Каталитическая добавка для окисления оксида углерода в процессе регенерации катализаторов крекинга и способ ее приготовления


 


Владельцы патента RU 2513106:

Открытое акционерное общество "Газпромнефть-Омский НПЗ" (RU)

Изобретение относится к области катализа. Описана каталитическая добавка для окисления оксида углерода в процессе регенерации катализаторов крекинга, включающая соединения марганца, оксид алюминия, природную бентонитовую глину и аморфный алюмосиликат, при следующем содержании компонентов, мас.%: марганец в пересчете на MnO2 10-15, бентонитовая глина 20-30, аморфный алюмосиликат 16-25, Al2O3 - остальное, имеющая сферическую форму частиц со средним размером 70-85 мкм, износоустойчивостью не менее 96%, насыпной плотностью 0,68-0,76 г/см3. Описан способ приготовления указанной каталитической добавки. Технический результат - увеличение активности окисления СО. 2 н.п. ф-лы, 5 пр.

 

Изобретение относится к области нефтепереработки, в частности к катализаторам окисления оксида углерода, используемым в качестве добавки к катализатору крекинга для окисления оксида углерода в диоксид углерода в процессе регенерации катализатора крекинга. Каталитическая добавка обладает высокой активностью в окислении оксида углерода, сопоставимой с активностью катализаторов, приготовленных с применением драгоценных металлов (Pt, Pd).

Известны катализаторы, применяемые в качестве добавок к катализатору крекинга для окисления CO, и способы их приготовления нанесением на оксид алюминия или алюмосиликат металлов платиновой группы (патенты US 7045056, 5565399, 5110780, 4608357; патент SU 1003740; патенты RU 2082498, 1591248 и 2105038). Недостатком указанных катализаторов является высокая стоимость применяемых для их приготовления драгоценных металлов. Катализаторы описанных в патентах составов и способов приготовления имеют низкую износоустойчивость, приводящую к быстрому износу и высокому расходу в ходе эксплуатации в установках крекинга. Кроме того, указанные катализаторы окисления оксида углерода существенно отличаются от катализаторов крекинга по насыпной плотности, что приводит к неравномерному распределению катализатора крекинга и катализатора окисления оксида углерода в объеме регенератора.

Известны катализаторы окисления оксида углерода на основе оксидов металлов Cu, Co, Cr (Попова Н.М. Катализаторы очистки выхлопных газов автотранспорта. Алма-Ата.: Наука, 1987. - 223 с.). Однако эти катализаторы не используются для окисления оксида углерода в диоксид углерода в процессе регенерации катализатора крекинга, так как в регенераторе, в присутствии оксидов серы, оксиды указанных металлов превращаются в сульфаты, и катализаторы полностью теряют активность в окислении оксида углерода.

Известны катализаторы с применением соединений марганца для окисления CO (патент US 5017357). Катализаторы на основе оксида марганца, прокаленные при температуре 550-850°C, характеризуются невысокой активностью в окислении CO и также подвержены сульфатированию.

Известен катализатор окисления оксида углерода и способ его приготовления на основе оксидов марганца и алюминия (патент РФ 2063803). Катализатор получают в результате высокотемпературной обработки в интервале температур 900-1000°C, приводящей к образованию высокотемпературных оксидов алюминия (α-Al2O3 и α+β+θ-Al2O3) и марганца. Атомы марганца в активном компоненте распределены между дефектным нестехиометрическим оксидом β-Mn3O4+x, (где x - в интервале от 0,1 до 0,25) и алюминатом марганца. Такой катализатор не подвержен сульфатированию и сохраняет высокую активность в окислении оксида углерода. Данный катализатор не предназначен для использования в качестве добавки к катализатору крекинга, его недостатком является невозможность обеспечить приемлемые для условий крекинга размер частиц, износоустойчивость и насыпной вес.

Известен катализатор для окисления CO в процессе регенерации катализаторов крекинга и способ его приготовления (патент РФ 2365408, прототип). Катализатор включает соединения марганца, оксид алюминия и природную бентонитовую глину при следующем содержании компонентов, мас.%: марганец в пересчете на MnO2 6-20, бентонитовая глина 24-44, Al2O3 - остальное, и имеет сферическую форму частиц со средним размером 70 мкм, износоустойчивостью 92-97%, насыпной плотностью 0,7-0,8 г/см3.

Недостатком известного катализатора являются его высокие абразивные свойства, что приводит к эрозии аппаратуры при его эксплуатации в кипящем слое.

