Судовая электроэнергетическая установка


 


Владельцы патента RU 2503580:

Закрытое акционерное общество "РЭП Холдинг" (RU)

Изобретение относится к области судостроения. Судовая электроэнергетическая установка содержит главный двигатель, соединенный с главным генератором, и локальную систему управления. Главный генератор через электрическую цепь, имеющую первый автоматический выключатель, главные шины и соединенные через трансформатор шины электропотребителей, преобразователь частоты и дополнительный двигатель, соединен с гребным электродвигателем. Дополнительный двигатель соединен с дополнительным генератором, подключенным через второй автоматический выключатель к шинам электропотребителей. В качестве главного и дополнительного генератора использованы трехфазные генераторы с электромагнитным возбуждением, снабженные на выходе первым и вторым датчиками тока фаз. Локальная система управления выполнена с возможностью подключения к системе управления верхнего уровня и подсоединена к первому и второму датчикам тока фаз и датчику напряжения, установленному на шинах электропотребителей. Преобразователь частоты выполнен управляемым обратимым и содержит последовательно соединенные управляемые выпрямитель и инвертор, снабженные собственным контроллером. В выходной силовой цепи выпрямителя и входной силовой цепи инвертора установлены датчики тока, связанные с информационным входом контроллера. С силовым входом управляемого выпрямителя соединен дроссель, подсоединенный другим выводом к датчику напряжения фаз и третьему автоматическому выключателю, подключенному выводом к главным шинам. Датчик напряжения фаз связан с контроллером выпрямителя. В цепи между датчиком тока выходной силовой цепи выпрямителя и датчиком тока входной силовой цепи инвертора установлен конденсаторный накопитель звена постоянного тока и датчик постоянного напряжения, подключенный к обоим контроллерам. Контроллеры подсоединены к задатчику режимов, связанному с локальной системой управления. Достигается повышение качества и эффективного использования электроэнергии на шинах питания. 1 ил.

 

Изобретение относится к области судостроения, в частности к судовым электроэнергетическим установкам с преобразователями частоты и гребными электродвигателями. В качестве преобразователей используются различные схемы с неуправляемыми выпрямителями, обладающие высокими энергетическими показателями и надежностью.

Так известна аналогичная судовая электроэнергетическая установка (Григорьев А.В., Ляпидов К.С., Макаров Л.С. Единая электроэнергетическая установка гидрографического судна на базе системы электродвижения переменного тока // Судостроение, 2006, №4, с.33-34), содержащая главные дизели, вращающие роторы главных трехфазных синхронных генераторов, выводы обмоток статоров которых подключены через автоматические выключатели к трехфазной линии питания главного распределительного щита. В состав известной судовой электроэнергетической установки входит также аварийный дизель-генератор, трехфазная обмотка статора которого через автоматический выключатель подключена к трехфазной линии аварийного распределительного щита, а линия аварийного распределительного щита через автоматический выключатель подключена к трехфазной линии главного распределительного щита, и стояночный дизель-генератор с трехфазной обмоткой статора через автоматический выключатель, также подключенной к трехфазной линии главного распределительного щита. К трехфазной линии главного распределительного щита подключены гребные электроприводы, состоящие из преобразователей частоты, включающих 12-пульсные выпрямители, автономные инверторы напряжения и гребные электродвигатели переменного тока с установленными на их валах винтами.

Однако в аналоге гребные электроприводы, которые являются на судах с электродвижением основными потребителями электроэнергии (мощность гребных электроприводов может превышать суммарную мощность остальных судовых потребителей), питаются не напрямую от линии главного распределительного щита, а через трансформаторы, что снижает КПД судовой электроэнергетической установки, повышает ее стоимость, массу и габариты.

Кроме того, эта установка имеет следующие недостатки:

- повышенный уровень гармоник в токе, потребляемом из сети;

- питание инверторов нестабилизированным выпрямленным напряжением и отсутствие возможности рекуперации электроэнергии в сеть судовых электропотребителей в маневровых режимах;

- электромеханическая компенсация реактивной мощности только при переводе стояночного генераторного агрегата судовой электростанции в режим компенсатора;

- отсутствия возможности симметрирования трехфазной системы питающих напряжений при различной загрузке фаз.

