Высотомер



Высотомер
Высотомер
Высотомер

 


Владельцы патента RU 2501036:

Егоров Василий Андреевич (RU)
Иваницкий Анатолий Сергеевич (RU)
Часовской Александр Абрамович (RU)
Лапшин Виктор Сергеевич (RU)

Изобретение относится к радиолокационной технике и может быть использовано в летательных аппаратах, определяющих высоту до водной или земной поверхности. Достигаемый технический результат - увеличение точности определения высоты. Указанный результат достигается благодаря введению блока последовательных линий задержек, блока параллельных элементов совпадения, постоянного запоминающего устройства блока параллельных линий задержек и сумматора, при этом выход преобразователя дальности соединен с входом блока последовательных линий задержек, имеющего группу выходов, соединенную с группой входов блока параллельных элементов совпадения, вход которого соединен с выходом приемника, а группа выходов соединена через постоянное запоминающее устройство, с первой группой входов сумматора, имеющего вторую группу входов, соединенную через блок параллельных линий задержек с группой выходов преобразователя дальности и группу выходов, соединяющую с группой входов индикатора. 3 ил.

 

Изобретение относится к области локационной техники и может быть использовано в летательных аппаратах, определяющих высоту до водной или земной поверхности. Известен высотомер, изложенный в книге Давыдов и др. «Эксплуатация радиолокационного оборудования» 1990 г., стр.32-35. В его состав входит передающая и приемная антенны, узлы, обеспечивающие излучение частотно модулированного непрерывного сигнала и прием его отражения от водной поверхности или земли. Высота определяется как разность частот излучаемой и отраженной. Однако точность определения высоты не всегда достаточна. Известен высотомер, изложенный в книге «Радиотехнические системы» М., 1990 г., Ю.М. Казаринов, стр.355-356. В нем используются передающая и приемная антенны, которые имеют поле зрения, обеспечивающее определение высоты, независимо от крена, имеющегося у воздушных объектов. Синхронизатор выдает команду импульсному передатчику на излучение зондирующего импульса, который может быть и наносекундной длительности. Частота излучения импульсов должна обеспечить прием отраженных сигналов. При этом момент прихода переднего фронта отраженных сигналов характеризует высоту аппарата. В приемнике осуществляется преобразование отраженной электромагнитной или световой энергии в электрические сигналы. Высота может быть определена в преобразователе дальности по временному рассогласованию между синхроимпульсом и передним фронтом отраженного сигнала. Значение высоты отображается на индикаторе. Однако точность определения высоты может быть недостаточной без использования усложненных узлов. С помощью предлагаемого устройства увеличивается точность определения высоты без использования сложных узлов. Достигается это введением блока последовательных линий задержек, блока параллельных элементов совпадения, постоянного запоминающего устройства блока параллельных линий задержек и сумматора, при этом выход преобразователя дальности соединен с входом блока последовательных линии задержек, имеющего группу выходов, соединенную с группой входов блока параллельных элементов совпадения, вход которого соединен с выходом приемника, а группа выходов соединена через постоянное запоминающее устройство, с первой группой входов сумматора, имеющего вторую группу входов, соединенную через блок параллельных линий задержек с группой выходов преобразователя дальности и группу выходов, соединяющую с группой входов индикатора. На фиг.1 и в тексте приняты следующие обозначения:

1 - передающая антенна

2 - приемная антенна

3 - импульсный передатчик

4 - приемник

5 - синхронизатор

6 - преобразователь дальности

7 - блок последовательных линий задержек

8 - блок параллельных элементов совпадения

9 - постоянное запоминающее устройство

10 - блок параллельных линий задержек

11 - сумматор

12 - индикатор, при этом выход синхронизатора 5 соединен через импульсный передатчик 3 с входом передающей антенны 1, а также соединен с первым входом преобразователя дальности 6, имеющим второй вход, соединенный через приемник 4 с выходом приемной антенны 2 и соединенный с входом блока параллельных элементов совпадения 8, имеющий группу выходов и группу входов, соответственно соединенные через постоянное запоминающее устройство 9 с первой группой входов сумматора 11, И с группой выходов блока последовательных линий задержек 7, имеющий вход, соединенный с выходом преобразователя дальности 6, группа выходов которого соединена через блок параллельных линий задержек 10 со второй группой входов сумматора 11, имеющего группу выходов, соединенную с группой входов индикатора 12.

