Брушитовый гидравлический цемент (варианты)


 


Владельцы патента RU 2502525:

Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) (RU)

Изобретение относится к медицине. Описан брушитовый гидравлический цемент для восстановления костных тканей, содержащий порошок α-трикальцийфосфата и затворяющую жидкость, представляющую собой раствор фосфата магния в фосфорной кислоте, где цементный порошок содержит гранулы карбоната кальция размером 50-100 мкм при следующем содержании компонентов: α-трикальцийфосфата - 90-95% масс., карбонат кальция - 5-10% масс. Описан брушитовый гидравлический цемент для восстановления костных тканей, содержащий порошок α-трикальцийфосфата и затворяющую жидкость, представляющую собой раствор фосфата магния в фосфорной кислоте, где цементный порошок содержит гранулы карбоната кальция размером 50-100 мкм при следующем содержании компонентов: α-трикальцийфосфат - 90-95% масс., карбонатгидроксиапатит - 5-10% масс. Кальцийфосфатные цементы характеризуются одновременно способностью к реакционному твердению, формуемостью, биосовместимостью, отсутствием токсичных побочных продуктов, а также потенциалом замещения вновь образуемой костной ткани. 2 н.п. ф-лы, 4 пр.

 

Изобретение относится к медицине, а именно, к остеопластической хирургии, стоматологии. Материал предназначен для восстановления костных тканей после онкологических и челюстно-лицевых операций, а также лечения различных дефектов костных тканей травматического генеза.

Известен ряд гидравлических кальций-фосфатных цементов (КФЦ), представляющих собой смесь двух или более компонентов, одним из которых является вода или водный раствор фосфатов щелочных металлов, а твердым компонентом - один или несколько фосфатов кальция. При смешивании реагентов образуется новый фосфат кальция, а в результате реакций растворения-осаждения последнего происходит твердение и формирование цементного камня.

Кальций-фосфатные цементы, применяемые в медицине, должны обладать комплексом свойств, таких как биосовместимость, остеокондуктивность и скорость биодеградации, согласованная с процессами остеогенеза, прочность затвердевшего цемента, достаточная для несения минимальных нагрузок в процессе формирования собственной костной ткани. К достоинствам этих материалов можно отнести, во-первых, их способность заполнять дефекты самой сложной конфигурации и объема, во-вторых, малую инвазивность вмешательств, то есть возможность введения данных материалов в инъекционной форме непосредственно в зону дефекта под контролем УЗИ или рентгена, без обширных оперативных вмешательств и возможность 3D фиксации.

Поскольку КФЦ характеризуются одновременно способностью к реакционному твердению, формуемостью, биосовместимостью, отсутствием токсичных побочных продуктов, а также потенциалом замещения вновь образуемой костной ткани, они являются крайне перспективным материалом для стоматологии и ортопедии. Возможность приготовления смеси непосредственно перед операцией является важным свойством КФЦ, поскольку облегчает доставку материала в требуемое место и обеспечивает отличное прилегание к поверхности кости (Komath M., Varma H. Development of a fully injectable calcium phosphate cement for orthopedic and dental applications // Bull. Mater. Sci.2003. Vol.26. P.415-422, Temenoff J.S., Mikos A.G. Injectable biodegradable materials for orthopedic tissue engineering // Biomaterials. 2000. Vol.21. P.2405-2412). Недостатком вышеописанных цементов является относительно высокая кислотность (рН 5-6)

Кальций-фосфатные цементы по фазовому составу продукта твердения подразделяются на апатитовые и брушитовые. Преимуществом брушитовых цементов является существенно большая скорость биодеградации в жидкостях организма по сравнению с апатитовыми цементами, что является важным фактором при использовании регенеративных подходов к восстановлению костных тканей. Однако прочность брушитовых цементов находится на уровне 8-10 МПа, что является недостаточным даже для кратковременного (3-4 месяца) несения нагрузок в организме (Ambard A.J., Mueninghoff L. Calcium phosphate cement: review of mechanical and biological properties // J. Prosthodont.2006. Vol.15. P.321-328).

Задачей данного изобретения является оптимизация состава цементного порошка для повышения прочности цемента после твердения.

Наиболее близким по технической сущности и результату к предлагаемому способу является патент США №6,733,582 Brushite hydraulic cement stabilized with a magnesium salt Bohner et al, в котором конечным продуктом затвердевшего цемента является брушит. В качестве исходных компонентов цементного порошка использована смесь двух или более фосфатов кальция, например, монокальцийфосфат моногидрат и β-трикальцийфосфат или α-трикальцийфосфат. Для стабилизации фазового состава конечного продукта выбран фосфат магния с растворимостью менее 100 г/л. При добавлении в цемент гранул ГА размером 200-300 мкм прочность варьирует от 3,2 до 5,8 МПа (прочность увеличивается при добавлении сульфата гентамицина). Недостатком вышеприведенных цементов является их низкая механическая прочность.

Задачей, на решение которой направлено настоящее изобретение, заключается в оптимизации состава цементного порошка для повышения прочности цемента после твердения.