Цель изобретения - создание высокоэффективной каталитической добавки для окисления оксида углерода в процессе регенерации катализаторов крекинга, не содержащей драгоценных металлов, на основе соединений марганца, с высокой износоустойчивостью и, соответственно, меньшими абразивными свойствами.

Предлагаемая каталитическая добавка для окисления оксида углерода в процессе регенерации катализаторов крекинга включает соединения марганца, оксид алюминия, природную бентонитовую глину и аморфный алюмосиликат, при следующем содержании компонентов, мас.%: марганец в пересчете на MnO2 10-15, бентонитовая глина 20-30, аморфный алюмосиликат 16-25, Al2O3- остальное, и имеет сферическую форму частиц со средним размером 70-85 мкм, износоустойчивостью не менее 96%, насыпной плотностью 0,68-0,76 г/см3.

Предлагаемый способ приготовления каталитической добавки для окисления оксида углерода в процессе регенерации катализаторов крекинга включает смешивание гидроксида марганца с матрицей, состоящей из гидроксида алюминия, природной бентонитовой глины и аморфного алюмосиликата, с получением композиции со следующим содержанием компонентов, мас.%: марганец в пересчете на MnO2 10-15, бентонитовая глина 20-30, аморфный алюмосиликат 16-25, Al2O3 - остальное, распылительную сушку полученной композиции и ступенчатое прокаливание при температуре 450-500°C в течение 4-6 часов и затем при температуре 950-980°C в течение 4 часов.

Известно, что высокая износоустойчивость каталитической добавки (более 96%) определяет ее низкие абразивные свойства. Уменьшение абразивных свойств предлагаемой каталитической добавки достигается введением в ее состав аморфного алюмосиликата. Компоненты добавки оксид алюминия и природная бентонитовая глина, являясь кристаллическими веществами, имеют высокие абразивные свойства, алюмосиликат за счет своей аморфной структуры имеет низкие абразивные свойства. Введение в состав каталитической добавки кроме бентонитовой глины аморфного алюмосиликата, обладающих высокими связующими и прочностными свойствами, позволяет повысить ее износоустойчивость. Добавление азотной кислоты на стадии приготовления смеси гидроксид алюминия - бентонитовая глина повышают износоустойчивость каталитической добавки.

Благодаря содержанию в составе каталитической добавки бентонитовой глины, аморфного алюмосиликата и оксида алюминия, получаемая каталитическая добавка по своим физическим характеристикам близка к катализатору крекинга, что обеспечивает равномерное распределение катализатора крекинга и каталитической добавки для окисления оксида углерода в зоне регенерации.

Формирование активного компонента предлагаемой каталитической добавки для окисления оксида углерода в процессе регенерации катализаторов крекинга происходит в ходе термообработки при температуре 950-970°C. За счет того, что марганец в составе каталитической добавки входит в структуру алюмината марганца, не происходит его сульфатирования при эксплуатации на установках крекинга и каталитическая добавка не теряет активность в окислении оксида углерода.

Состав активной фазы каталитической добавки определяют рентгенографическим методом.

Износоустойчивость каталитической добавки определяют как долю добавки, сохранившей размер частиц свыше 20 мкм, после истирания ее в шаровой мельнице в течение 15 минут, в соответствии с отраслевым стандартом на микросферические катализаторы крекинга [ОСТ 38.01161-78].

Активность каталитической добавки оценивают как степень превращения оксида углерода при следующих условиях: температура 720°C, реакционная смесь: 2 об.% CO, 5 об.% O2 в азоте, время контакта составляет 0,02 с. Концентрацию оксида углерода в газе определяют хроматографически.

Для приготовления каталитической добавки для окисления оксида углерода в процессе регенерации катализаторов крекинга предварительно готовят следующие компоненты:

- суспензию гидроксида марганца с концентрацией по оксиду марганца (IV) от 60 до 15 0 г/л;

- суспензию природной бентонитовой глины с концентрацией по твердому веществу от 100 до 200 г/л;

- суспензию гидроксида алюминия с концентрацией по оксиду алюминия от 70 до 150 г/л;

- суспензию аморфного алюмосиликата с концентрацией по твердому веществу от 40 до 90 г/л.