Работа устройства осуществляется следующим образом:

Синхронизатор 5 выдает команду импульсному передатчику 3 на излучение зондирующего импульса, который может быть и наносекундной длительности. Частота излучения импульсов обеспечивает прием отраженных сигналов. При этом передний фронт отраженных сигналов, используется для определения высоты, независимо от крена аппарата. Это обеспечивается подбором определенной ширины луча. Энергия с выхода импульсного передатчика 3 поступает в передающую антенну 1, с помощью которой энергия излучается в направлении водной поверхности или суши. У космических аппаратов луч может быть узконаправленным. Отраженная энергия поступает в приемную антенну 2, имеющую поле зрения не менее чем у антенны 1. С выхода антенны 2 энергия поступает в приемник 4, где преобразуется в электрические сигналы. Предварительное значение высоты определяется в преобразователе дальности 6 по временному рассогласованию между синхроимпульсом и передним фронтом сигнала с приемника. Пример конкретного исполнения преобразователя дальности представлен в книге Васин В.В., Степанов Б.М. «Справочник-задачник по радиолокации», М., 1977, стр.214, фиг.9.7. На фиг.2 показан вариант исполнения функциональной схемы преобразователя. В ее состав входит блок элементов совпадения 13, счетчик 14, линия задержки 15, триггер 16, линия задержки 17, элементы или 18, или 19, и линия задержки 20. С выхода синхронизатора 5 синхропульс поступает через первый вход преобразователь 6, через элемент или 18 на первый вход триггера 16, устанавливая его в единичное состояние и на вход счетчика 14, а также на вход блока последовательных линий задержек 7. Сигнал с выхода триггера поступает через линию задержки 17, через элемент или 19, на второй вход триггера 16, перебрасывая его в нулевое состояние. Так же сигнал проходит с выхода линии задержки 17 через линию задержки 20, через элемент или 18, снова на установку триггера 16 в единичное состояние и поступает на вход счетчика 14, а также на вход блока последовательных линий задержек 7. Таким образом, формируются тактовые импульсы с выхода элемента или 18.

Счетчик считает до тех пор, пока не поступит с приемника сигнал, разрешающий прохождение информации со счетчика 14 блоку элементов совпадения 13 на группу входов блока параллельных линий задержек 10, имеющего группу выходов, соединенную со второй группой входов сумматора 11. Сигнал с приемника 4 также проходит через линию задержки 15, устанавливая счетчик 14 в исходное состояние. На первую группу входов сумматора 11 поступает код, уточняющий значения высоты. Уточнение осуществляется благодаря также введению блока последовательных линий задержек 7, блока параллельных элементов совпадения 8 и постоянного запоминающего устройства 9. При этом тактовые импульсы с преобразователя 6 проходит через ряд последовательно соединенных линий задержек блока 7. Выход каждой линии задержки соединен с входом соответствующего элемента совпадения блока параллельных элементов совпадения 8. На другой вход каждого элемента поступает сигнал с приемника 4. В момент прихода переднего фронта сигнала с приемника сработает соответствующая схема совпадения. Следовательно, на группе выходов блока 8 будет иметь место десятичный код, поступающий в постоянное запоминающее устройство 9, где для каждого значения этого кода зашит соответствующий двоичный код, характеризующий определенное уточняющее значение, которое поступает в сумматор 11. Время задержки блока параллельных линий задержек 10 равно времени срабатывания постоянного запоминающего устройства 9, что обеспечивает одновременность прихода кодов в сумматор в момент прихода кода с преобразователя 6.

В результате суммирования код уточненной высоты поступает в индикатор 12 для отображения. На фиг.3 показаны узлы, входящие в блоки 7, 8, где приняты следующие обозначения: элементы совпадения 21-25, линии задержки 26-29.

Таким образом, точность определения высоты зависит от количества разрядов в уточняющем коде, то есть от количества линии задержек в блоке 7 и элементов совпадения в блоке 8. Предлагаемое устройство может быть использовано для определения высоты воздушных и космических объектов с необходимой точностью без усложнения аппаратуры. Оно эффективно при определении высоты низколетящих объектов. Устройство может работать и в оптическом диапазоне. Точность определения высоты может составлять 0,3 м.

