Устройство для измерения геометрического размера диэлектрической частицы



Устройство для измерения геометрического размера диэлектрической частицы

 


Владельцы патента RU 2508534:

Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук (RU)

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом является повышение точности измерения. Технический результат достигается тем, что в устройство для измерения геометрического размера диэлектрической частицы, содержащее источник излучения, детектор и усилитель, введены циркулятор, приемо-рупорная антенна, фильтр нижних частот и микроконтроллер, причем выход источника излучения соединен с первым плечом циркулятора, второе плечо которого подключено к приемо-передающей рупорной антенне, третье плечо циркулятора соединено с входом детектора, выход детектора через фильтр нижних частот соединен с входом усилителя, выход которого соединен с входом микроконтроллера. 1 ил.

 

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами.

Известно фотоэлектрическое устройство для измерения размеров частиц (см. Н.В.Красногорская, Ю.Я.Кириленко, М.М.Рыбин. Исследование параметров частиц осадков в свободной атмосфере. Физика атмосферы и океана, том 111, №12, стр.1292-1304), содержащее источник света, зеркальные линзы, шторки для формирования светового пучка и фотоумножитель. В этом устройстве по амплитуде импульса, возникающего на аноде фотоумножителя при пересечении светового пучка с частицей, определяют размер частицы.

Недостатком этого известного устройства является нестабильность результатов измерения из-за изменения светового потока источника света.

Наиболее близким техническим решением к предлагаемому является принятое автором за прототип устройство для измерения размеров капли воды (см. Патент РФ №2393462). Данное устройство содержит импульсный модулятор, источник излучения, соединенный выходом с передающей рупорной антенной, приемную рупорную антенну, детектор, подключенный выходом к входу усилителя, и индикатор. В этом устройстве величина выходного тока детектора является функцией размера капли воды.

Недостатком этого устройства следует считать погрешность, связанную с несогласованностью площади зондирующего каплю воды импульса с площадью самой капли воды.

Техническим результатом заявляемого решения является повышение точности измерения.

Технический результат достигается тем, что в устройство для измерения геометрического размера диэлектрической частицы введены приемо-передающая рупорная антенна, циркулятор, фильтр нижних частот и микроконтроллер, причем выход источника излучения 1 соединен с первым плечом циркулятора, второе плечо которого подключено к приемо-передающей рупорной антенне, третье плечо циркулятора соединено с входом детектора, выход детектора через фильтр нижних частот соединен с входом усилителя, выход которого подключен к входу микроконтроллера.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что при зондировании диэлектрической частицы электромагнитным сигналом фиксированной частоты, отображенным на дисплее микроконтроллера сигналом, измеряют размер контролируемой частицы.

Наличие в заявляемом устройстве совокупности перечисленных существующих признаков позволяет решить поставленную задачу измерения геометрического размера частицы на основе микроконтроллера, осуществляющего преобразование аналогового информационного сигнала в цифровую с желаемым техническим решением, т.е. повышением точности измерения.

На чертеже приведена структурная схема устройства.

Устройство содержит источник излучения 1, соединенный выходом с первым плечом циркулятора 2, приемо-передающую рупорную антенну 3, детектор 4, фильтр нижних частот 5, усилитель 6, соединенный выходом с микроконтроллером 7. Цифрой 8 обозначена диэлектрическая частица.

Устройство работает следующим образом. Выходной электромагнитный непрерывный сигнал фиксированной частоты источника излучения 1 поступает в первое плечо циркулятора 2. Этот сигнал далее с помощью второго плеча циркулятора сначала переносится в приемо-передающую рупорную антенну 3, а затем направляется в сторону контролируемой диэлектрической сферической по форме частицы 8.

В рассматриваемом случае при облучении данной частицы электромагнитным сигналом и при выполнении условия d<<λ где d - диаметр сферической частицы, λ - длина электромагнитной волны, для эффективной площади рассеяния (отражения) частицы можно записать (формула Ми)

σ = π 5 k m d 6 / λ 4 , ( 1 )

где σ - эффективная площадь рассеяния частицы;

k m = | m 2 1 / m 2 + 2 | 2 ,

где m - показатель преломления электромагнитной волны.

Из представленной выше формулы видно, что путем оценки параметра σ можно определить диаметр (геометрический размер) облучаемой частицы.