Известна судовая электроэнергетическая установка (патент №2436708, опубл. 20.12.2011, авторы: Васин И.М., Сеньков А.П., Паперж Ю.Е., Токарев Л.Н.), принятая за прототип, содержащая главные дизели или турбины и главные синхронные генераторы, обмотки статора которых через автоматические выключатели подключены к линии питания главного распределительного щита, преобразователи частоты, каждый из которых состоит из 12-пульсного выпрямителя и автономного инвертора, к выходу которого подключен гребной электродвигатель. В установку также входит аварийный дизель-генератор, обмотка статора которого через автоматический выключатель подключена к линии питания аварийного распределительного щита. На статоре каждого главного генератора размещаются две аналогичные трехфазные обмотки, линейные напряжения которых смещены на 30 электрических градусов. Главный распределительный щит имеет две трехфазные линии питания, к каждой из которых через автоматические выключатели подключены трехфазные обмотки статоров главных генераторов, линейные напряжения которых совпадают по фазе. К двум трехфазным линиям главного распределительного щита через автоматические выключатели подключены входы 12-пульсных выпрямителей, входящих в состав преобразователей частоты, питающих гребные электродвигатели. К каждой из двух трехфазных линий главного распределительного щита через автоматические выключатели подключены первичные обмотки двух трехфазных трансформаторов, соединенные звездой. При этом вторичная обмотка трансформатора, подключенного к первой трехфазной линии, соединена звездой, а вторичная обмотка второго трансформатора, подключенного ко второй линии, - треугольником. Вторичные обмотки обоих трехфазных трансформаторов через автоматические выключатели присоединены к трехфазной линии питания распределительного щита остальных судовых потребителей, к которой через автоматические выключатели подключена обмотка статора стояночного дизель-генератора, трехфазная линия распределительного щита аварийного дизель-генератора, а также фидеры и распределительные щиты отдельных судовых потребителей.

Недостатками данной установки являются:

- применения нестандартных многофазных генераторов с более сложной электромагнитной системой возбуждения, которая должна обеспечить равномерное регулирование магнитных потоков для равенства амплитуд напряжений в двух отдельных трехфазных систем, а также конструктивного обеспечения точности заданных фазовых сдвигов между обмотками, что вызывает дополнительное повышение пульсаций напряжения на выходе 12-пульсных выпрямителей, возникновение уравнительных токов при синхронной работе с другим аналогичным генератором;

- повышенный уровень гармоник в токе, потребляемом из сети;

- пониженная надежность, экономичность, повышенные габариты и масса за счет применения генераторов с двумя отдельными трехфазными системами выходных напряжений и комплектов оборудования к ним;

- питание инверторов нестабилизированным выпрямленным напряжением и отсутствие возможности рекуперации электроэнергии в сеть судовых электропотребителей в маневровых режимах;

- электромеханическая компенсация реактивной мощности потребителей только с помощью штатных генераторов судовой электростанции, переводимых в режим компенсаторов;

- отсутствия возможности симметрирования трехфазной системы питающих напряжений при различной загрузке фаз.

Задача, решаемая изобретением, - расширение арсенала средств и создание новой судовой электроэнергетической установки с улучшенными энергетическими характеристиками и расширенными функциональными возможностями. Достигаемый технический результат заключается в обеспечении возможности:

- повышения качества и эффективного использования электроэнергии на шинах питания от главных трехфазных генераторов с электромагнитным возбуждением за счет управляемого выпрямителя, обеспечивающего фильтрацию потребляемого тока, стабилизацию выходного напряжения и возможность рекуперации электроэнергии для использования судовыми потребителями;

- одновременного использования управляемого выпрямителя преобразователя частоты данной установки в качестве статического компенсатора реактивной мощности, в том числе и для симметрирования по модулю и фазе векторов напряжений в питающей сети при различной загрузке ее фаз.

Поставленная комплексная задача решается изменением функциональной схемы установки.

