Способ получения форм картофеля сорта скороплодный in vitro, устойчивых к температурным стрессам и к возбудителю фитофтороза


 


Владельцы патента RU 2505955:

Федеральное государственное бюджетное учреждение науки Институт физиологии растений им. К.А. Тимирязева Российской академии наук (ИФР РАН) (RU)
Федеральное государственное бюджетное учреждение науки Институт общей генетики им. Н.И. Вавилова Российской академии наук (ИОГЕН РАН) (RU)

Изобретение относится к области биотехнологии и генной инженерии, в частности к способам получения трансгенных форм картофеля in vitro сорта Скороплодный, устойчивых к абиотическим и биотическим стрессам. Изобретение представляет собой создание нового способа получения форм картофеля in vitro сорта Скороплодный, устойчивых к абиотическим и биотическим стрессам. Изобретение позволило повысить устойчивость к низким отрицательным температурам (-10°С) у 52,5% трансгенных линий (почти полное отсутствие повреждений), а также у 56,25% трансгенных линий повысилась устойчивость к жаре (+28 -+32°С). Кроме того, 17,5% трансгенных линий показали устойчивость как к температурным стрессам, так и к возбудителю фитофтороза при сохранении его сортовых признаков. Заявленный способ менее трудоемок и снижает затраты времени с 10-15 лет до 4-6 лет до получения форм, которые в дальнейшем могут быть переданы на государственное сортоиспытание. 4 табл.

 

Область применения

Изобретение относится к области биотехнологии и генной инженерии, в частности к способам получения трансгенных форм картофеля сорта Скороплодный in vitro, устойчивых к температурным стрессам и к возбудителю фитофтороза, и может быть использовано для создания новых форм сортов картофеля, способных давать стабильный урожай в разных почвенно-климатических зонах.

Уровень техники

Известен способ получения раннеспелого сорта картофеля Скороплодный, который был получен традиционным способом селекции (Каталог Всероссийского научно-исследовательского института картофельного хозяйства им. А.Г.Лорха, стр.28).

Недостатком этого способа является то, что сорт картофеля Скороплодный является среднечувствительным к низким отрицательным, повышенным положительным температурам и фитофторозу. Кроме того, высокая устойчивость к возбудителю фитофтороза коррелирует с низкой клубневой продуктивностью. Очень трудно получить формы картофеля, сочетающие все три признака методом традиционной селекции. Кроме того, метод традиционной селекции трудоемок и ведет к большим затратам времени (10-15 лет).

Задача изобретения

Задачей изобретения является создание нового способа получения форм картофеля сорта Скороплодный in vitro, устойчивых к температурным стрессам и к возбудителю фитофтороза, позволяющего преодолеть недостатки традиционной селекции при сохранении его сортовых признаков.

Решение задачи

Поставленная задача решается созданием нового способа получения форм картофеля сорта Скороплодный in vitro, устойчивых к температурным стрессам и к возбудителю фитофтороза, заключающегося в том, что стеблевые и листовые экспланты, вычлененные из тридцатидневных асептических растений исходного сорта, помещают в чашки Петри с жидкой средой следующего состава:

Макросоли по Мурасиге-Скугу (МС) 50,0 мл/л,
Микросоли по МС 1,0 мл/л,
CaCl2 348,5 мг/л
Fe - хеллат по МС 5,0 мл/л
Тиамин 1,0 мг/л
Пиридоксин 1,0 мг/л
Глюкоза 16,0 г/л
Гидролизат козеина 1,0 г/л
Мезоинозит 100,0 мг/л
Нафтилуксусная кислота (НУК) 5,0 мг/л
Бензиламинопурин 0,2 мг/л
Дистиллированная вода до 1 л среды
рН 5,8