Для этого рассеянный от контролируемой частицы сигнал улавливается приемо-передающей рупорной антенной и далее с помощью третьего плеча циркулятора поступает на вход детектора 4 (см. И.В.Лебедев. Техника и приборы СВЧ. М.: Высшая школа, 1970, стр.292-293).

Известно, что при приеме отраженного от объекта контроля сигнала эффективную площадь рассеяния объекта можно выразить как:

σ = 4 π r 2 П о т р / П п а д . ( 2 )

где r - расстояние от излучателя до объекта, Потр - плотность потока мощности отраженной от объекта волны, Ппад - плотность потока мощности падающей на объект волны. Принимая последнее выражение применительно к рассматриваемому случаю, можно констатировать, что совместное решение (1) и (2) уравнений даст возможность оценить эффективную площадь рассеяния частицы из следующей формулы:

π 4 k m d 6 / λ 4 = 4 r 2 П о т р / П п а д .

Из последней формулы видно, что при известных значениях km, λ, Ппад и неизменном расстоянии между контролируемой частицей и приемо-передающей рупорной антенной (r) путем измерения плотности потока мощности отраженной от частицы волны (сигнала) можно судить о диаметре частицы. В силу этого входной сигнал детектора, соответствующий плотности потока мощности отраженной от частицы волны, сначала детектируется в детекторе и затем для подавления помех поступает на вход фильтра нижних частот 5. Продетектированный сигнал после прохождения фильтра нижних частот поступает на вход усилителя 6. Согласно предлагаемому устройству в качестве последнего здесь используется нормирующий усилитель, который может осуществить одновременно с усилением и масштабирование входного сигнала микроконтроллера 7. В микроконтроллере его входной аналоговый сигнал сначала преобразуется в цифровой, а затем цифровой код, соответствующий входному аналоговому сигналу микроконтроллера. Цифровой код далее с помощью регистра будет храниться до завершения следующего преобразования входного сигнала микроконтроллера. После этого хранимое число (код) передается в процессор микроконтроллера, где осуществляется обработка данных, соответствующих хранимому в регистре микроконтроллера цифровому коду. В результате обработки информации в микроконтроллере на его дисплее (индикаторе) отображается результат измерения геометрического размера (диаметра) контролируемой частицы.

Итак, согласно предлагаемому техническому решению путем микроконтроллерной обработки информационного сигнала о частице можно обеспечить повышение точности измерения размера диэлектрической частицы.

Устройство для измерения геометрического размера диэлектрической частицы, содержащее источник излучения, детектор и усилитель, отличающееся тем, что в него введены циркулятор, приемо-передающая рупорная антенна, фильтр нижних частот и микроконтроллер, причем выход источника излучения соединен с первым плечом циркулятора, второе плечо которого подключено к приемо-передающей рупорной антенне, третье плечо циркулятора соединено с входом детектора, выход детектора через фильтр нижних частот соединен со входом усилителя, выход которого подключен к входу микроконтроллера.



 

Похожие патенты:

Изобретение относится к контрольно-измерительной технике, в частности к оптическим устройствам контроля параметров дисперсных сред, и может найти применение при контроле запыленности газов и загрязнения жидкостей.

Изобретение относится к измерительной технике, а более конкретно - к фотоэлектрическим устройствам, предназначенным для исследования дисперсных систем. Устройство предназначено для калибровки оптической аппаратуры, измеряющей средний диаметр дисперсных частиц, и содержит кювету с прозрачной жидкостью, измерительный канал, состоящий из микроскопа и фоторегистратора, и осветительный канал, содержащий два источника света с различными длинами волн.

Изобретение относится к контрольно-измерительной технике, в частности к оптическим методам контроля параметров дисперсных сред, и может найти применение при контроле запыленности газов и загрязнения жидкостей.

Изобретение относится к технике измерений, может использоваться в электронной промышленности, медицине, биологии, экологии, химической промышленности, порошковой металлургии и других областях науки и техники, связанных с анализом взвешенных частиц.

Заявляемый способ может найти применение при создании и производстве наноструктурированных пленок из пленкообразующих золей для газочувствительных сенсоров. Способ заключается в том, что изготавливают эталонные образцы с заданной начальной концентрацией наночастиц.