Заявляемая судовая электроэнергетическая установка содержит главный двигатель, соединенный с главным генератором, который через электрическую цепь, имеющую в своем составе первый автоматический выключатель, главные шины и преобразователь частоты, соединен с гребным электродвигателем, подсоединяемым к гребному винту. Установка также имеет в своем составе шины электропотребителей, соединенные через трансформатор с главными шинами, и дополнительный двигатель, соединенный с дополнительным генератором, который через второй автоматический выключатель подключен к шинам электропотребителей. От прототипа установка отличается тем, что в качестве главного генератора и дополнительного генератора использованы трехфазные генераторы с электромагнитным возбуждением, снабженные на выходе соответственно первым и вторым датчиками тока фаз. Установка также дополнительно имеет локальную систему управления, выполненную с обеспечением возможности подключения к системе управления верхнего уровня, которая не входит в состав заявляемого объекта, а находится за его пределами. Локальная система управления подсоединена к первому и второму датчикам тока фаз, а также к датчику напряжения, установленному на шинах электропотребителей. Преобразователь частоты выполнен управляемым обратимым и содержит последовательно соединенные управляемые выпрямитель и инвертор, каждый из которых снабжен собственным контроллером. В выходной силовой цепи выпрямителя и входной силовой цепи инвертора установлены датчики тока, каждый из которых связан с соответствующим информационным входом соответствующего контроллера. С силовым входом управляемого выпрямителя соединен дроссель, подсоединенный другим выводом к датчику напряжения фаз и третьему автоматическому выключателю, который своим другим выводом подключен к главным шинам. Датчик напряжения фаз связан с контроллером выпрямителя. В цепи между датчиком тока выходной силовой цепи выпрямителя и датчиком тока входной силовой цепи инвертора установлен конденсаторный накопитель звена постоянного тока, а также датчик постоянного напряжения, подключенный к обоим контроллерам. Оба контроллера также подсоединены к задатчику режимов, связанному с локальной системой управления.

На фигуре представлена схема установки, на которой введены следующие обозначения:

1 - главный двигатель, 2 - дополнительный двигатель, выполняющий функцию аварийного, резервного или стояночного, 3 - главный генератор, 4 - дополнительный генератор, 5 - первый автоматический выключатель, 6 - первый датчик тока фаз, 7 - главные шины, 8 - второй автоматический выключатель, 9 - второй датчик тока фаз, 10 - шины электропотребителей, 11 - третий автоматический выключатель, 12 - преобразователь частоты, обратимый и управляемый, 13 - гребной электродвигатель, 14 - винт фиксированного шага, 15 - четвертый автоматический выключатель, 16 - трансформатор, 17 - пятый автоматический выключатель, 18 - автоматические выключатели потребителей, 19 - управляемый выпрямитель, 20 - дроссель, 21 - первый датчик тока фаз преобразователя частоты, 22 - датчик напряжения фаз, 23 - первый датчик постоянного тока (датчик тока на выходе выпрямителя 19), 24 - конденсаторный накопитель звена постоянного тока, 25 - датчик постоянного напряжения, 26 - контроллер управляемого выпрямителя, 27 - второй датчик постоянного тока (датчик тока на входе инвертора), 28 - инвертор, 29 - второй датчик тока фаз преобразователя частоты, 30 - контроллер инвертора, 31 - задатчик режимов, 32- локальная система управления, 33 - датчик напряжения фаз, установленный на шинах электропотребителей, 34 - система управления верхнего уровня, 35 и 36 - межсекционные автоматические выключатели.

Судовая электроэнергетическая установка содержит главный двигатель 1 и дополнительный двигатель 2, каждый из которых механически соединен со своим соответственно главным электрическим генератором 3 и дополнительным электрическим генератором 4, которые выполнены трехфазными с электромагнитным возбуждением.

Главный генератор 3 через первый автоматический выключатель 5, первый датчик тока фаз 6 соединен с главными шинами 7. Дополнительный генератор 4 через второй автоматический выключатель 8, второй датчик тока фаз 9 соединен с шинами 10 электропотребителей.

Главные шины 7 через третий автоматический выключатель 11 соединен с силовым входом обратимого управляемого преобразователя частоты 12, силовой выход которого соединен с гребным электродвигателем 13, механически связанным с винтом 14 фиксированного шага.

Главные шины 7 через четвертый автоматический выключатель 15, понижающий трансформатор 16 и пятый автоматический выключатель 17 соединены с шинами 10 электропотребителей, к которым подключены судовые электропотребители через свои автоматические выключатели 18 (автоматические выключатели потребителей).

