Способ измерения пористости хлебобулочного изделия и устройство для осуществления



Способ измерения пористости хлебобулочного изделия и устройство для осуществления
Способ измерения пористости хлебобулочного изделия и устройство для осуществления
Способ измерения пористости хлебобулочного изделия и устройство для осуществления
Способ измерения пористости хлебобулочного изделия и устройство для осуществления
Способ измерения пористости хлебобулочного изделия и устройство для осуществления

 


Владельцы патента RU 2515118:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") (RU)

Изобретение относится к области технологического контроля пористости хлебобулочных изделий в процессе их производства и может быть использовано при отработке оптимального режима технологии получения заданной пористости в цеховых лабораторных условиях.

В способе измерения пористости хлебобулочного изделия и устройства для его осуществления, включающем выемку пористого куска мякиша, при выемке пористый кусок мякиша представляет собой всю плоскость разреза хлебобулочного изделия. Когерентное излучение от источника поступает в коллиматор, на выходе которого формируется пучок параллельных световых лучей. Далее световой пучок освещает поверхность пористого куска мякиша хлебобулочного изделия, находящегося в рабочей зоне, образуя некоторый угол «θ» с нормалью к поверхности. Отраженные от пористой поверхности рассеянные световые лучи собирают и строят изображение структуры пористого куска мякиша в плоскости наблюдения, где и измеряют размеры пор куска мякиша хлебобулочного изделия, при этом пористость определяют по формуле:

I ¨ = S ¯ I ¨ S I ˙ 100 ,

где S ¯ I ¨ - суммарная усредненная площадь пор куска мякиша; S I ˙ - площадь пористого куска мякиша. Причем рабочей зоне устанавливают всю поверхность разреза хлебобулочного изделия.Технический результат - повышение точности измерения за счет количественного измерения пористости хлебобулочного изделия.

2 н.п.ф-лы, 1 ил.

 

Изобретение относится к области технологического контроля пористости хлебобулочных изделий в процессе их производства и может быть использовано при отработке оптимального режима технологии получения заданной пористости в цеховых лабораторных условиях. Изобретение может быть использовано в других областях, например при измерении пористости пенопласта, поролона, резины, многослойных диэлектрических покрытий и т.д.

Известен способ определения пористости хлебобулочного изделия и устройство для его осуществления (ГОСТ 5669-96. Хлебобулочные изделия. Метод определения пористости).

Заявитель не выявил другие способы и устройства определения пористости хлебобулочных изделий.

Согласно известному способу производят выемку куска мякиша хлебобулочного изделия, взвешивают кусок мякиша и находят его объем с последующим количественным расчетом его пористости.

Устройство, реализующее этот способ, содержит весы лабораторные и прибор Журавлева, состоящий из металлического цилиндра, деревянной втулки и лотка с поперечной стенкой, в котором имеется прорезь.

Основным недостатком известного способа и устройства определения пористости является низкая точность измерения, обусловленная сложностью технологического процесса, заключающегося в выборке измеряемой зоны пористого куска мякиша, вырезании куска заданных габаритов, взвешивании нескольких кусков мякиша. На каждой из этих стадий вносится определенная погрешность измерений в конечный результат.

Кроме этого, недостатком известного способа и устройства является условность определения чистого объема пористости части куска мякиша, отсутствие наглядной структуры пористого состояния хлебобулочного изделия.

Задачей изобретения является повышение точности измерения за счет количественного измерения пористости хлебобулочного изделия, а также обеспечение возможности наблюдения пористости хлебобулочного изделия на экране монитора в реальном времени.