Высотомер, состоящий из передающей антенны с увеличенным полем зрения, приемной антенны, импульсного передатчика, приемника, синхронизатора, преобразователя дальности и индикатора, где выход синхронизатора соединен через импульсный передатчик с входом передающей антенны, а также соединен с первым входом преобразователя дальности, имеющим второй вход, соединенный через приемник с выходом приемной антенны, отличающийся тем, что вводится блок последовательных линий задержек, блок параллельных элементов совпадения, постоянное запоминающее устройство, блок параллельных линий задержек и сумматор, при этом выход преобразователя дальности соединен с входом блока последовательных линий задержек, имеющего группу выходов, соединенную через блок параллельных элементов совпадения, вход которого соединен с выходом приемника, а группа выходов соединена через постоянное запоминающее устройство с первой группой входов сумматора, имеющего вторую группу входов, соединенную через блок параллельных линий задержек с группой выходов преобразователя дальности, и группу выходов, соединяющую с группой входов индикатора.



 

Похожие патенты:

Изобретение относится к области радиолокации и может использоваться в обнаружителях радиолокационных станций. .

Изобретение относится к области авиастроения и может быть использовано при создании вертолетов с соосным расположением винтов. .

Изобретение относится к радиолокационной технике и может быть использовано для обеспечения безопасности полета вертолетов на малых высотах, а именно для предупреждения пилотов вертолетов об опасности столкновений с высоковольтными линиями электропередачи (ЛЭП).

Изобретение относится к локационным системам обеспечения безопасности автомобиля при движении. .

Изобретение относится к локационным системам обеспечения безопасности автомобиля при движении. .

Изобретение относится к радиолокационной технике и может использоваться для обеспечения безопасности полетов летательных аппаратов, для контроля за сближением и стыковкой космических аппаратов (КА).

Изобретение относится к радиолокационной технике для определения местоположения объектов с использованием радиолокационных систем и может быть использовано для предупреждения столкновений летательного аппарата (ЛА) с воздушными препятствиями, находящимися в интервале высот выделенного в соответствии с нормами эшелонирования.

Изобретение может быть использовано для предупреждения столкновений ЛА с воздушными препятствиями, находящимися в интервале высот выделенного в соответствии с нормами эшелонирования. Достигаемый технический результат - повышение безопасности полета путем обеспечения автономного автоматического контроля полета и предупреждения столкновений с объектами в вертикальной плоскости в выделенном интервале высот полета между эшелонами. Указанный результат достигается за счет того, что по измеренному значению дальности и заданному значению высотного интервала между эшелонами определяют значение зоны перекрытия диаграммы направленности антенны в вертикальной плоскости, рассчитывают углы наклона антенны в пределах которых обеспечивается зона перекрытия. При сканировании антенны в вертикальной плоскости относительно стабилизированного положения в пространстве в пределах рассчитанных углов наклона определяют положение объекта в вертикальной плоскости относительно заданного высотного интервала между эшелонами в зоне перекрытия. При нахождении опасного объекта в зоне перекрытия и при достижении предварительно установленного значения дальности опасного сближения формируют сигнал изменения траектории полета, который подают на автопилот. 2 н. и 1 з.п. ф-лы, 3 ил.

Изобретение предназначено для определения расстояния между воздушными судами в полете. Достигаемый технический результат - упрощение устройства. Указанный результат достигается тем, что устройство для определения расстояния между воздушными судами содержит два измерителя азимутов, два измерителя наклонных дальностей, три сумматора, четыре блока умножения, блок вычисления косинуса, блок вычисления корня квадратного и индикатор, соединенные между собой определенным образом. 2 ил.