Для иллюстрации изобретения приведены следующие примеры. Пример 1 (по прототипу). К 140,7 г гидроксида алюминия добавляют воду до состояния суспензии (концентрация алюминия 10% в пересчете на Al2O3), тщательно перемешивают, добавляют 10 мл щелочи, доводя pH суспензии до 9,6. В полученную суспензию порциями добавляют 249,0 мл раствора Mn(NO3)2 (концентрация марганца составляет 30,42 г/л) при постоянном перемешивании и раствор аммиака, поддерживая pH смеси равным 9,6. Полученный осадок фильтруют, отмывают от нитратов и смешивают с 176,0 г бентонитовой глины (влажность 75%) и 3,0 мл HNO3 (концентрация HNO3 составила 12,78 моль/л), тщательно перемешивают. После получения однородной композиции образец упаривают до состояния вязкой пластичной массы. Затем формуют катализатор в виде микросферических частиц средним размером 70 мкм. Полученную фракцию сушат при 120°C 4 часа и прокаливают при 500 и 970°C по 4 часа. Содержание марганца 12 мас.% в пересчете на оксид марганца (IV). Износоустойчивость катализатора составляет 92%. Насыпная плотность катализатора 0,78 г/см3. Степень превращения оксида углерода при 720°C составляет 81,4%.

Пример 2. Смешивают 125,0 мл суспензии природной бентонитовой глины (концентрация по твердому веществу составляет 160 г/л) и 500,0 мл суспензии гидроксида алюминия (концентрация по оксиду алюминия составляет 90 г/л). Добавляют в приготовленную суспензию смеси бентонитовая глина - гидроксид алюминия 3,4 мл концентрированной азотной кислоты (концентрация HNO3 составляет 12,78 моль/л). К полученной смеси добавляют 125,0 мл суспензии гидроксида марганца (концентрация по оксиду марганца (IV) составляет 80 г/л). Полученную композицию отмывают на фильтровальной установке от катионов натрия и нитрат-ионов. Следующая стадия заключается во введении в полученную композицию 521,0 мл суспензии аморфного алюмосиликата (концентрация по твердому веществу составляет 48 г/л). Полученную суспензию композиции из соединений марганца и компонентов матрицы с концентрацией по твердому веществу 70 г/л формуют методом распылительной сушки, прокаливают ступенчато при 500°C 4 часа и при 970°C 4 часа и получают частицы сферической формы со средним размером 70-85 мкм.

Полученная каталитическая добавка для окисления оксида углерода содержит следующие компоненты: марганец в пересчете на оксид марганца (IV) 10 мас.%, природную бентонитовую глину 20 мас.%, оксид алюминия 45 мас.%, аморфный алюмосиликат 25 мас.%. Износоустойчивость каталитической добавки составляет 96%. Насыпная плотность каталитической добавки 0,72 г/см3. Степень превращения оксида углерода при 720°C составляет 91,2%.

Пример 3. Аналогичен примеру 2. Отличие в том, что каталитическая добавка для окисления оксида углерода содержит следующие компоненты:

марганец в пересчете на оксид марганца (IV) 14 мас.%, природную бентонитовую глину 30 мас.%, оксид алюминия 40 мас.%, аморфный алюмосиликат 16 мас.%. Износоустойчивость составляет 97%. Насыпная плотность каталитической добавки 0,74 г/см3. Степень превращения оксида углерода при 720°C составляет 94,1%.

Пример 4. Аналогичен примеру 2. Отличие в том, что каталитическая добавка для окисления оксида углерода содержит следующие компоненты:

марганец в пересчете на оксид марганца (IV) 15 мас.%, природную бентонитовую глину 20 мас.%, оксид алюминия 49 мас.%, аморфный алюмосиликат 16 мас.%. Износоустойчивость каталитической добавки составляет 96%. Насыпная плотность 0,76 г/см3. Степень превращения оксида углерода при 720°C составляет 95,8%.

Пример 5. (для сравнения). Приведена активность стандартного катализатора для окисления оксида углерода КО-10, содержащего 0,05 мас.% Pt, оксид алюминия - остальное. Износоустойчивость катализатора составляет 90%. Насыпная плотность катализатора 0,71 г/см3. Степень превращения оксида углерода при 720°C составляет 96,4%.

Как следует из примеров, предлагаемая каталитическая добавка для окисления оксида углерода в процессе регенерации катализаторов крекинга, характеризующаяся повышенной износоустойчивостью, а следовательно, низкими абразивными свойствами, обладает высокой активностью в реакции окисления оксида углерода, сопоставимой с активностью катализатора-прототипа, а также катализаторов, приготовленных с использованием драгоценных металлов (Pt, Pd).