Технический результат достигается тем, что в способе измерения пористости хлебобулочного изделия, включающем выемку пористого куска мякиша, согласно заявляемому изобретению, при выемке пористый кусок мякиша представляет собой всю плоскость разреза хлебобулочного изделия, а пористость хлебобулочного изделия измеряют посредством устройства с когерентным источником излучения, при этом в рабочей зоне устройства устанавливают всю плоскость разреза хлебобулочного изделия, плоскость разреза хлебобулочного изделия освещают когерентным световым пучком под углом к его поверхности, собирают отраженные от пористой поверхности рассеянные световые лучи и строят изображение структуры пористого куска мякиша в плоскости наблюдения, где и измеряют размеры пор куска мякиша хлебобулочного изделия, при этом пористость определяют по формуле:

,

где S ¯ I ¨ - суммарная усредненная площадь пор куска мякиша;

SÌ - площадь пористого куска мякиша.

Для достижения названного технического результата предлагается устройство для осуществления способа измерения пористости хлебобулочного изделия, включающее компьютер, с возможностью определения пористости хлебобулочного изделия, исходя из суммарной усредненной площади пор куска мякиша и площади пористого куска мякиша, когерентный источник излучения, коллиматор, оптическая ось которого ориентирована под углом к поверхности пористого куска мякиша хлебобулочного изделия, рабочую зону для установки куска мякиша, проекционный объектив, установленный в отраженном свете, оптическая ось которого образует с оптической осью коллиматора угол «0», и плоскость наблюдения изображения структуры пористого куска мякиша хлебобулочного изделия.

Сущность изобретения поясняется чертежом, на котором представлена принципиальная схема оптической системы устройства, реализующего предлагаемый способ измерения пористости хлебобулочного изделия.

Цифрами на чертеже обозначены:

1 - когерентный источник излучения (лазер с длиной волны λ=632,8 нм);

2 - коллиматор, оптическая ось которого ориентирована под углом к поверхности пористого куска мякиша хлебобулочного изделия;

3 - рабочая зона для установки пористого куска мякиша хлебобулочного изделия;

4 - проекционный объектив, установленный в отраженном свете, оптическая ось которого образует с оптической осью коллиматора угол «θ».

5 - плоскость наблюдения изображения структуры пористого куска мякиша хлебобулочного изделия (плоскость обработки изображения).

Способ измерения пористости хлебобулочного изделия включает выемку пористого куска мякиша.

Отличием предлагаемого способа измерения пористости хлебобулочного изделия является то, что при выемке пористый кусок мякиша представляет собой всю плоскость разреза хлебобулочного изделия, а пористость хлебобулочного изделия измеряют посредством устройства с когерентным источником излучения.

В рабочей зоне 3 устройства с когерентным источником 1 излучения устанавливают всю плоскость разреза хлебобулочного изделия.

Плоскость разреза хлебобулочного изделия освещают когерентным световым пучком под углом «θ» к его поверхности. Собирают отраженные от пористой поверхности рассеянные световые лучи и строят изображение структуры пористого куска мякиша в плоскости 5 наблюдения, где и измеряют размеры пор куска мякиша хлебобулочного изделия.

Пористость хлебобулочного изделия определяют по формуле:

,

где S ¯ I ¨ - суммарная усредненная площадь пор куска мякиша;

SÌ - площадь пористого куска мякиша.

Разработанные алгоритмы и программы расчета позволяют с помощью компьютера (на чертеже он условно не показан), с возможностью определения пористости хлебобулочного изделия, исходя из суммарной усредненной площади пор куска мякиша и площади пористого куска мякиша, выдавать данные о пористости любого сечения производимого хлебобулочного изделия.

Таким образом, суть предлагаемого способа измерения пористости хлебобулочного изделия состоит в следующем.

Когерентное излучение от источника (лазера) 1 поступает в коллиматор 2. На выходе коллиматора 2 формируется пучок параллельных световых лучей. Далее световой пучок освещает поверхность пористого куска мякиша хлебобулочного изделия, находящегося в рабочей зоне 3, образуя некоторый угол «θ» с нормалью к его поверхности. Следует отметить, что в рабочей зоне 3 устанавливают всю плоскость разреза хлебобулочного изделия (буханки хлеба), а не локальный фрагмент мякиша, как это имеет место в прототипе.