Обратимый преобразователь частоты 12 в своей структуре содержит: управляемый выпрямитель 19, к силовому входу которого через дроссель 20 подключен первый датчик тока фаз 21 преобразователя частоты, противоположные силовые зажимы которого являются входом преобразователя частоты 12, и к ним подключен датчик 22 напряжения фаз. Силовой выход управляемого выпрямителя 19 через первый датчик 23 постоянного тока подключен к конденсаторному накопителю 24 звена постоянного тока. Сюда же подключен и датчик постоянного напряжения 25 управляемого выпрямителя. Информационные цепи датчиков 21, 22, 23, 25 подключены к контроллеру 26 управляемого выпрямителя 19.

К конденсаторному накопителю 24 звена постоянного тока через второй датчик 27 постоянного тока подключен силовой вход инвертора 28, а силовой выход инвертора 28 через второй датчик тока фаз 29 преобразователя частоты (противоположные силовые зажимы которого являются выходом преобразователя частоты 12) - к обмоткам статора гребного электродвигателя 13. Вход управления инвертора 28 соединен с выходом своего контроллера 30, а входы последнего - с информационными цепями датчиков 25, 27 и 29.

Входы управления контроллеров 26 и 30 соединены с задатчиком режимов 31, который своим входом по интерфейсу соединен с локальной системой управления 32.

Информационные входы локальной системы управления 32 связаны с первым и вторым датчиками тока фаз 6 и 9, а также с датчиком напряжения фаз 33 на шинах электропотребителей.

Локальная система управления 32 связана по интерфейсу с системой управления 34 верхнего уровня.

Главные шины 7 и шины 10 электропотребителей с помощью межсекционных автоматических выключателей 35 и 36, а система управления 34 верхнего уровня - по интерфейсу, могут соединяться соответственно с главными шинами, шинными электропотребителей и локальными системами управления других аналогичных судовых электроэнергетических установок (при их наличии).

Судовая электроэнергетическая установка работает следующим образом.

По сигналу, поступающему на вход локальной системы управления 32 от системы управления 34 верхнего уровня, установка может быть переведена в

следующие основные режимы работы:

- режимы движения и торможения с компенсацией собственной реактивной мощности, генерируемой в главных шинах 7;

- режимы движения и торможения с компенсацией реактивной мощности, генерируемой на главных шинах 7 понижающим трансформатором 16 и судовыми электропотребителями;

- режим симметрирования по модулю и фазе напряжения на главных шинах 7.

В режиме движения и торможения с компенсацией собственной реактивной мощности, генерируемой в главных шинах 7, локальная система управления 32, через задатчик режимов 31, выдает сигналы задания в контроллеры 26 и 30 обратимого преобразователя частоты 12, которые переводят управляемый выпрямитель 19 в режим управляемого выпрямления напряжения, поступающего от главных шин 7 через включенный третий автоматический выключатель 11 и его стабилизации на конденсаторном накопителе 24 звена постоянного тока. Одновременно, инвертор 28 переводится в режим формирования трехфазной системы напряжений с амплитудой и частотой, определяемой контроллером 30 инвертора в соответствии с принципом векторного управления электроприводом.

Гребной электродвигатель 13 с винтом фиксированного шага приводятся во вращение с заданной системой управления 34 скоростью.

При этом управляемый выпрямитель 19 в режиме управляемого выпрямления обеспечивает предварительный заряд конденсаторного накопителя 24 и формирует ШИМ-напряжение, модулированное по синусоидальному закону, и с его помощью воспроизводит на зажимах дросселя 20 трехфазную систему векторов синусоидальных напряжений с заданным модулем и углом сдвига для каждой фазы, вращающейся синхронно с трехфазной системой векторов напряжений на главных шинах 7.

В выходной цепи управляемого выпрямителя 19, подключенной через первый датчик постоянного тока 23 к конденсаторному накопителю 24, нарастает ток под управлением контроллера 26. Датчик постоянного напряжения 25 передает сигнал обратной связи по напряжению на конденсаторном накопителе 24 для регулирования (стабилизации) контроллером 26 напряжения на заданном уровне.

Одновременно во входной цепи управляемого выпрямителя 19 нарастают фазные токи, амплитуды и фазы которых определяются векторной суммой напряжений на главных шинах 7 и ШИМ-напряжений, воспроизводимых управляемым выпрямителем 19 на своем входе.

Информация о значениях этих токов, измеряемых первым датчиком тока фаз 21 в каждой фазе и линейных напряжениях на главных шинах 7, через замкнутый третий автоматический выключатель 11, измеряемых датчиком напряжения фаз 22, представляется в контроллер 26.