Техническим результатом изобретения является получение брушитового цемента с повышенными прочностными характеристиками (прочность при сжатии 15-20 МПа).

Технический результат достигается двумя вариантами состава брушитового гидравлического цемента.

По первому варианту технический результат достигается тем, брушитовый гидравлический цемент для восстановления костных тканей, содержащий порошок α-трикальцийфосфата и затворяющую жидкость, представляющую собой раствор фосфата магния в фосфорной кислоте, согласно изобретению, цементный порошок содержит гранулы карбоната кальция размером 50-100 мкм при следующем содержании компонентов:

α-трикальцийфосфата - 90-95% масс.;

карбонат кальция - 5-10% масс.

По второму варианту технический результат достигается тем, брушитовый гидравлический цемент для восстановления костных тканей, содержащий порошок α-трикальцийфосфата и затворяющую жидкость, представляющую собой раствор фосфата магния в фосфорной кислоте, согласно изобретению, цементный порошок содержит гранулы карбоната кальция размером 50-100 мкм при следующем содержании компонентов:

α-трикальцийфосфата - 90-95% масс.;

карбонатгидроксиапатит - 5-10% масс.

Сущность изобретения заключается в том, что при введении керамических частиц в цементный порошок на пути трещины, возникающей при разрушении цемента, возникает препятствие в виде керамической гранулы, для преодоления которого необходима дополнительная энергия. Таким образом, для разрушения цемента необходимо приложить большую нагрузку, т.е. прочность цемента увеличивается.

Уменьшение количества вводимых керамических гранул менее 5% масс, не дает желаемого эффекта, прочность цемента не превышает 12 МПа. Увеличение количества вводимых гранул затрудняет смешивание цемента, создает неоднородность цементного образца, способствует возникновению трещин, снижающих прочность.

Значительное, по сравнению с прототипом (5,8 МПа) увеличение прочности до 20 МПа достигается введением в состав цемента 5-10% масс, керамических гранул карбоната кальция или карбонатгидроксиапатита размером 50-100 мкм.

Пример 1.

9 г α-трикальцийфосфата смешивают с 1 г гранул карбоната кальция размером 50-100 мкм, добавляют 7,5 г 40%-ного раствора фосфата магния в фосфорной кислоте с рН 1,8. Смешивание проводят на стекле пластиковым шпателем при 25°С в течение 5-7 мин. Образовавшуюся после смешения пастообразную массу формуют в цилиндрической форме диаметром 8 мм, через 10 мин сформованный образец извлекают из формы и помещают в термостат при 37°С и 100% влажностью на сутки. Через 24 часа образец имеет прочность при сжатии 20 МПа.

Пример 2.

9,5 г α-трикальцийфосфата смешивают с 0,5 г гранул карбонатгидроксиапатита размером 50-100 мкм, добавляют 7,5 г 40%-ного раствора фосфата магния в фосфорной кислоте с рН 1,8. Смешивание проводят на стекле пластиковым шпателем при 25°С в течение 5-7 мин. Образовавшеюся после смешения пастообразную массу формуют в цилиндрической форме диаметром 8 мм, через 10 мин сформованный образец извлекают из формы и помещают в термостат при 37°С и 100% влажностью на сутки. Через 24 часа образец имеет прочность при сжатии 18 МПа.

Пример 3.

8,5 г α-трикальцийфосфата смешивают с 1,5 г гранул карбоната кальция размером 50-100 мкм, добавляют 7,5 г 40%-ного раствора фосфата магния в фосфорной кислоте с рН 1,8. Смешивание проводят на стекле пластиковым шпателем при 25°С в течение 5-7 мин. Образовавшуюся после смешения пастообразную массу формуют в цилиндрической форме диаметром 8 мм, через 10 мин сформованный образец извлекают из формы и помещают в термостат при 37°С и 100% влажностью на сутки. Через 24 часа образец имеет прочность при сжатии 3 МПа, на изломе видно неравномерное распределение гранул, по краям образца сформировались микротрещины.

Пример 4.

9 г α-трикальцийфосфата смешивают с 1 г гранул карбоната кальция размером 200-300 мкм, добавляют 7,5 г 40%-ного раствора фосфата магния в фосфорной кислоте с рН 1,8. Смешивание проводят на стекле пластиковым шпателем при 25°С в течение 5-7 мин. Образовавшуюся после смешения пастообразную массу формуют в цилиндрической форме диаметром 8 мм, через 10 мин сформованный образец извлекают из формы и помещают в термостат при 37°С и 100% влажностью на сутки. Через 24 часа образец имеет прочность при сжатии 5 МПа. На изломе заметно неравномерное распределение гранул по объему, по краям образца - дефекты в виде трещин и сколов.