Рассеянные на поверхности пористого куска мякиша световые лучи поступают в апертуру проекционного объектива 4.

Проекционный объектив 4 строит изображение всей поверхности пористого куска мякиша в плоскости 5 наблюдения. В этой плоскости устанавливают приемник и выводят изображение с нужным увеличением на экран монитора (на чертеже условно не показан).

На экране монитора технолог имеет возможность наблюдать изображение пористого куска мякиша любого разреза одного и того же хлебобулочного изделия (одной и той же буханки хлеба) или заменить его на другое хлебобулочное изделие и тем самым в реальном времени визуально оценивать пористость выпускаемой партии хлебобулочных изделий.

По разработанному алгоритму и программе компьютер, с возможностью определения пористости хлебобулочного изделия, исходя из суммарной усредненной площади пор куска мякиша и площади пористого куска мякиша, может выдавать количественные данные о пористости хлебобулочного изделия. Рабочая программа позволяет измерять размеры пор куска мякиша хлебобулочного изделия в чистом виде и тем самым определять усредненную пористую площадь S ¯ I ¨ . Также измеряется площадь собственно пористого куска мякиша хлебобулочного изделия. При этом пористость (в процентах) хлебобулочного изделия определяют по формуле:

,

где S ¯ I ¨ - суммарная усредненная площадь пор куска мякиша; SÌ - площадь пористого куска мякиша.

Таким образом, на основе достижений когерентной оптики и лазерной техники разработан способ и устройство измерения пористости хлебобулочного изделия, который, в отличие от прототипа, не требует выполнения многочисленных механических и весовых процедур и позволяет в реальном времени наблюдать пористость любого разреза куска мякиша и измерять площадь пор в их собственно чистом виде, а также определять пористость хлебобулочного изделия в цифровом виде в диапазоне усредненных диаметров пор от десятых долей микрометров до нескольких миллиметров.

1. Способ измерения пористости хлебобулочного изделия, включающий выемку пористого куска мякиша, отличающийся тем, что при выемке пористый кусок мякиша представляет собой всю плоскость разреза хлебобулочного изделия, а пористость хлебобулочного изделия измеряют посредством устройства с когерентным источником излучения, при этом в рабочей зоне устройства устанавливают всю плоскость разреза хлебобулочного изделия, плоскость разреза хлебобулочного изделия освещают когерентным световым пучком под углом к его поверхности, собирают отраженные от пористой поверхности рассеянные световые лучи и строят изображение структуры пористого куска мякиша в плоскости наблюдения, где и измеряют размеры пор куска мякиша хлебобулочного изделия, при этом пористость определяют по формуле:
,
где S ¯ I ¨ - суммарная усредненная площадь пор куска мякиша;
SÌ - площадь пористого куска мякиша.

2. Устройство для измерения пористости хлебобулочного изделия, включающее компьютер, с возможностью определения пористости хлебобулочного изделия, исходя из суммарной усредненной площади пор куска мякиша и площади пористого куска мякиша, когерентный источник излучения, коллиматор, оптическая ось которого ориентирована под углом к поверхности пористого куска мякиша хлебобулочного изделия, рабочую зону для установки куска мякиша, проекционный объектив, установленный в отраженном свете, оптическая ось которого образует с оптической осью коллиматора угол «θ», и плоскость наблюдения изображения структуры пористого куска мякиша хлебобулочного изделия.



 

Похожие патенты:
Изобретение относится к области экологии и сельского хозяйства и предназначено для определения коэффициента фильтрации плывунного грунта в зоне распространения подзолистых почв.

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов влагопроводности ортотропных капиллярно-пористых материалов в бумажной, легкой, строительной и других отраслях промышленности.

Изобретение может быть использовано при разработке месторождений углеводородов. Устройство для оценки динамики процесса прямоточной капиллярной пропитки образцов пород относится к области петрофизических исследований.

