, отбирая от навоя образцы, стандартными методами определяют поверхностную плотность навоя и количество волокон в направлении прозвучивания, строят зависимости поверхностной плотности навоя от емкости воздушного конденсатора и величины акустического сигнала от количества волокон в направлении прозвучивания, устанавливают на зависимостях эталонное значение требуемого количества волокон, прочесывают контролируемое волокно с выходом на барабан, непрерывно регистрируя при каждом обороте барабана количество волокон в направлении прозвучивания до установленного эталонного значения, по достижении которого навой прекращают, а о среднем параметре волокон судят по величине поверхностной плотности полученного навоя. Технический результат: повышение точности, объективности и оперативности контроля. 1 ил.

Использование: для контроля качества акустического контакта при ультразвуковой дефектоскопии. Сущность: заключается в том, что в призму пьезопреобразователя излучают пучок ультразвуковых колебаний, измеряют амплитуду трансформированных поперечных колебаний и по ее величине судят о наличии или отсутствии акустического контакта, при этом трансформированную волну, отраженную от рабочей поверхности призмы, принимают специальной пьезопластиной для приема поперечных колебаний или упомянутую трансформированную волну, отраженную от рабочей поверхности призмы, далее трансформируют с использованием дополнительной плоскости призмы пьезопреобразователя из поперечной в продольную и регистрируют колебания обычной пьезопластиной, причем угол падения поперечной волны на дополнительную плоскость выбирают исходя из максимального коэффициента преобразования в продольные колебания. Технический результат: увеличение достоверности контроля качества акустического контакта при ультразвуковом контроле различных изделий. 2 ил.

Использование: для оценки поврежденности материала конструкций. Сущность: заключается в том, что оценка поврежденности материала (на стадии накопления рассеянных микроповреждений) эксплуатируемых элементов основана на определении критерия степени поврежденности металла элементов и определении по нему временной зависимости от момента контроля до вероятного разрушения элемента оборудования. При этом замеряют задержку поверхностной, сдвиговой и продольной волн ультразвуковых колебаний на поверхности металла нового элемента, в зоне аварийного разрушения металла элемента и на поверхности металла в контролируемой зоне элемента, находящегося в процессе эксплуатации. Технический результат: повышение достоверности контроля материала конструкций. 2 табл.

Использование: для акустической дефектоскопии неисправностей рельсового пути. Сущность: заключается в том, что в рельсы передают акустический сигнал, принимают отраженный сигнал, а по времени распространения акустических сигналов к месту неисправности и обратно определяют его координату, отраженный сигнал принимают пьезоэлектрическими преобразователями, установленными на подшипниках скольжения, расположенными на валу колесной пары, передачу и прием акустических сигналов осуществляют попеременно, при этом в качестве источника мощности акустических сигналов используют удары колесных пар на стыках межрельсового пути, стабилизируют импульсы постоянным весом локомотива в рабочем диапазоне его скоростей под углом наката α=0,001÷0,002°, регистрируют одновременно частоту следования сформированных ударных импульсов, фоновую интенсивность и частотный спектр акустического шума в интервале между первым и вторым ударными импульсами и отраженными сигналами от не менее 2-х колесных пар, преобразуя сформированные ударные импульсы в импульсы прямоугольной формы, определяют их длительность между временами заднего фронта и переднего фронта, разлагая прямоугольные импульсы с правой и левой колеи в ряд Фурье и выделяют основную гармонику правой и левой колеи, после чего проводят дальнейшую обработку полученных данных, определяя неисправности рельсового пути. Технический результат: обеспечение возможности выявления сложных дефектов в рельсовом пути. 4 ил.
Наверх