1. Каталитическая добавка для окисления оксида углерода в процессе регенерации катализаторов крекинга, включающая соединения марганца, оксид алюминия и природную бентонитовую глину, отличающаяся тем, что в качестве компонента матрицы дополнительно содержит аморфный алюмосиликат, при следующем содержании компонентов, мас.%: марганец в пересчете на MnO2 10-15, бентонитовая глина 20-30, аморфный алюмосиликат 16-25, Al2O3 - остальное, и имеет сферическую форму частиц со средним размером 70-85 мкм, износоустойчивостью не менее 96%, насыпной плотностью 0,68-0,76 г/см3.

2. Способ приготовления каталитической добавки для окисления оксида углерода в процессе регенерации катализаторов крекинга по п.1, включающий смешивание гидроксида марганца с матрицей, состоящей из гидроксида алюминия и бентонитовой глины, распылительную сушку полученной композиции из соединений марганца и компонентов матрицы и ступенчатое прокаливание, отличающийся тем, что в качестве компонента матрицы перед сушкой дополнительно вводят аморфный алюмосиликат, с получением композиции со следующим содержанием компонентов, мас.%: марганец в пересчете на MnO2 10-15, бентонитовая глина 20-30, аморфный алюмосиликат 16-25, Al2O3 - остальное.



 

Похожие патенты:

Изобретение относится к установке для проведения конверсии углеводородов, включающей реакционную зону, в которую поступает транспортируемый катализатор. .
Изобретение относится к процессам регенерации катализаторов для гидрогенизации растительных масел и жиров. .
Изобретение относится к области нефтехимии, конкретно к процессу выделения молибденсодержащего катализатора из продуктов каталитического эпоксидирования олефинов органическими гидропероксидами.

Настоящее изобретение относится к окислительному катализатору, способу его изготовления, способу обработки выбросов отработавших газов двигателей внутреннего сгорания, к системе выпуска отработавших газов и к транспортному средству.

Настоящее изобретение относится к катализаторам для процессов селективного каталитического восстановления соединений NOx в выхлопных газах и отходящих газах из процессов сгорания.

Изобретение относится к области катализа. Описан способ получения гранулированного катализатора крекинга, состоящий в смешении цеолита Y, глины и связующего с последующими формовкой, сушкой и прокалкой, в котором смешивают цеолит в виде окристаллизованной фазы или в составе смеси с аморфным алюмосиликатом и/или глиной, связующее, глину и отощающую добавку в массовом соотношении (25-40):(5-10):(40-50):(10-20), в качестве связующего используют оксихлорид алюминия, смесь формуют путем экструзии.
Изобретение относится к способам получения катализаторов олигомеризации пропилена. Описан способ получения катализатора для олигомеризации пропилена путем взаимодействия бис(ацетилацетонато)никеля, диизобутилалюминийхлорида, промотирующего соединения - воды в присутствии органического растворителя н-октана и процесс проводят при 5-15°C при непрерывной подаче пропилена в реактор при атмосферном давлении.
Настоящее изобретение относится к способу крекинга, предпочтительно к способу крекинга с псевдоожиженным слоем, к катализатору, в присутствии которого осуществляют способ крекинга, способу получения катализатора и применению катализатора.
Изобретение относится к катализаторам для превращения нитрилов карбоновых кислот. Описан катализатор для взаимодействия нитрилов карбоновых кислот с водой, содержащий по меньшей мере 60% масс.

Изобретение относится к способам приготовления предшественников катализаторов. Описаны способы приготовления твердых предшественников смешанных оксидных катализаторов получения акрилонитрила или метакрилонитрила из пропана или изобутана окислительным аммонолизом в газовой фазе, содержащих молибден (Мо), ванадий (V), сурьму (Sb), ниобий (Nb), кислород (О), включающие приготовление реакционной смеси, включающей указанные выше элементы, причем реакционную смесь готовят путем контактирования только одного из соединений сурьмы, молибдена и ванадия с пероксидом водорода до смешения с исходными соединениями остальных элементов, содержащихся в смешанных оксидных катализаторах, и пероксид водорода берут в таком количестве, чтобы мольное соотношение пероксида водорода и сурьмы в катализаторах находилось в интервале 0.01-20.

Изобретение относится к способам изготовления каталитически формованных изделий и их использованию. Описан способ изготовления каталитически активных геометрических формованных изделий К, содержащих в качестве активной массы многоэлементный оксид I общей стехиометрии (I): [ B i a Z b 1 O x ] p [ B i c M o 1 2 F e d Z e 2 Z f 3 Z g 4 Z h 5 Z i 6 O y ] 1   ( I ) , согласно которой Z1 означает вольфрам или вольфрам и молибден, при условии, что количество вольфрама составляет по меньшей мере 10% мол.