Изобретение относится к области исследования структуры порового пространства горных пород и предназначено для определения латеральной анизотропии фильтрационных свойств терригенного коллектора по результатам исследования его керна.

Изобретение относится к петрофизическим методам определения свойств пород и может быть использовано в нефтяной геологии для определения смачиваемости пород-коллекторов нефти и газа.

Изобретение относится к контролю качества бетонов, растворов и цементного камня. .

Изобретение относится к области исследования образцов неконсолидированных пористых сред и может быть использовано для изучения открытой или закрытой пористости, распределения пор по размерам, удельной поверхности, пространственного распределения и концентрации ледяных и/или газогидратных включений в поровом пространстве образцов, определения размера включений и т.д.

Изобретение относится к области исследования строительных материалов и контрольно-измерительной технике, и может быть использовано для определения пористости керамических и силикатных материалов.

Изобретение относится к области исследования образцов мерзлых пород и может быть использовано для изучения пространственного распределения и концентрации ледяных и/или газогидратных включений в поровом пространстве образцов, определения размера включений, открытой или закрытой пористости и т.п.

Изобретение относится к технологиям нефтедобычи, а именно к способам гидродинамического моделирования залежей и проектирования на их основе разработки месторождений.

Изобретение относится к методам неразрушающего контроля горных пород, а именно к способам установления детальной характеристики структуры трещинно-порового пространства кристаллических пород, определения скрытых неоднородностей, флюидопроницаемости. Способ определения неоднородностей упругих и фильтрационных свойств горных пород заключается в том, что выбуренные из горного массива цилиндрические образцы керна различной длины просвечивают ультразвуковыми продольными P-волнами по регулярной сетке во множестве направлений как угловых, так и вдоль оси образца керна. Затем определяют скорости упругих продольных волн в высушенных образцах и в насыщенных жидкостью. Получают массив данных скоростей упругих продольных волн для обоих состояний, который обрабатывают для получения данных о двумерном распределении скоростей и их отклонений от среднего значения для высушенных образцов и насыщенных жидкостью, представляемом в виде цветной или монохромной топографической карты с изолиниями с заполнением между ними или без него с координатами двугранный угол наблюдения - высота наблюдения датчика. Далее сравнивают полученные результаты измерений скоростей в высушенных образцах и в насыщенных жидкостью. Затем сравнивают результаты измерения скоростей упругих волн для образцов, насыщенных жидкостью, и для образцов в обоих состояниях, далее делают вывод о неоднородностях упругих и фильтрационных свойств горных пород, о степени насыщенности жидкостью горной породы и судят о том, какие нарушения имеются в естественном залегании массива пород. Техническим результатом является повышение эффективности и упрощение прогноза неоднородностей массива горных пород, невидимых трещин, внутренних контактов пород. 3 з.п. ф-лы, 9 ил., 1 табл.

Изобретение относится к области тестирования на герметичность и может быть использовано для тестирования на герметичность фильтрованного устройства (2) для сепарации аэрозолей и пылей из объемного потока газа. Сущность: посредством загрузочного устройства (16) тестовый аэрозоль подают, если смотреть в направлении потока, до фильтрующего элемента (9) в поток неочищенного газа. Осуществляют замер числа частиц и/или определяют концентрацию частиц, если смотреть в направлении потока, в очищенном потоке газа после фильтрующего элемента (9). При этом в загрузочное устройство (16) подают первый смешанный объемный поток из тестового аэрозоля и сжатого воздуха, который формирует аэрозольный генератор (37). Произведенный при помощи аэрозольного генератора (37) первый смешанный объемный поток смешивают с объемным потоком воздуха для получения второго, более разреженного смешанного объемного потока. Подают второй, более разреженный смешанный объемный поток на загрузочное устройство (16). Технический результат: минимизация расхода сжатого воздуха. 2 н. и 10 з.п. ф-лы, 5 ил.