Использование: для калибровки оптической измерительной аппаратуры при оценке среднего диаметра дисперсных частиц. Сущность: заключается в том, что проводят измерения характеристик дисперсной системы калибруемой аппаратурой и фоторегистрирующим прибором с последующим определением зависимости сигнала калибруемой аппаратуры от среднего диаметра частиц, определенного визуально, при этом воздействуют ультразвуком на жидкость, создавая дисперсную систему, освещают ее периодическими импульсами света длительностью Ти≤0,1Туз (где Туз - период ультразвуковых колебаний), синхронизованными с ультразвуковыми колебаниями, во время импульсов света измеряют калибруемой аппаратурой и определяют по результатам фоторегистрации средний диаметр дисперсных частиц (dср.а и dср.ф соответственно), изменяют сдвиг фаз между световыми импульсами и ультразвуковыми колебаниями, а также мощность ультразвука, после чего измерения и фоторегистрацию повторяют до получения требуемого количества калибровочных уровней, определяют калибровочную характеристику как зависимость величины dср.а от dср.ф.

Изобретение относится к технике измерений, может использоваться в автомобильной, сельскохозяйственной, авиационной, нефтеперерабатывающей и других отраслях промышленности, где необходимо проводить оперативный анализ качества моторного масла.

Изобретение относится к устройству для разделения сыпучих материалов по размерам частиц в пределах гранулометрического состава и может быть использовано в сельском хозяйстве, а также в химической, строительной, металлургической и других областях промышленности.

Изобретение относится к технике измерений, может использоваться в электронной промышленности, медицине, биологии, экологии, химической промышленности, порошковой металлургии и других областях пауки и техники, связанных с анализом взвешенных частиц.

Способ включает преобразование импульсного напряжения в световой поток, зондирование области исследуемой среды световым пучком. Используют измерительный канал, содержащий исследуемую среду, зондируемую световым пучком, и дополнительный канал, который заполнен очищенной от пыли газовой смесью. Далее в обоих каналах происходит разделение светового потока на широкий и узкий, преобразование световых потоков в электрические сигналы, вычитание сигнала, пропорционального узкому световому пучку опорного канала, из сигнала, пропорционального узкому пучку измерительного канала, синхронное детектирование полученного сигнала и дальнейшая обработка в микроконтроллере, а также вычитание сигнала, пропорционального широкому световому пучку опорного канала, из сигнала, пропорционального широкому пучку измерительного канала, синхронное детектирование полученного сигнала и дальнейшая обработка в микроконтроллере, который определяет по полученным сигналам о широком и узком пучках общую концентрацию пыли и размер частиц пыли. Технический результат - повышение точности измерений среднего размера и концентрации частиц пыли. 2 ил.

Группа изобретений относится к системе и к способу охарактеризовывания частиц в потоке продуктов помола зерна в установке для его помола, где охарактеризовывание включает в себя охарактеризовывание частиц зерна по размеру. В системе и способе охарактеризовывания размолотого материала в размольной установке используются участок облучения для пропуска части потока размолотого материала, содержащий средство облучения частиц в части потока электромагнитным излучением, и участок регистрации для пропуска, содержащий средство регистрации электромагнитного излучения, излучаемого частицами части потока размолотого материала, пропущенной через участок облучения. Средство регистрации содержит отображающую систему и датчик цветного изображения для отображения на нем частиц посредством излученного ими электромагнитного излучения. Датчик цветного изображения содержит элементы изображения для спектрально-избирательной регистрации отображенного на них электромагнитного излучения. Участок регистрации содержит светящееся средство или выполненное и расположенное с возможностью регистрации частиц размолотого материала с помощью комбинации проходящего и падающего света. Изобретения обеспечивают повышение скорости и точности регистрации свойств потока продукта помола. 2 н. и 24 з.п. ф-лы, 3 ил.

Изобретение относится к области ядерной энергетики и может быть использовано при изготовлении тепловыделяющих элементов для ядерных реакторов. Согласно способу производят сканирование изображения сферических частиц круговым оптическим пятном и определяют площадь их проекций. Диаметр пятна выбирают меньше нижней границы диапазона диаметров изображения частиц. Выделяют из изображения области, в которых площадь пересечения сканирующего пятна с изображениями частиц равна площади сканирующего пятна. Площадь проекции каждой частицы определяют как площадь круга, диаметр которого равен сумме диаметра сканирующего пятна и диаметра выделенной в этой частице области. Технический результат - исключение оператора и автоматизация обработки изображений. 3 ил.