В контроллере 26 по информации, поступающей с датчиков 21, 22, 23 и 25, вычисляются модули и фазовые углы векторов напряжений, которые необходимо воспроизвести на входе управляемого выпрямителя 19, чтобы, в результате сложения этих векторов с векторами напряжений на главных шинах 7, между вектором напряжения на главных шинах 7 и вектором тока управляемого выпрямителя 19, измеряемого датчиком тока фаз 21, был заданный угол сдвига. Для компенсации реактивной мощности на главных шинах 7 этот угол должен быть близким к нулю.

Постоянное напряжение конденсаторного накопителя 24 преобразуется под управлением контроллера 30, получающего информацию с датчиков 25, 27 и 29, инвертором 28 в ШИМ-напряжение для питания трехфазных обмоток статора гребного электродвигателя 13.

Перевод в режим торможения с компенсацией собственной реактивной мощности производится по сигналу от системы управления верхнего уровня 34. При этом инвертор 28 обеспечивает генераторный режим гребного электродвигателя 13, а управляемый выпрямитель 19 меняет направление тока на 180 электрических градусов, амплитудное значение которого задается с учетом уровня загрузки главного генератора 3, определяемого с помощью датчика тока фаз 6. В случае отсутствия включенных судовых потребителей, потребление энергии торможения реализуется традиционным способом - включением тормозных резисторов в звене постоянного тока преобразователя частоты (не показаны).

В режимах движения и торможения с компенсацией реактивной мощности, генерируемой на главных шинах 7 трансформатором 16 и судовыми потребителями, по заданию системы управления 34 верхнего уровня и сигналам датчиков, обрабатываемых локальной системой управления 32, управляемый выпрямитель 19 обеспечивает на главных шинах 7 импеданс, обеспечивающий заданный угол сдвига между векторами напряжения на главных шинах и входного тока обратимого преобразователя частоты 12.

При этом угол сдвига между векторами токов и напряжений в соответствующих фазах главного генератора 3, измеряемых датчиками 21 и 22, будет близким к нулю.

В стояночном, технологическом или аварийном режиме судна, его движение и питание судовых потребителей может осуществляться от дополнительного генератора 4 через включенные автоматические выключатели 8, 15, 17 и трансформатор 16 под контролем тока нагрузки генератора 4 вторым датчиком тока фаз 9.

Режим симметрирования по модулю и фазе векторов трехфазной системы напряжений на главных шинах 7 осуществляется по сигналам датчика 22 и формирования управляемым выпрямителем 19 компенсирующего воздействия под управлением контроллера 26. Этот режим может осуществляться по сигналу системы управления 34 верхнего уровня. Как описано выше, управляемый выпрямитель 19 с помощью ШИМ воспроизводит на зажимах дросселя 20 трехфазную систему векторов синусоидальных напряжений с заданным модулем и углом сдвига для каждой фазы, вращающуюся синхронно с трехфазной системой векторов напряжений на главных шинах 7. При этом векторы трехфазной системы напряжений выравниваются по модулю с обеспечением взаимного фазового сдвига в 120 электрических градусов.

Таким образом, применение в изобретении обратимого преобразователя с управляемым выпрямителем и обратными связями по току и напряжению позволяет судовой электроэнергетической установке работать как в двигательном, так и в тормозном режиме СЭД с обеспечением энергосбережения путем использования возвращаемой электроэнергии судовыми электропотребителями при управлении движением, а также и в аварийных, технологических и стояночных режимах. Кроме того, схема позволяет осуществлять стабилизацию напряжения в звене постоянного тока и повышать качество электроэнергии за счет компенсации статическим преобразователем реактивной мощности и симметрирования по модулю и фазе напряжения в судовой трехфазной сети при различных загрузках ее фаз, что, в свою очередь, повышает надежность и рабочий ресурс установки в целом, снижает шумы и вибрации электрооборудования.