Изобретение относится к способу испытания бумажных фильтрующих элементов для очистки жидкостей, нефтепродуктов. Способ контроля ресурса фильтроэлемента включает прокачку жидкости, смешанной с искусственным загрязнителем, и фиксацию перепада давления на фильтроэлементе через равные величины его прироста. Определяют исходную величину поверхностного натяжения и плотность используемой жидкости с учетом фактической температуры, задают величину поверхностного натяжения изопропанола, вертикально закрепляют полностью погруженный в жидкость фильтроэлемент, осуществляют прокачку загрязненной жидкости снаружи-внутрь фильтроэлемента, замеряя текущее значение перепада давления на фильтроэлементе. После каждого прироста перепада давления на величину, равную 10% предельно допустимого значения, прокачку прекращают и подают под давлением воздух изнутри-наружу фильтроэлемента до момента появления первого пузырька воздуха на его поверхности, фиксируют величину давления воздуха в этот момент и замеряют расстояние от точки появления первого пузырька до уровня жидкости над фильтроэлементом, после чего рассчитывают показатель герметичности фильтроэлемента. При значении показателя герметичности не менее заданной величины продолжают прокачку жидкости и при увеличении перепада давления на фильтроэлементе еще на 10% прокачку прекращают и подают под давлением воздух изнутри-наружу фильтроэлемента до момента появления первого пузырька воздуха на его поверхности, фиксируют величину давления воздуха в этот момент и замеряют расстояние от точки появления первого пузырька до уровня жидкости над фильтроэлементом, после чего рассчитывают показатель герметичности. При значении показателя герметичности менее заданной величины судят о выработке ресурса фильтроэлемента, а величину перепада давления на фильтроэлементе, зафиксированную на предыдущем приросте давления на 10%, принимают за критическое значение. Технический результат: повышение точности определения ресурса фильтроэлемента. 1 ил., 1 пр.

Изобретение относится к машиностроению и может быть использовано при измерении проницаемости пористых пластически деформируемых материалов для жидкости. Способ заключается в том, что образец помещают в замкнутую цилиндрическую полость между поршнем, создающим давление, и проницаемым для жидкости дном. Задают исследуемые уровни давления, для каждого из которых создают циклическое силовое нагружение образца давлением. Используя выбранное давление для выключения нагружения и давление, равное 0,85-0,95 выбранного давления, для включения нагружения, регистрируют во времени изменение длины образца и временной промежуток снижения давления на цикле разгрузки, а также объем отжатой жидкости. Затем вычисляют коэффициент проницаемости на цикле по формуле K ф i = B i ⋅ m о б i ⋅ ( l i − l i − 1 ) ρ ж ⋅ S n ⋅ ( P − P 1 ) , на каждом цикле определяют остаточное массовое содержание жидкости в образце по формуле C i = C 0 m о б 0 − m i m о б 0 − m i ; где B i = 1 t k i − t 0 i ⋅ ln ( P P 1 ) , mобi=mоб0-mi, uжi=Sn·(li-l1), mi=ρж·uжi Р - исследуемый уровень давления, P1=0,85Р÷0,95Р - минимальное давление, Sn - площадь поршня, l1 - длина образца в начале 1-го цикла, li-1 - длина образца в начале i-го цикла, li - длина образца в конце i-го цикла, t0i - время начала снижения давления на i-ом цикле, tki - время конца i-го цикла, mоб0 - начальная масса образца, mобi - масса образца на i-ом цикле, ρж - плотность отфильтрованной жидкости, uжi - суммарный объем отфильтрованной жидкости до i-го цикла, mi - масса отжатой жидкости до i-го цикла, С0 - исходное массовое содержание жидкости, Сi - текущее массовое содержание жидкости на i-ом цикле, i - изменяется от 1 до k, k - номер цикла, на котором выполняется условие (Kф(k-1)-Kфk)/Kфk≤0,01. Затем по полученным значениям коэффициента проницаемости и массового содержания жидкости на всех выбранных уровнях давления определяют зависимость коэффициента проницаемости как функцию от массового содержания жидкости и уровня давления. Техническим результатом является возможность получения характеристик для пластически деформируемого пористого материала в широком диапазоне давлений при изменении массового содержания жидкости, в частности в процессе отжима жидкости из материала, повышение точности измерения. 3 ил.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для прогнозирования изменения характеристик призабойной зоны нефтегазосодержащих пластов. Техническим результатом является повышение точности и снижение трудоемкости прогнозирования изменения характеристик призабойной зоны пластов за счет комбинирования математического моделирования и лабораторных экспериментов. Сущность способа основывается на определении реологических свойств бурового раствора, фильтрата бурового раствора и пластового флюида, измерении свойств внешней фильтрационной корки, а также пористости и проницаемости образца керна. При этом создают математическую модель внешней фильтрационной корки. Прокачивают буровой раствор через образец керна и регистрируют динамику перепада давления на образце и расхода истекающей из образца жидкости. С помощью микротомографии определяют профиль концентрации проникших в образец твердых частиц бурового раствора. Создают математическую модель внутренней фильтрационной корки для описания динамики изменения концентрации частиц бурового раствора в поровом пространстве образца керна и сопутствующего изменения проницаемости образца керна. Создают сцепленную математическую модель внешней и внутренней фильтрационных корок, на основе которой с учетом свойств внешней фильтрационной корки определяют параметры математической модели внутренней фильтрационной корки, при которых одновременно воспроизводятся данные эксперимента по прокачке бурового раствора через образец керна и профиль концентрации проникших частиц бурового раствора. 12 з.п. ф-лы, 8 ил.