и прединкубируют в течение 18-24 часов и температуре 22-24°С, затем вносят пипеткой 300 мкл на одну чашку ночной суспензионной культуры агробактерии, несущей плазмиду с геном ацил-липидной Δ9-десатуразы из цианобактерии Synechococcus vulcanus, кокультивируют с агробактериальной суспензией в течение 15-30 минут при периодическом встряхивании, обсушивают между листами стерильной фильтровальной бумаги и помещают в другие чашки Петри с аналогичной средой и посткокультивируют в течение 18-24 часов при температуре 22-24°С на рассеянном свету, затем экспланты таким же образом обсушивают и переносят в чашки Петри с аналогичной средой с добавлением 7 г/л агара и 800 мг/л цефотаксима и инкубируют в течение 5-7 суток на рассеянном свету при 22-24°С, затем переносят на регенерационные среды состава:

Макросоли по МС 50,0 мл/л
Микросоли по МС 1,0 мл/л
CaCl2 348,5 мг/л
Fe - хеллат по МС 5,0 мл/л
Тиамин 1,0 мг/л
Пиридоксин 1,0 мг/л
Глюкоза 16,0 г/л
Гидролизат козеина 1,0 г/л
Мезоинозит 100,0 мг/л
Биотин 1,0 мг/л
Кальций пантетонат 5,0 мг/л
Аденинсульфат 40,0 мг/л
НУК 0,1 мг/л
Зеатин 2,0 мг/л*
Цефотаксим 800,0 мг/л*
Агар 7,0 г/л
Дистиллированная вода до 1 л среды
рН 5,8

* Добавлять после автоклавирования (холодной стерилизации)

и культивируют в течение 10-14 суток при 22-25°С и освещенности 6000-10000 лк, затем культивируют на аналогичной среде с цефотаксимом 500 мг/л и канамицин сульфатом 15 мг/л 3 пассажа по 21 дню, затем культивируют 1 пассаж без канамицина сульфата и снова 3 пассажа с канамицин сульфатом, при появлении регенерантов размером не менее 10 мм их срезают и переносят на среду состава:

Макросоли по МС 50,0 мл/л
Микросоли по МС 1,0 мл/л
CaCl2 348,5 мг/л
Fe - хеллат по МС 5,0 мл/л
Тиамин 1,0 мг/л
Пиридоксин 1,0 мг/л
Сахароза 20,0 г/л
Канамицин сульфат 50,0 мг/л*
Цефотаксим 200,0 мг/л*
Агар 7,0 г/л
Дистиллированная вода до 1 л среды
рН 5,8

*Добавлять после автоклавирования;

затем проводят первый этап отбора: срезанные регенеранты культивируют на среде МС с 50 мг/л канамицин сульфатом в течение 30-45 дней при 22-25°С и освещенности 6000-10000 лк при 16-часовом фотопериоде, далее отбирают укоренившиеся регенеранты картофеля с зелеными листьями и стеблями, потом проводят второй этап отбора: укоренившиеся растения проверяют методом ПЦР (Метод создания конструкций, метод ПЦР-анализа: «Генная инженерия растений», лабораторное руководство, Москва, «Мир», 1991, под редакцией Дж.Дрейпера, Р.Скотта, Ф.Армитиджа, Р.Уолдена, стр.304-383) на наличие вставки целевой ДНК и регенеранты с подтвержденной ПЦР вставкой целевой ДНК размножают микрочеренкованием для проведения дальнейших исследований.

Сущность изобретения

Сущность изобретения заключается в том, что встройка плазмиды с вектором экспрессии, содержащим ген ацил-липидной Δ9-десатуразы из цианобактерии Synechococcus vulcanus, в экспланты картофеля сорта Скороплодный обеспечивает повышение устойчивости картофеля одновременно к низким отрицательным, повышенным положительным температурам и к возбудителю фитофтороза.

Новизна изобретения

Новизной изобретения является весь процесс получения заявляемых форм картофеля. При получении трансгенных форм картофеля сорта Скороплодный заявляемым способом происходит повышение общего адаптационного потенциала растения картофеля.