Судовая электроэнергетическая установка, содержащая главный двигатель, соединенный с главным генератором, который через электрическую цепь, имеющую в своем составе первый автоматический выключатель, главные шины и преобразователь частоты, соединен с гребным электродвигателем, подсоединяемым к гребному винту, содержащая также шины электропотребителей, соединенные через трансформатор с главными шинами, и содержащая дополнительный двигатель, соединенный с дополнительным генератором, который через второй автоматический выключатель подключен к шинам электропотребителей, отличающаяся тем, что в качестве главного генератора и дополнительного генератора использованы трехфазные генераторы с электромагнитным возбуждением, снабженные на выходе соответственно первым и вторым датчиками тока фаз, установка также дополнительно имеет локальную систему управления, выполненную с обеспечением возможности подключения к системе управления верхнего уровня, локальная система управления подсоединена к первому и второму датчикам тока фаз, а также к датчику напряжения, установленному на шинах электропотребителей, при этом преобразователь частоты выполнен управляемым обратимым и содержит последовательно соединенные управляемые выпрямитель и инвертор, каждый из которых снабжен собственным контроллером, в выходной силовой цепи выпрямителя и входной силовой цепи инвертора установлены датчики тока, каждый из которых связан с соответствующим информационным входом соответствующего контроллера, с силовым входом управляемого выпрямителя соединен дроссель, подсоединенный другим выводом к датчику напряжения фаз и третьему автоматическому выключателю, который своим другим выводом подключен к главным шинам, при этом датчик напряжения фаз связан с контроллером выпрямителя, в цепи между датчиком тока выходной силовой цепи выпрямителя и датчиком тока входной силовой цепи инвертора установлен конденсаторный накопитель звена постоянного тока, а также датчик постоянного напряжения, подключенный к обоим контроллерам, которые также подсоединены к задатчику режимов, связанному с локальной системой управления.



 

Похожие патенты:

Изобретение относится к электрическим тяговым системам транспортных средств, в частности к гребной электрической установке. .

Изобретение относится к области водного транспорта и направлено на усовершенствование подводного аппарата, который обеспечивает передвижение в водной среде автономных средств, и может быть использовано как движитель автономных средств в надводном и подводном положениях.

Изобретение относится к судостроению, в частности к судовым электроэнергетическим установкам с преобразователями частоты и гребными электродвигателями. .

Изобретение относится к области судостроения, в частности к усовершенствованию электроэнергетических установок судов с преобразователями частоты и гребными электродвигателями.

Изобретение относится к области судостроения. .

Изобретение относится к разборным плавучим сооружениям с небольшой осадкой и может быть использовано для самостоятельного передвижения автомобиля по воде. .

Изобретение относится к области транспорта, а именно к судам с электродвижением. .

Изобретение относится к области электротехники и может быть использовано в приводе гребного винта для надводных судов, в приводе гребного винта, представляющего собой пропульсивную установку, в модуле, содержащем пропульсивную установку и выполненном с возможностью разворота относительно корпуса судна.

Изобретение относится к водному транспорту, в частности к судостроению, и касается создания многофункциональных транспортно-перегрузочных комплексов для освоения малых рек, доставки грузов в малодоступные районы и т.д.

Изобретение относится к судостроению, в частности к электроэнергетическим установкам судов с валогенераторами и преобразователями частоты, преимущественно с дизельными главными двигателями.

Изобретение относится к способу функционирования судового приводного двигателя (2), питаемого по меньшей мере одним импульсным инвертором (3), при котором элементы (5) переключения импульсного инвертора (3) переключаются с изменяемой частотой переключения. Частота переключения вручную управляется обслуживающим персоналом судна независимо от рабочего состояния судового приводного двигателя (2) и импульсного инвертора (3), чтобы изменить акустический спектр шума судна. Судовой приводной двигатель питается несколькими импульсными инверторами, при этом элементы переключения всех импульсных инверторов управляются с одинаковой частотой переключения. Достигается уменьшение шума судового двигателя. 4 н. и 6 з.п. ф-лы, 3 ил.

Изобретение относится к судостроению, в частности к судовым электроэнергетическим установкам с валогенераторами. Судовая электроэнергетическая установка содержит первый тепловой двигатель, второй тепловой двигатель, валогенератор, генератор, первый, второй и третий валы, вариатор, который соединен с гребным винтом, систему управления, шины питания, датчики скорости вращения. В состав вариатора включены три униполярные машины, которые электрически соединены между собой. При этом ротор валогенератора закреплен на третьем валу, который выполнен полым и установлен коаксиально первому валу с помощью подшипников или электромагнитного подвеса. Также на всех трех валах установлены датчики скорости вращения, соединенные с системой управления, с которой также соединены управляющий вход пускового устройства, возбудитель валогенератора и обмотки возбуждения униполярных машин, а также входы управления разъединительных муфт, автоматических выключателей и блока управления скоростью вращения первого теплового двигателя. Достигается: питание судовых электропотребителей от валогенератора отдельно и совместно с генератором, работа валогенератора в двигательном режиме с постоянной частотой вращения и передачей механической энергии на винт, снижение уровня гармонических составляющих на шинах питания судовых электропотребителей, повышение надежности, снижение массы и габаритов. 3 з.п. ф-лы, 1 ил.