Изобретение относится к области испытания и определения свойств материалов. Способ измерения пористости частиц сыпучих материалов целесообразно применять при производстве гранулированных катализаторов, сорбентов, а также для определения свойств пористых материалов различного назначения. Способ измерения пористости частиц сыпучих материалов включает измерение истинной плотности частиц сыпучего материала и перепада давления на слое материала в режимах фильтрации газа и псевдоожижения, формируемых путем изменения расхода газа, по которым судят о пористости его частиц. Техническим результатом является простота реализации, отсутствие использования токсичных веществ, дефицитных материалов, а также обеспечение возможности экспресс-измерений свойств гидрофобных сыпучих материалов с ярко выраженными сорбционными свойствами и развитой поверхностью.

Изобретение относится к сельскохозяйственному машиностроению, в частности к машинам и орудиям для обработки почвы и может найти применение научно-исследовательскими и производственными организациями при проектировании, исследованиях и эксплуатации рабочих органов почвообрабатывающих машин и орудий. Сущность: определяют потенциал деформируемости почв, представляющий собой отношение энергии, затраченной на деформацию и массообменные процессы к единице массы почвы в конкретных условиях ее залегания, по формуле ϕ = − ( E 1 m n 3 − A 1 m n 1 ) + ( E 2 m n 4 − A 2 m n 2 ) ,                               ( 1 ) где А1, А2 - механическая работа, затраченная соответственно на деформацию почвы при тестировании твердомером до и после ее обработки, Дж; mn1, mn2 - соответственно масса деформированной почвы при тестировании твердомером до и после ее обработки, кг; E1, Е2 - свободная энергия Гиббса, характеризующая состояние влаги в почве и тем самым определяющая энергию связей между подвижными почвенными частицами в образце почвы до и после воздействия на нее рабочих органов почвообрабатывающих машин и орудий, Дж; mn3, mn4 - соответственно масса почвы в образце, взятом на тестируемом участке до и после механической обработки, кг. В указанной формуле противоположные знаки слагаемых E1 и А1, а также Е2 и А2 показывают, что энергия связей между подвижными почвенными частицами в образце почвы после воздействия на нее рабочих органов возрастает, а работа, затрачиваемая на механическую деформацию почвы, уменьшается. Измерение входящих в формулу физических величин, таких как усилие на участке прямой пропорциональности диаграммы P=f(h), глубина погружения цилиндрического наконечника твердомера производят твердомером на тестируемом участке до и после механического воздействия на почву рабочих органов. Измерения физических величин, таких как плотность твердой фазы почвы, пористость, удельная свободная, поверхностная энергия на границе раздела вода-воздух, объемная удельная поверхность твердой фазы почвы, объемная влажность и объемная масса почвы производят на одних и тех же образцах почвы ненарушенного сложения, отобранных на тестируемом участке соответственно до и после механической обработки в тех же точках, участок тестировался твердомером. Техническим результатом является повышение точности энергетической оценки механического воздействия обрабатывающих почву рабочих органов машин и орудий. 1 ил., 5 табл.