Выход за заявленные пределы

При прединкубации эксплантов менее 18 часов не накапливается достаточного числа клеток на нужной стадии клеточного цикла, способных акцептировать целевую ДНК. Увеличение длительности прединкубации более 24 часов ведет к гибели эксплантов. Температура прединкубации ниже 22°С и выше 24°С ведет к уменьшению числа клеток, способных акцептировать целевую ДНК.

При кокультивации с агробактериальной суспензией менее 15 минут частота встройки целевой ДНК очень низка. При кокультивации свыше 30 минут происходит гибель эксплантов вследствие избыточного заражения агробактерией.

При посткокультивации менее 18 часов частота встроек низка, а более 24 часов приводит к гибели эксплантов вследствие избыточного заражения агробактерией, что приводит к загниванию тканей. При посткокультивации при температуре менее 22°С уменьшается число клеточных делений и частота встроек низка. Посткокультивация при температуре выше 24°С приводит к гибели эксплантов вследствие избыточного заражения агробактерией. Добавление цефотаксима необходимо для того, чтобы подавить рост агробактерии, чтобы предотвратить гибель эксплантов.

При инкубировании на рассеянном свету менее 5 суток не удается получить достаточное число клеток, готовых к морфогенезу. Инкубирование более 7 суток приводит к обильному каллусообразованию, что, в свою очередь, приводит к повышению самоклональной вариабельности, что затрудняет выявление форм картофеля с целевой ДНК. Температура 22-24°С оптимальна для процесса клеточных делений.

При культивировании менее 10 суток не все клетки со встройкой успевают перейти к регенерации, что удлиняет процесс получения регенерантов. Удлинение же этого периода более 14 суток приводит к снижению уровня цитокинина (зеатина) в среде и гибели эксплантов. Данный температурный интервал 22-24°С и световой режим - освещенность 6000-10000 лк и 16-часовой фотопериод являются оптимальным для регенерации растений картофеля. Культивирование на регенерационной среде с цефотаксимом менее 500 мг/л приводит к обильному росту агробактерии и гибели эксплантов, а более высокие концентрации цефотаксима токсичны для регенерирующих тканей. При концентрации канамицин сульфата ниже 15 мг/л (1/3 летальной дозы для сорта Скороплодный) регенерируют клетки в том числе и без целевой встройки. При культивировании в течение более трех пассажей накапливается предельное содержание канамицин сульфата в тканях, которое может привести к гибели эксплантов, а культивирование в течение 1 пассажа без канамицина сульфата (в течение 21 дня) приводит к снижению концентрации канамицин сульфата в тканях, что позволяет более интенсивно размножаться клеткам со встройкой целевого гена.

При срезании и перенесении регенерантов размером менее 10 мм на среду для укоренения с канамицин сульфатом происходит замедление укоренения, роста и гибель побега.

Результаты исследования полученных растений представлены в таблицах 1, 2, 3, 4.

Таблица 1
Состояние трансгенных растений картофеля сорта Скороплодный через 2-е суток после 2-часовой экспозиции при -10°С (оценено 40 трансгенных линий по 5 растений на вариант)
Степень повреждения Характер повреждения Число линий % линий
Отсутствует Отсутствует 16 40,0
Низкая Потеря тургора 1/4 листьев 5 12,5
Средняя - на уровне исходного сорта Скороплодный Потеря тургора >1/3 листьев 4 10,0
Высокая Потеря тургора и мацерация 1/4 листьев и стеблей растений 15 37,5
Таблица 2
Состояние побега 16 трансгенных линий растений картофеля сорта Скороплодный, выделившихся по устойчивости к замораживанию, после их выращивания при +28-+32°С в течение 102 дней на среде МС при освещенности 10000 люкс
Длина побега Число линий % линий
2 раза больше, чем у исходного сорта 5 31,25
1,5 раза больше, чем у исходного сорта 9 56,25

Длина побега у растений исходного сорта уменьшилась почти в 2 раза после температурного стресса, по сравнению с выращиванием при оптимальной температуре (+23-+25°С).