Изобретение относится к области судостроения, в частности к судовым системам электродвижения с преобразователями частоты и гребными электродвигателями. Судовая система электродвижения содержит шины распределительного щита, подключенные через автоматический выключатель и дроссель к обратимому преобразователю частоты. К преобразователю частоты с двумя раздельными выходными силовыми цепями подключены соответственно два гребных электродвигателя. Гребные двигатели с возбуждением от постоянных магнитов имеют кольцевую конструкцию. В полости ротора каждого из электродвигателей установлены гребные винты фиксированного шага. Лопасти первого гребного винта выполнены с противонаправленным разворотом к лопастям второго гребного винта. Преобразователь частоты содержит установленный на входе управляемый выпрямитель, силовой выход которого соединен с конденсаторным накопителем звена постоянного тока, датчик напряжения звена постоянного тока с силовыми входами двух инверторов, а также два задатчика частот. Управление элементами преобразователя частоты осуществляется с помощью локальной системы управления. Достигается повышение КПД, снижение потерь энергии, снижение уровня шума и вибраций. 3 ил.

Изобретение относится к судостроению, в частности к электроэнергетическим установкам судов с преобразователями частоты и гребными электродвигателями. Судовая электроэнергетическая установка содержит главные дизели или турбины, главные синхронные генераторы, аварийный дизель-генератор, обмотки статора, главный распределительный щит, входы выпрямителей преобразования частоты. Обмотки статора через автоматические выключатели подключены к линиям питания главного распределительного щита, к которым через автоматические выключатели подключены входы выпрямителей преобразователей частоты. Число выпрямителей равно числу линий главного распределительного щита, выходы выпрямителей подключены к входам многоуровневых инверторов, составляющих с выпрямителями преобразователи частоты, питающие гребные электродвигатели. К каждой линии главного распределительного щита через автоматические выключатели подключены также первичные многофазные обмотки трансформаторов с вращающимся магнитным полем, а вторичные трехфазные обмотки этих трансформаторов через автоматические выключатели присоединены к трехфазной линии питания распределительного щита остальных судовых потребителей. Обмотка статора аварийного дизель-генератора через автоматические выключатели подключена к трехфазной линии питания судовых потребителей. На статоре каждого главного синхронного генератора размещена одна многофазная обмотка с числом фаз более трех, фазы которой соединены звездой или треугольником, а линии главного распределительного щита имеют такое же число фаз, что и обмотки главных синхронных генераторов. Достигается обеспечение электроэнергией судовых потребителей и электродвигателей от одной электростанции, повышение к.п.д. и качества электроэнергии в судовой сети. 1 ил.

Изобретение относится к судостроению, в частности к судовым электроэнергетическим установкам с комбинированным пропульсивным комплексом. Судовая электроэнергетическая установка имеет в своем составе главный тепловой двигатель, разъединительную муфту, дополнительный тепловой двигатель, соединенный с дополнительным генератором, главные шины, шины питания судовых электропотребителей, систему управления установки, автоматические выключатели, датчики тока и датчики напряжения, первый управляемый и обратимый преобразователь частоты, который имеет управляемые выпрямитель и инвертор, конденсаторный накопитель звена постоянного тока, локальный блок управления, также дополнительный гребной электродвигатель, подсоединенный к гребному винту и второй гребной электродвигатель кольцевой конструкции с встроенным вторым гребным винтом, второй преобразователь частоты, преобразователь напряжения и четыре силовые электрические цепи. Достигается уменьшение массы и габаритов, повышение максимального КПД, минимальность потерь энергии и экономичность топлива, повышение надежности электроэнергетической установки. 2 з.п. ф-лы, 2 ил.