Изобретение относится к измерительной технике, а точнее к оптическим методам регистрации агрегации частиц при проведении иммунохимических реакций, например, с применением частиц микронного размера с иммобилизованными на них реагентами. При протекании реакции такие частицы агрегируют, образование агрегатов регистрируется турбидиметрическим или нефелометрическим методом. Из-за больших размеров исходных частиц их взаимное сближение за счет броуновского движения происходит медленно, а образование агрегатов происходит неоднородно по реакционному объему, поэтому для увеличения скорости агрегации и точности ее наблюдения суспензию реагентов необходимо перемешивать. Перемешивание осуществляют или за счет циклического движения магнитных частиц, помещаемых в смесь, или потоком смеси в режиме затопленной струи, или путем возвратно-поступательного перемещения смеси вдоль кюветы, что значительно ускоряет реакцию и увеличивает точность измеряемой кинетики. 3 н. и 2 з.п. ф-лы, 6 ил.

Изобретение относится к технике измерений, может использоваться в автомобильной, сельскохозяйственной, авиационной, нефтеперерабатывающей и других отраслях промышленности, где необходимо проводить оперативный анализ качества моторного масла. Устройство анализа загрязненности моторного масла двигателя внутреннего сгорания дисперсными частицами включает лазер в качестве источника зондирующего излучения, светоделитель (полупрозрачное зеркало), объектив, фотоприемник, аналого-цифровой преобразователь, электронно-вычислительную машину, ультразвуковой генератор и излучатель ультразвуковых колебаний. Также устройство содержит канал контроля металлических частиц, располагающийся внизу масляного поддона картера двигателя, и канал контроля угарных частиц, располагающийся па высоте минимального уровня масла в картере. При этом каждый из каналов содержит фотоприемник, усилитель, аналого-цифровой преобразователь и излучатель ультразвуковых колебаний. Также устройство содержит цифроаналоговый преобразователь и коммутатор для возможности последовательного переключения излучателей ультразвуковых колебаний в каналах контроля. При этом все ультразвуковые излучатели управляются через цифроаналоговый преобразователь электронно-вычислительной машиной, в соответствии с математической моделью колебаний поверхности частицы от воздействия облучений и с параметрами температуры, получаемой при помощи датчика температуры, усилителя и аналого-цифрового преобразователя. Техническим результатом является повышение точности измерения угарных и металлических частиц, повышение информативности данных для оценки концентрации взвешенных металлических и угарных дисперсных частиц, находящихся в масле, в частности дает возможность контролировать качество работы двигателя, оставшийся ресурс работы масла до его замены. 1 ил.

Изобретение относится к контрольно-измерительной технике, а именно к оптико-электронным способам контроля и регулирования параметров дисперсных сред. По зарегистрированному импульсному световому изображению рассеченной плоской с малой толщиной части факела распыла определяют параметры распыла капель в данной части факела с помощью системы единиц дисперсности на основе формулы объема шара (сферы) капли, для чего в указанном изображении производят сортировку и подсчет количества капель стандартных классов диапазонов микроскопических размеров в их смежной последовательности. Для реализации способа разработана двухлазерная установка с цифровыми устройствами обработки сигналов изображений и ЭВМ. Изобретение позволяет расширить функциональные возможности способа и установки за счет измерения скоростей диспергированных капель и получения результатов оценки параметров факела распыла посредством анализа величин приведенных интегральных объемов капель на единицу площади с сортировкой по последовательности смежных диапазонов размеров капель. 2 н. и 2 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к способам автоматического контроля крупности частиц в потоке пульпы в процессе измельчения материала и может быть использовано в области обогащения руд полезных ископаемых, а также в горно-металлургической, строительной и других областях промышленности. Способ автоматического контроля крупности частиц в потоке пульпы включает периодическое ощупывание частиц материала микрометрическим щупом с преобразованием величины частиц, зафиксированных механизмом ощупывания, в электрический сигнал, пропорциональный их абсолютному размеру. Для чего отбирают пробу пульпы, фильтруют, направляют в кондиционирующую емкость. Затем измеряют плотность пробы в кондиционирующей емкости. При этом разбавляют пробу пульпы водой до состояния, обеспечивающего получение монослоя частичек материала при фиксировании их микрометрическим щупом. Затем производят прокачку разбавленной пробы в режиме циркуляции по контуру, включающему кондиционирующую емкость и камеру измерения. После чего осуществляют измерение крупности частичек материала в циркулирующем потоке, проходящем через камеру измерения, в течение периода времени, длительность которого задается по результатам предварительной калибровки, и производят вычисление содержания контролируемого класса по результатам измерения содержаний промежуточных классов крупности. Техническим результатом является повышение надежности и точности измерений гранулометрического состава материала в потоке пульпы. 4 ил.