Изобретение относится к области радиотехники, а именно к области навигационных измерений, и может быть использовано в наземном комплексе управления орбитальной группировкой навигационных космических аппаратов (НКА). Технический результат заключается в расширении функциональных возможностей и повышении помехоустойчивости, надежности дуплексной радиосвязи между наземным пунктом контроля и спутником навигационной системы ГЛОНАСС и точности измерения радиальной скорости и местоположения указанного спутника. Для этого наземный пункт контроля содержит задающий генератор 1, регистр 2 сдвига, фазовый манипулятор 3, гетеродины 4, 11 и 33, смесители 5, 12, 17, 34, 43 и 44, усилитель 6 первой промежуточной частоты, усилители 7, 10, 41 и 42 мощности, дуплексер 8, приёмопередающую антенну 9, усилители 13, 35, 45 и 46 третьей промежуточной частоты, удвоитель 14 фазы, делитель 15 фазы на два, узкополосные фильтры 16 и 18, измеритель 19 частоты Доплера, корреляторы 20, 36, 47 и 48, перемножители 21, 49 и 50, фильтры 22, 51 и 52 нижних частот, экстремальные регуляторы 23, 53 и 54, блоки 24, 55 и 56 регулируемой задержки, индикатор 26 дальности, ключ 38, приемные антенны 39 и 40, а спутник содержит приемопередающую антенну 26, дуплексер 27, усилители 28 и 32 мощности, гетеродины 29 и 59, смесители 30 и 60, усилитель 31 второй промежуточной частоты, усилитель 61 третьей промежуточной частоты, коррелятор 62, пороговый блок 63 и ключ 64. 2 н.п. ф-лы, 6 ил.
Группа изобретений относится к области информационных систем общего пользования и интеллектуальным транспортным системам (ИТС). Интеллектуальную транспортную систему устанавливают в комплексе на автотранспортном средстве, полностью адаптируют к его электрической системе, используют непрерывно в автоматическом и ручном режиме, совместно со средствами сотовой связи, Интернетом и навигационными спутниковыми системами, и осуществляют видео-наблюдение и контроль над автотранспортным средством на расстоянии с помощью сотового аппарата, поддерживающего технологию 3-G. Интеллектуальная транспортная система состоит из следующих основных, взаимосвязанных между собой конструктивных элементов: системы видео-наблюдения, видео-регистратора, сенсорного дисплея, процессорной платы с SIM-модулем, приемопередатчика, аварийного блока, с модулем противоугонной системы, бесперебойного источника питания, мультимедийного устройства, измерителя расстояния, превентивной системы безопасности. Достигается обеспечение комплексной защиты автотранспортного средства, водителя, пассажиров, пешеходов и создания благоприятных условий дорожного движения в целом. 2 н. и 2 з.п. ф-лы.

Изобретение относится к радионавигации и может использоваться в системах посадки летательных аппаратов по приборам. Достигаемый технический результат изобретения заключается в исключении постоянного накапливания с течением времени ошибки измерения. Предлагаемые способ и устройство используют радиолокационные средства навигации. Поляризационно-модуляционный способ радиолокационного измерения угла крена летательного аппарата и устройство для его реализации заключаются в том, что в точке с известными координатами располагают пассивный поляризационно-анизотропный радиолокационный отражатель электромагнитных волн с горизонтальной линейной собственной поляризацией. С борта летательного аппарата облучают радиолокационный отражатель линейно поляризованной электромагнитной волной, плоскость поляризации которой вращается с некоторой частотой. Принимают на борту летательного аппарата отраженную электромагнитную волну, поляризация которой совпадает с поляризацией излученной электромагнитной волны. По измеренной на выходе приемника фазе спектральной составляющей на удвоенной частоте вращения плоскости поляризации принимаемых сигналов определяют угол крена летательного аппарата. 2 н.п. ф-лы, 3 ил.

Изобретение относится к радионавигационным системам и может быть использовано в системах обеспечения посадки летательных аппаратов, в том числе беспилотных, а также в системах обеспечения судовождения. Достигаемый технический результат - улучшение массогабаритных характеристик системы. Указанный результат достигается снижением габаритов используемых антенн, что обеспечивает значительное уменьшение массы и габаритов систем обеспечения посадки, по сравнению с известными курсоглиссадными системами. 4 ил.