Изобретение относится к устройству для подачи движительной энергии к движительной системе с противоположно вращающимися гребными винтами в морском судне. Устройство содержит первый гребной винт, приводимый вращающимся силовым агрегатом, и второй гребной винт, приводимый двигателем переменного тока. Второй гребной винт вращается в направлении, противоположном первому гребному винту. Генератор переменного тока приводится вращающимся силовым агрегатом, а также электрически соединен с двигателем переменного тока. Скорость вращения второго гребного винта составляет между 95-150% от скорости вращения первого гребного винта. Двигатель переменного тока и генератор переменного тока имеют одинаковую электрическую частоту, и количество полюсов генератора переменного тока составляет от 2 до 40 и количество полюсов двигателя переменного тока составляет от 2 до 40. Отношение количества генератора переменного тока и двигателя переменного тока составляет от 0,05 до 20. Достигается рентабельность устройства для обеспечения электрической энергии на корабле или морском судне. 13 з.п. ф-лы, 9 ил.

Изобретение относится к судостроению, а именно к конструкциям силовых установок подводных аппаратов. Силовая установка подводного аппарата содержит высокооборотный электродвигатель переменного тока, который соединен с движителем аппарата через редуктор. Редуктор выполнен одноступенчатым с параллельно расположенными входным и выходным валами и с высоким передаточным отношением. Вал электродвигателя является входным валом редуктора, а ось выходного вала редуктора совпадает с основной осью подводного аппарата. Ось электродвигателя смещена относительно основной оси подводного аппарата. Величина смещения электродвигателя равна межцентровому расстоянию валов редуктора. Достигается уменьшение массогабаритных характеристик подводного аппарата, уменьшение шумности и улучшение управляемости силовой установки. 1 ил.

Изобретение относится к судостроению, а именно к движительному агрегату корабля, такому как азимутальный движительный агрегат корабля. Движительный агрегат содержит конструкцию оболочки, электрический двигатель, гребной винт, цилиндрическую секцию, поддерживающую секцию, поддерживающий металлический лист. Поддерживающий металлический лист расположен между поддерживающей секцией конструкции оболочки движительного агрегата и цилиндрической наружной поверхностью цилиндрической секции, секции размещения двигателя конструкции оболочки. Обеспечение дополнительного поддерживания для секции размещения двигателя конструкции оболочки у поддерживающей секции конструкции оболочки. Достигается эффективное охлаждение электрического двигателя и жесткое поддерживание секции. 16 з.п. ф-лы, 24 ил.

Изобретение относится к судостроению, а именно к движительному агрегату корабля. Движительный агрегат корабля содержит конструкцию (1) оболочки, электрический двигатель (3), систему (12) охлаждения с замкнутой циркуляцией газа, замкнутую жидкостную систему (15) охлаждения, которая имеет внутреннее пространство и газожидкостный теплообменник (17). Система (12) охлаждения с замкнутой циркуляцией газа содержит газ (13) и средство (14) циркуляции газа для циркуляции газа (13) через каналы (23) в электрическом двигателе (3). Газожидкостный теплообменник (17) предназначен для обмена тепловой энергией между газом (13), который циркулирует в системе (12) охлаждения с замкнутой циркуляцией газа, и жидкостью (16) в замкнутой жидкостной системе (15) охлаждения. Система (12) охлаждения с замкнутой циркуляцией газа, замкнутая жидкостная система (15) охлаждения и газожидкостный теплообменник (17) являются частями движительного агрегата. Достигается эффективное охлаждение движительного агрегата корабля. 23 з.п. ф-лы, 72 ил.

Изобретение относится к судостроению, в частности к электроэнергетическим установкам судов. Электроэнергетическая установка судна содержит главный первичный тепловой двигатель, преобразователи частоты, гребной электродвигатель, вспомогательный дизель-генератор, согласующий трансформатор, главный распределительный щит, вторичный распределительный щит, автоматические выключатели и потребители собственных нужд. На статоре гребного электродвигателя размещены изолированные друг от друга трехфазные обмотки. Трехфазные обмотки синхронного генератора через автоматические выключатели подключены к входам преобразователей частоты, выходы которых через автоматические выключатели подключены к статорным обмоткам гребного электродвигателя. Вспомогательный дизель-генератор через автоматический выключатель подключен к главному распределительному щиту, который через автоматические выключатели соединен с входом преобразователя частоты. Достигается повышение энергетической эффективности и увеличение коэффициента загрузки первичных тепловых двигателей. 2 з.п. ф-лы, 3 ил.
Наверх