Изобретение относится к способам изготовления каталитических формованных изделий и их использованию. Описан способ изготовления каталитически активных геометрических формованных изделий К, содержащих в качестве активной массы многоэлементный оксид I общей стехиометрии (I): [Bi1WbOx]a[Mo12Z1 cZ2 dFeeZ3 fZ4gZ5 hOy]1 (I), в которой Z1 означает элемент или несколько элементов, выбранных из группы, включающей никель и кобальт, Z2 означает элемент или несколько элементов, выбранных из группы, включающей щелочные металлы, щелочноземельные металлы и таллий, Z3 означает элемент или несколько элементов, выбранных из группы, включающей цинк, фосфор, мышьяк, бор, сурьму, олово, церий, ванадий, хром и висмут, Z4 означает элемент или несколько элементов, выбранных из группы, включающей кремний, алюминий, титан, вольфрам и цирконий, Z5 означает элемент или несколько элементов, выбранных из группы, включающей медь, серебро, золото, иттрий, лантан и лантаноиды, а означает число от 0,1 до 3, b означает число от 0,1 до 10, с означает число от 1 до 10, d означает число от 0,01 до 2, е означает число от 0,01 до 5, f означает число от 0 до 5, g означает число от 0 до 10, h означает число от 0 до 1, и x, y соответственно означают числа, которые определяются валентностью и количеством отличающихся от кислорода атомов в формуле (I), причем формируют тонкодисперсный смешанный оксид Bi1WbOx в виде исходной массы А1, диаметр частиц которой d 50 A 1 удовлетворяет условию 1 мкм≤ d 50 A 1 ≤10 мкм, используя источники отличающихся от кислорода элементов составной части T=[Mo12Z1 cZ2 dFeeZ3 fZ4 gZ5 hOy]1 многоэлементного оксида I, в водной среде формируют однородную водную смесь М, причем каждый из используемых источников в процессе формирования водной смеси М проходит через степень дисперсности Q, которой соответствует диаметр частиц d 90 Q ≤5 мкм, и водная смесь М содержит молибден, Z1, Z2, железо, Z3, Z4 и Z5 в стехиометрии (I*): Mo12Z1 cZ2 dFeeZ3 fZ4 gZ5 h (I*), из водной смеси М путем сушки и регулирования степени дисперсности формируют тонкодисперсную исходную массу А2, диаметр частиц d 90 A 2 которой удовлетворяет условию 200 мкм≥ d 90 A 2 ≥20 мкм, исходную массу А1 смешивают с исходной массой А2 или смешивают друг с другом исходную массу А1, исходную массу А2 и тонкодисперсное вспомогательное средство для формования, получая тонкодисперсную исходную массу A3, которая содержит вводимые в нее через исходные массы А1 и А2, отличающиеся от кислорода элементы многоэлементного оксида I в стехиометрии (I**): [Bi1Wb]a[Mo12Z1 cZ2 dFeeZ3 fZ4 gZ5 h]1 (I**), используя тонкодисперсную исходную массу A3, формуют геометрические формованные изделия V и формованные изделия V подвергают термической обработке при повышенной температуре, получая каталитически активные формованные изделия К, причем произведение F : ( d 5 0 A 1 ) 0 , 7 ⋅ ( d 9 0 A 2 ) 1 , 5 ⋅ ( a − 1 ) составляет ≥820.

Изобретение относится к каталитическому крекингу углеводородов. Описан способ получения легких олефинов путем каталитического крекинга углеводородов с 4-мя или более чем с 4-мя атомами углерода, имеющими точку кипения 30-200°C, в присутствии катализатора, характеризующегося тем, что 0,01-5,0 масс.

Настоящее изобретение относится к слоистым катализаторам гидрирования ацетилена в этилен. Описан слоистый катализатор, имеющий внутреннее ядро, содержащее инертный материал, и внешний слой, связанный с внутренним ядром, причем внешний слой содержит оксид металла; первый металл, осажденный на внешнем слое, выбран из металлов групп 8 - 10 таблицы IUPAC , и второй металл, осажденный на внешнем слое, выбран из металлов группы 11 или группы 14 таблицы IUPAC, причем катализатор имеет коэффициент доступности (КД) между 3 и 500.

Изобретение относится к катализаторам гидрирования и дегидрирования. .
Изобретение относится к катализаторам синтеза Фишера-Тропша. .
Наверх