Таблица 3
Состояние корня 16 трансгенных линий растений картофеля сорта Скороплодный, выделившихся по устойчивости к замораживанию, после их выращивания при +28-+32°С в течение 102 дней на среде МС при освещенности 10000 люкс
Состояние корня (балл) Число линий (шт.) % линий
Очень хорошее развитие корня (9 баллов) 1 6,25
Хорошее развитие корня (7 баллов) 4 25,0
Среднее развитие корня (5 баллов) 7 43,75
Развитие корня ниже среднего (3 балла) на уровне исходного сорта Скороплодный 2 12,5
Отсутствие корня (1 балл) 2 12,5
Таблица 4
Показатели устойчивости к фитофторозу 16-ти выделившихся трансгенных линий растений картофеля сорта Скороплодный, которые были высажены в теплицу и оценены на устойчивость к возбудителю фитофтороза (Phytophthora infestans) с использованием традиционного метода искусственного заражения отделенных листьев (Методика ВНИИКХ) 2009 год
Выделившиеся трансгенные линии Показатель устойчивости (балл)
8771(1) 6,8*
8172(2) 6,3*
8418(1a) 6,7*
8418(1) 6,2*
8593(4) 5,9*
9100(5) 5,9*
9100(6) 6,1*
8593(2) 6,0
9026(2) 5,5
8594(1) 6,3
8347(2) 5,6
8891(4) 5,9
9099(14) 4,9
9026(3) 5,2
8309(1) 6,1
Сорт Скороплодный (исходный сорт) 5,2
Восприимчивый стандарт сорт Жуковский ранний 4,2
Стандарт с высокой устойчивостью сорт Никулинский 7,0
*линии, выделившиеся по устойчивости к экстремальным температурам

Результаты изобретения

Как следует из результатов таблиц 1, 2, 3 и 4, заявленный способ получения трансгенных форм картофеля in vitro сорта Скороплодный, устойчивых к температурным стрессам и к возбудителю фитофтороза, позволяет повысить устойчивость к низким отрицательным температурам (-10°С) у 52,5% трансгенных линий (почти полное отсутствие повреждений), а также у 56,25% трансгенных линий повысилась устойчивость к жаре (+28-+32°С). Кроме того, 17,5% трансгенных линий показали устойчивость как к температурным стрессам, так и к возбудителю фитофтороза при сохранении его сортовых признаков. Заявленный способ менее трудоемок, чем традиционная селекция и снижает затраты времени с 10-15 лет до 4-6 лет до получения форм, которые в дальнейшем могут быть переданы на государственное сортоиспытание.

Способ получения форм картофеля сорта Скороплодный in vitro, устойчивых к температурным стрессам и к возбудителю фитофтороза, заключающийся в том, что стеблевые и листовые экспланты, вычлененные из тридцатидневных асептических растений сорта «Скороплодный», помещают в чашки Петри с жидкой средой следующего состава:

Макросоли по Мурасиге-Скугу (МС) 50,0 мл/л
Микросоли по МС 1,0 мл/л
CaCl2 348,5 мг/л
Fe - хеллат по МС 5,0 мл/л
Тиамин 1,0 мг/л
Пиридоксин 1,0 мг/л
Глюкоза 16,0 г/л
Гидролизат козеина 1,0 г/л
Мезоинозит 100,0 мг/л
Нафтилуксусная кислота (НУК) 5,0 мг/л
Бензиламинопурин 0,2 мг/л
Дистиллированная вода до 1 л среды
рН 5,8