Изобретения относятся к области авиации и могут быть использованы для обеспечения посадки летательного аппарата (ЛА). Достигаемый технический результат - повышение безопасности посадки. Указанный результат достигается тем, что способ захода на посадку ЛА включает измерение курсовых углов ультракоротковолновых радиостанций (КУР), измерение высоты полета, снижение к взлетно-посадочной полосе с расчетной вертикальной скоростью, при этом на борту ЛА формируют глиссаду снижения по дальности, получаемой от комплекта системы предупреждения столкновений (СПС), код индивидуального опознавания которого опознается на борту ЛА как предназначенный для посадки, и по высоте, получаемой от бортовых высотомеров, и индицируют ее на высотомерах в виде метки заданной высоты, причем экипаж выдерживает заданную глиссаду снижения, устраняя рассогласование между заданной и текущей высотой полета посредством метки заданной высоты, и (или) формируют глиссаду снижения по сигналу рассогласования между заданным и текущим углами наклона глиссады, при этом указанный сигнал рассогласования поступает в бортовую систему автоматического управления (САУ); на рабочем месте диспетчера, по данным о дальности и высоте полета, получаемым от наземного комплекта СПС, формируют глиссаду снижения в виде заданной высоты и в виде разницы между заданной и текущей высотой ЛА (и индицируют ее на индикаторе), по которой диспетчер определяет вертикальное отклонение от глиссады, а по данным о КУР и дальности, получаемым от наземного комплекта СПС, и по данным о КУР, получаемым от наземного УКВ-радиопеленгатора и индицируемым на индикаторе, диспетчер определяет боковое уклонение, дает команды управления голосом по радио, определяя по индикатору рассогласование между заданной и текущей траекторией полета. Система посадки летательного аппарата с применением системы предупреждения столкновений (СПС) включает в себя установленные перед торцом ВПП УКВ-радиостанции, УКВ-радиопеленгатор, антенну командной УКВ-радиостанции, комплект системы предупреждения столкновений (СПС), код индивидуального опознавания которого опознается на борту ЛА как предназначенный для посадки, вычислитель заданной высоты и отклонения от заданной высоты, индикатор, связанный своими входами с выходами наземного комплекта СПС по каналам высоты, азимута, дальности, с выходами вычислителя заданной высоты и отклонения от заданной высоты, а также с выходом УКВ-радиопеленгатора, кроме того, указанный вычислитель связан своими входами с выходами наземного комплекта СПС по каналам дальности и измеренной высоты до ЛА, с выходами задатчиков температуры и давления воздуха у земли, при этом на борту ЛА установлены бортовая УКВ-радиостанция, высотомеры, в комплект СПС, установленный на ЛА, радиотехнически связанный с аппаратурой наземного комплекта СПС, дополнительно включены дешифратор (блок опознавания кода посадки), блок задатчика кода посадки, два вычислителя заданной высоты и отклонения от заданной глиссады снижения, высотомер, датчик температуры воздуха у земли. 2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к области радиолокации и может быть использовано для обеспечения безопасной посадки вертолета в условиях отсутствия или ограниченной видимости. Достигаемый технический результат - обеспечение безопасной посадки вертолета в сложных метеоусловиях, а также при полном отсутствии или ограниченной видимости, при одновременном снижении массогабаритных характеристик радиолокационной станции (РЛС). Указанный результат достигается за счет того, что РЛС содержит антенное устройство, привод кругового вращения с вращающимся волноводным переходом, приемопередающее устройство, блок обработки информации и радиопрозрачный обтекатель, при этом антенное устройство состоит из вращающейся отклоненной на фиксированный угол от вертикали антенны рупорного типа с противовесом, позволяющей при малых габаритах антенны формировать узкую диаграмму направленности антенны в 3-мм диапазоне длин волн, и направленной вертикально вниз неподвижной антенны, выполняющей роль дополнительного канала данных об окружающей обстановке, подключенных к единому приемопередатчику через волноводный переключатель. 3 ил.

Изобретение относится к области радиолокационных измерений и предназначено для проверки наличия у воздушного объекта (ВО) траекторных нестабильностей (ТН) движения в виде рысканий планера в режиме перестройки несущей частоты от импульса к импульсу. Достигаемый технический результат - выявление факта наличия траекторных нестабильностей полета ВО в режиме перестройки несущей частоты от импульса к импульсу. Указанный результат достигается за счет того, что формируют из отраженных воздушным объектом сигналов импульсные характеристики (ИХ) в два последовательных момента времени и сравнивают их структуру между собой, а по результатам сравнения, а именно по степени совпадения сформированных ИХ принимают решение о наличии или отсутствии у ВО соответствующих ТН. Способ определяет необходимую длительность пачек сигналов с перестройкой частоты и величину интервала между двумя используемыми пачками отраженных сигналов. Достижение высокой разрешающей способности по времени задержки или по продольной координате достигается методом обратного быстрого преобразования Фурье с пачкой отраженных разночастотных импульсов, прошедших согласованную внутрипериодную обработку. 5 ил.

Изобретение относится к радионавигации и может использоваться в навигационной системе летательного аппарата (ЛА), применяемой для определения ориентации относительно земли, например, при заходе ЛА на посадку по приборам. Достигаемый технический результат - снижение погрешности измерения угла крена. Указанный результат достигается за счет того, что из точки с известными координатами излучают линейно-поляризованные электромагнитные волны, вектор напряженности электрического поля которых совпадает с вертикальной плоскостью, приемная антенна на борту летательного аппарата принимает электромагнитные волны, сигнал с выхода приемной антенны поступает на два вращателя плоскости поляризации, углы поворота плоскости поляризации которых равны по абсолютной величине, но противоположны по направлению поворота, сигналы с выхода каждого вращателя плоскости передают в бортовую цифровую вычислительную машину, в которой осуществляют измерение значений амплитуд сигналов и определяют угол крена летательного аппарата путем использования априорной зависимости, связывающей угол крена и значения амплитуд на выходе вращателей. 1 ил.
Наверх