Изобретение относится к области физико-химического анализа и может быть использовано для определения наличия трещин на поверхности образцов стального проката с полимерным покрытием, преимущественно при испытании полимерного покрытия на прочность при изгибе по ГОСТ Р 52146-2003. В способе определения сплошности полимерного покрытия, включающем контакт исследуемого образца с электропроводной жидкостью и измерение электрического тока, согласно изобретению ток образуется не от внешнего источника питания, а в результате появления на дефектных участках покрытия активного электрода - металлической полосы. Кроме того, в качестве электропроводной жидкости может применяться соляной раствор. Для реализации данного способа используют устройство для определения сплошности полимерного покрытия, включающее рабочий элемент с электропроводной жидкостью и прибор контроля тока, отличающееся тем, что рабочий элемент выполнен в виде электролитической ячейки, изготовленной из диэлектрического материала, в нижней части которой располагается электрод, выполненный из материала, не пассивирующегося в применяемой электропроводной жидкости, а верхняя часть которой имеет контактный элемент, выполненный из пластичного коррозионно-стойкого материала, при этом электролитическая ячейка снабжена системой ее заполнения и поддержания уровня выпуклого мениска в контактном элементе и контактирует с электропроводным элементом. Кроме того, электропроводный элемент может быть выполнен в форме металлического стакана, электрод - из графита, а контактный элемент - из резины. Техническим результатом является создание способа и устройства, которые обеспечивают точность, объективность, простоту и оперативность определения сплошности полимерного покрытия. 2 н. и 4 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к контрольно-измерительной технике и может найти применение в почвоведении, мелиорации, гидрологии, грунтоведении, строительном деле и других областях науки и производства, связанных с исследованием свойств пористых материалов. Способ заключается в том, что измерение производится по принципу просачивания воздуха через пористый материал с известной пористостью и влажностью. Образец известной длины и объема помещают в устройство, обеспечивающее измерение разности давлений на его входе и выходе и объема воздуха, протекшего через образец в стационарном режиме при давлении, близком к атмосферному. На основе измеренных пористости, влажности, разности давлений между торцами образца и времени протекания через него измеренного объема воздуха рассчитывают удельную поверхность конденсированной фазы, удельную поверхность твердой фазы и потенциал влаги однородных пористых материалов по формулам. При этом измерение входящих в формулу физических величин, таких как объем газа, протекающего через образец, время протекания газа, перепад давлений, производят на одних и тех же образцах пористых материалов. Техническим результатом является повышение точности определения удельной поверхности твердой фазы, удельной поверхности конденсированной фазы, потенциала влаги однородных пористых материалов. 1 ил., 4 табл.

Изобретение относится к способам описания характеристик двухмерных и трехмерных образцов для определения распределений размеров тела пор и каналов пор, а также кривых зависимости капиллярного давления в пористой среде. Входная информация включает петрографические изображения высокого разрешения и лабораторные измерения пористости. Выходная информация включает распределения размеров тела пор и каналов пор и моделирование кривых зависимости капиллярного давления как для тела пор, так и каналов пор. 3 н. и 27 з.п. ф-лы, 27 ил.
Наверх