и прединкубируют в течение 18-24 часов и температуре 22-24° С, затем вносят пипеткой 300 мкл на одну чашку ночной суспензионной культуры агробактерии, несущей плазмиду с геном ацил-липидной Δ9-десатуразы из цианобактерии Synechococcus vulcanus, кокультивируют с агробактериальной суспензией в течение 15-30 минут при периодическом встряхивании, обсушивают между листами стерильной фильтровальной бумаги и помещают на другие чашки Петри с аналогичной средой и посткокультивируют в течение 18-24 часов при температуре 22-24°С на рассеянном свету, затем экспланты таким же образом обсушивают и переносят в чашки Петри с аналогичной средой с добавлением 7 г/л агара и 800 мг/л цефотаксим сульфата и инкубируют в течение 5-7 суток на рассеянном свету при 22-24°С, затем переносят на регенерационные среды состава:
Макросоли по МС 50,0 мл/л
Микросоли по МС 1,0 мл/л
CaCl2 348,5 мг/л
Fe - хеллат по МС 5,0 мл/л
Тиамин 1,0 мг/л
Пиридоксин 1,0 мг/л
Глюкоза 16,0 г/л
Гидролизат козеина 1,0 г/л
Мезоинозит 100,0 мг/л
Биотин 1,0 мг/л
Кальций пантетонат 5,0 мг/л
Аденинсульфат 40,0 мг/л
НУК 0,1 мг/л
Зеатин 2,0 мг/л*
Цефотаксим 800,0 мг/л*
Агар 7,0 г/л
Дистиллированная вода до 1 л среды
рН 5,8

* Добавлять после автоклавирования
и культивируют в течение 10-14 суток при 22-25°С и освещенности 6000-10000 лк, затем культивируют на аналогичной среде с цефотаксимом 500 мг/л и канамицин сульфатом 15 мг/л 3 пассажа по 21 дню, затем 1 пассаж без канамицина сульфата и снова 3 пассажа с канамицин сульфатом, при появлении регенерантов размером не менее 10 мм их срезают и переносят на селективную среду состава:
Макросоли по МС 50,0 мл/л
Микросоли по МС 1,0 мл/л
CaCl2 348,5 мг/л
Fe - хеллат по МС 5,0 мл/л
Тиамин 1,0 мг/л
Пиридоксин 1,0 мг/л
Сахароза 20,0 г/л
Канамицин сульфат 50,0 мг/л*
Цефотаксим 200,0 мг/л*
Агар 7,0 г/л
Дистиллированная вода до 1 л среды
рН 5,8

*Добавлять после автоклавирования,
затем проводят первый этап отбора форм, устойчивых к температурным стрессам и к возбудителю фитофтороза: срезанные регенеранты культивируют на среде МС с 50 мг/л канамицин сульфатом в течение 30-45 дней при 22-25°С и освещенности 6000-10000 лк при 16-часовом фотопериоде, далее отбирают укрепившиеся регенеранты картофеля с зелеными листьями и стеблями, потом проводят второй этап отбора форм, устойчивых к температурным стрессам и к возбудителю фитофтороза: укоренившиеся растения проверяют методом ПЦР на наличие вставки целевой ДНК и регенеранты с подтвержденной ПЦР вставкой целевой ДНК размножают микрочеренкованием.



 

Похожие патенты:

Изобретение относится к области биохимии, в частности к способу оценки степени пленчатости зерна генотипа ячменя по сравнению со степенью пленчатости других генотипов ячменя одного года репродукции, включающий взятие навески сухого зерна каждого генотипа, помещение ее в жидкость, выдерживание навески зерна в этой жидкости в течение определенного времени, извлечение навески и повторное взвешивание.
Изобретение относится к биотехнологии и представляет собой питательную среду для укоренения побегов яблони и груши in vitro. .

Изобретение относится к способу получения растений-регенерантов ириса мечевидного (I.ensata Thunb.) in vitro. .

Изобретение относится к способу скрининга популяции растений листовых овощей на присутствие особей, обнаруживающих пониженную чувствительность к этилену и физиологическим нарушениям, в частности к Бурой Пятнистости и Пожелтению по сравнению с контрольным растением.
Изобретение относится к области сельского хозяйства и может быть использовано для оценки качества зерна генотипов ячменя пивоваренного направления. .

Изобретение относится к биотехнологии и может быть использовано в сельском хозяйстве в области растениеводства на открытом грунте и в сооружениях защищенного грунта.

Изобретение относится к биотехнологии. .
Изобретение относится к области сельского хозяйства и может быть использовано в селекции подсолнечника, в частности в выведении форм подсолнечника, устойчивых к сухой гнили корзинок.