Изобретение относится к области измерения характеристик аэрозольных частиц оптическими методами. Способ заключается в измерении ослабления оптического излучения в видимой и ближней инфракрасной областях спектра. Максимальный размер и концентрацию аэрозольных частиц определяют по формулам , , где Dmax - максимальный диаметр частиц, мкм; Cm - массовая концентрация частиц, кг/м3; ρ - плотность материала частиц, кг/м3; l - оптическая длина пути, м; λ∗, - координаты точки выхода на асимптоту функции , мкм; τ(λ) - измеренная спектральная оптическая плотность; α*(λ) - зависимость от длины волны значения параметра дифракции α=νπD/λ, соответствующего абсциссе точки начала отклонения функции Q(α) от функции Qp(α); Q(α) - фактор эффективности ослабления, рассчитанный по точным формулам теории Ми для заданных зависимостей показателя преломления n(λ) и показателя поглощения æ(λ) материала аэрозольных частиц; - фактор эффективности ослабления для релеевского рассеяния. Техническим результатом является повышение точности определения характеристик субмикронных частиц. 4 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения параметров мелкодисперсной водогазовой смеси перед закачкой в пласт. Техническим результатом является обеспечение проведения измерения дисперсности водогазовой смеси как для прозрачной, так и для непрозрачной дисперсионной среды. Способ включает получение водогазовой смеси под повышенным давлением, отбор пробы водогазовой смеси и перевод ее в измерительную емкость при том же давлении. Перед проведением измерения определяется объем измерительной емкости, а в процессе измерения непрерывно регистрируется изменение давления свободного газа внутри измерительной емкости и объем свободного газа, соответствующее ему приращение объема свободного газа, определятся общее количество газа, содержащегося в отобранной пробе, затем определяется зависимость ΔР от объема свободного газа в емкости, которая затем пересчитывается в зависимость изменения давления (ΔР) от относительной доли текущего значения массы свободного газа miг/mг, где mг - общее количество газа mг, содержащегося в отобранной пробе, miг - текущее значение массы свободного газа, далее определятся радиус газовых пузырьков, содержащихся в доле текущего значения массы свободного газа по формуле: r i = 2 σ Δ P i ,  где σ - межфазное натяжение, и вычисляется функция распределения радиуса пузырьков. 3 з.п. ф-лы, 1 пр., 1 табл.

Изобретение относится к океанологическим исследованиям. Устройство включает в себя средство для генерации параллельного потока импульсов оптического излучения, средство для формирования оптическим путем реперного объема прямоугольного сечения, средство для перемещения реперного объема, средство для приема и преобразования оптического излучения в электрические сигналы и средство для регистрации изменения амплитуды электрических импульсов, снабженное средством для определения разности между сигналом в отсутствие импульсов и сигналом, полученным во время действия импульсов, и средством, формирующим временной интервал на время регистрации частиц. При этом отношение размеров сторон прямоугольного сечения реперного объема равно отношению максимальной и минимальной границ размерного диапазона регистрируемых частиц. В устройство введен гидроакустический канал оценки, состоящий из многолучевого эхолота, антенны накачки параметрического профилографа, низкочастотной приемной антенны параметрического профилографа, генератора зондирующих импульсов, приемника эхосигналов, блока обработки акустических сигналов, пульта управления и индикации с интерфейсным блоком и сетевым концентратором, двух гидролокаторов бокового обзора, антенны которых установлены соответственно по правому и левому бортам. Технический результат - расширение функционалных возможностей. 1 ил.
Наверх