1. Брушитовый гидравлический цемент для восстановления костных тканей, содержащий порошок α-трикальцийфосфата и затворяющую жидкость, представляющую собой раствор фосфата магния в фосфорной кислоте, отличающийся тем, что цементный порошок содержит гранулы карбоната кальция размером 50-100 мкм при следующем содержании компонентов, мас.%:

α-трикальцийфосфат 90-95
карбонат кальция 5-10

2. Брушитовый гидравлический цемент для восстановления костных тканей, содержащий порошок α-трикальцийфосфата и затворяющую жидкость, представляющую собой раствор фосфата магния в фосфорной кислоте, отличающийся тем, что цементный порошок содержит гранулы карбонатгидроксиапатита размером 50-100 мкм при следующем содержании компонентов, мас.%:

α-трикальцийфосфат 90-95
карбонатгидроксиапатит 5-10



 

Похожие патенты:
Изобретение относится к области медицины и может применяться для протезирования костных структур челюстно-лицевого скелета, в качестве системы доставки лекарственных средств и в качестве матрицы в конструкциях тканевой инженерии.
Изобретение относится к медицине. .
Изобретение относится к области медицины и касается цементных материалов для пластической реконструкции поврежденных костных тканей. .

Изобретение относится к области медицины, а именно к стоматологии, и касается получения цемента брушитного типа для замещения костных дефектов. .

Изобретение относится к медицине. .

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ приготовления инъецируемого кальций-фосфатного костного цемента в форме апатита, высвобождающего гем-бисфосфоновое соединение, причем указанный способ включает добавление бисфосфоновой кислоты или ее соли или твердого предшественника кальция, модифицированного бисфосфоновой кислотой или ее солью, в твердую фазу цемента или в жидкую фазу цемента, причем указанный твердый предшественник кальция выбирают из ортофосфатов кальция и нефосфатных солей кальция, таких как CaCO3 или CaSO 4.

Изобретение относится к медицине. Протез, в частности, для, по меньшей мере, частичной замены длинной трубчатой кости включает вставное соединение для соединения штыря с другой деталью протеза.

Изобретение относится к устройству и способу лечения бактериальных заболеваний. Устройство включает троакар, перфоратор, толкатель, серебряный электрод, временный электрод, иглу, изготовленную из биологически совместимого материала, имеющего отрицательный электрический потенциал относительно серебра, один или более вторых электродов из того же материала, что и игла, внешний источник постоянного напряжения и измеритель электропроводности.

Изобретение относится к области медицины, в частности стоматологии, и предназначено для замещения дефектов нижней челюсти, возникших после оперативных вмешательств, по поводу устранения последствий травм, воспалительных заболеваний или операций, направленных на удаление опухолей и опухолеподобных образований и эндопротезирования мыщелкового отростка нижней челюсти.

Изобретение относится к пористой трехмерной матрице из монетита, который является биосовместимым, имеет структурированную пористость и предварительно заданную структуру и обладает способностью к реабсорбции, а также к способу синтеза, обеспечивающему получение указанного материала, и применению этого материала.

Изобретение относится к восстановительной и реконструктивной челюстно-лицевой хирургии. .

Изобретение относится к медицинским изделиям и к способу получения медицинских изделий. .
Изобретение относится к области медицины и касается цементных материалов для пластической реконструкции поврежденных костных тканей. .

Изобретение относится к медицине и ветеринарии, предназначено для применения в трансплантологии, травматологии, хирургии и онкологии и может быть использовано для замещения костных дефектов.

Изобретение относится к медицине и ветеринарии, а именно к реконструктивной хирургии, предназначено для применения в области трансплантологии, травматологии, хирургии и онкологии.

Изобретение относится к медицине, а именно к составу пористой биостеклокерамики, содержащей мелкодисперсное натрийсиликатное стекло, гранулы синтетических минералов - фосфатов кальция, входящих в состав нативной костной ткани, волластонита, образующегося при кристаллизации натрийсиликатного стекла, а также добавку карбоната и углеродсодержащего порообразователя.

Изобретение относится к оперативной гинекологии и может быть использовано при лечении женщин с опущением передней стенки влагалища с высоким риском рецидива после экстирпации матки.

Изобретение относится к оперативной гинекологии и может быть использовано при лечении женщин, живущих половой жизнью, с опущением задней стенки влагалища. Для этого осуществляют реконструкцию заднего отдела тазового дна.

Изобретение относится к медицине. Ограничивающая система для образования ограничения в пациенте содержит имплантируемое ограничивающее устройство, которое является регулируемым и выполнено с возможностью образования ограничения в пациенте; и имплантируемый насос, соединенный с возможностью прохождения текучей среды с ограничивающим устройством и имеющий множество исполнительных механизмов, предназначенных для изменения формы при подаче к ним энергии.

Изобретение относится к химико-фармацевтической промышленности и представляет собой искусственную твердую мозговую оболочку, изготовленную из электропряденых слоев при помощи технологии электропрядения, при этом электропряденый слой, состоит, по крайней мере, из гидрофобного электропряденого слоя, который изготовлен из одного или нескольких гидрофобных полимеров, выбранных из полимолочной кислоты и поликапролактона.

Изобретение относится к пористой трехмерной матрице из монетита, который является биосовместимым, имеет структурированную пористость и предварительно заданную структуру и обладает способностью к реабсорбции, а также к способу синтеза, обеспечивающему получение указанного материала, и применению этого материала.
Наверх