Изобретение относится к области биохимии, в частности к способу молекулярно-генетической идентификации древесных видов растений, который включает выбор эффективных стабильных молекулярных маркеров, сбор материала, проведение молекулярно-генетического анализа с использованием ПЦР, анализ выявленных ISSR-маркеров и определение идентификационных (мономорфных и полиморфных), анализ полученных данных после секвенирования, составление молекулярно-генетической формулы, составление штрихкода, составление генетического паспорта. Способ характеризуется тем, что в молекулярно-генетическую формулу и штрихкод, помимо идентификационных фрагментов ДНК разного размера, амплифицированных в результате полимеразной цепной реакции (ПЦР), вносят и другие структурные изменения геномов, такие как делеции, дупликации, однонуклеотидные замены (SNP - Single Nucleotide Polymorphism), выявленные при сравнительном анализе нуклеотидных последовательностей после секвенирования геномной ДНК. Изобретение позволяет эффективно идентифицировать древесные виды растений на нуклеотидном уровне. 6 з.п. ф-лы, 1 ил.

Изобретение относится к области биохимии, в частности к способу создания трансгенных линий растений, продуцирующих белок с высоким уровнем экспрессии, включающему трансформацию растений экспрессирующим вектором, включающим плазмиду, содержащую ген, кодирующий β-глюкуронидазу, 35S промотор, nos терминатор транскрипции. При этом выше промотора гена встраивают терминатор транскрипции, обладающий способностью эффективно обрывать геномные транскрипты в растительном геноме и эффективно защищать экспрессию трансгена в геноме растения от последующих репрессий. Изобретение позволяет создавать трансгенные линии растений, продуцирующие белок с высоким уровнем экспрессии. 1 ил., 3 табл., 5 пр.
Изобретение относится к области физиологии растений. Изобретение представляет собой способ оценки устойчивости растений к засолению почвы. При реализации способа проводят фиксацию корней 3- и 6-дневных проростков тестируемых растений и приготовление препаратов мацерированных клеток. Осуществляют иммунофлуоресцентное окрашивание препарата антителами к белку, формирующему микротрубочки цитоскелета, с последующим микроскопическим анализом окрашенного препарата и сравнением препарата с контрольным образцом. О солеустойчивости сельскохозяйственного растения судят по нарушению параллельности ориентации кортикальных пучков микротрубочек цитоскелета 6-дневных образцов относительно ориентации кортикальных микротрубочек цитоскелета 3-дневных образцов. Изобретение позволяет оценить устойчивость растений к засолению почвы. 6 з.п. ф-лы.
(57) Изобретение относится к области биотехнологии и генной инженерии. Листовые экспланты, вычлененные из тридцатидневных асептических растений исходных сортов, выращенных в сосудах 1 л, помещают в чашки Петри с жидкой средой определенного состава и прединкубируют, кокультивируют и культивируют на питательных средах определенного состава. При появлении регенерантов размером не менее 10 мм их срезают и переносят на среду определенного состава. Проводят первый этап отбора форм, устойчивых к возбудителям фитофтороза и альтернариоза, путем культивирования срезанных регенерантов на среде МС с 50 мл/л канамицина сульфата в течение 30-45 дней при 22-25°C и освещенности 6000-10000 лк при 16-часовом фотопериоде с последующим отбором укоренившихся регенерантов картофеля с зелеными листьями и стеблями. Проводят второй этап отбора форм, устойчивых к возбудитялям фитофтороза и альтернариоза, включающий проверку укоренившихся растений методом ПЦР на наличие целевой ДНК и размножение регенерантов с подтвержденной ПЦР вставкой целевой ДНК микрочеренкованием. Использование заявленного способа позволяет получить устойчивые к возбудителям фитофтороза и альтернариоза формы картофеля. 5 табл.

Изобретение относится к области биохимии, в частности к растению, обладающему повышенной устойчивостью к AHAS-ингибирующему гербициду, включающему, по крайней мере, одну Shiloh-8 IMI нуклеиновую кислоту, его части, растительной клетке и семени. Описана нуклеиновая кислота, кодирующая полипептид, обеспечивающий увеличение гербицидной устойчивости растения. Раскрыты экспрессионная кассета и растительный вектор трансформации, включающие указанную нуклеиновую кислоту. Описаны способы контроля сорняков, произрастающих поблизости растения, обладающего повышенной устойчивостью к AHAS-ингибирующему гербициду. Раскрыт способ получения растения, имеющего повышенную устойчивость к AHAS-ингибирующему гербициду, а также способ повышения активности AHAS в растении. Описан способ отбора клетки, трансформированной вектором, содержащим IMI нуклеиновую кислоту. Также раскрыты способ повышения устойчивости к AHAS-ингибирующему гербициду, а также способ борьбы с нежелательной растительностью, включающий обработку AHAS-ингибирующим гербицидом. Изобретение позволяет получить растение, устойчивое к AHAS-ингибирующему гербициду, что позволяет эффективно бороться с сорняками, произрастающими поблизости от него. 28 н. и 29 з.п. ф-лы, 3 ил., 5 табл., 3 пр.

Изобретение относится к сельскому хозяйству и биотехнологии. Изобретение представляет собой способ экспресс-определения параметров симбиотического взаимодействия арбускулярной микоризы и растения. Предложенный способ позволяет проводить оценку микоризации корней растений намного точнее и быстрее, что будет использовано при экспресс-определении параметров симбиоза арбускулярной микоризы - симбиотической эффективности грибов арбускулярной микоризы, входящих в состав биопрепаратов-усилителей роста растений, а также индексов микоризации. 5 з.п. ф-лы, 4 ил., 4 табл., 4 пр.

Изобретение относится к генетике и репродуктивной биологии растений. Изобретение представляет собой способ получения восстановителей мужской фертильности сорго, несущих гены-восстановители фертильности (Rf) для стерильных цитоплазм типов М35-1А и 9Е, включающий опыление ЦМС-линий пыльцой доноров генов Rf, выделение фертильных форм в потомстве гибрида, несущего гены Rf, оценку их восстановительной способности в тест-кроссах с ЦМС-линиями, где выделение фертильных форм и оценку их восстановительной способности в тест-кроссах с ЦМС-линиями осуществляют путем устройства искусственных стабильных селективных фонов: («засушника»), используемого для выделения фертильных форм и оценки их восстановительной способности в тест-кроссах с ЦМС-линиями, и «влажника», устраиваемого для сравнительной оценки выделенных фертильных форм, причем селективные фоны устраивают в период формирования генеративной сферы у растений-доноров генов Rf, гибридов F1, их самоопыленного потомства и тест-кроссов на протяжении числа вегетации, достаточного для достижения практически приемлемой восстановительной способности восстановителя мужской фертильности в тест-кроссе. Изобретение позволяет отбирать формы (растения), несущие гены-восстановители мужской фертильности для ЦМС-индуцирующих цитоплазм сорго типов М35-1А, 9Е, генетически близких между собой. 1 ил., 6 табл., 2 пр.

Изобретение относится к области биохимии, в частности к способу получения лилий, содержащих в лепестках делфинидин. При этом способ включает введение в лилии гена флавоноид-3′,5′-гидроксилазы (F3′5′H) из колокольчиков, введение фрагмента гена флавоноид-3′-гидроксилазы (F3′H) из лилий, введение фрагмента гена дигидрофлавонол 4-редуктазы (DFR) из лилий, синтез делфинидина в результате деятельности введенного гена F3′5′H, с подавлением при этом экспрессии эндогенного гена F3′H, который участвует в синтезе цианидина в лепестках лилий, и получение лилий, которые содержат дельфинидин в лепестках. Изобретение позволяет эффективно получать лилии, содержащие в лепестках делфинидин. 4 з.п. ф-лы, 3 ил., 6 табл., 8 пр.
Наверх