Способ измерения пористости частиц сыпучих материалов



 


Владельцы патента RU 2527656:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" ФГБО ВПО ТГТУ (RU)

Изобретение относится к области испытания и определения свойств материалов. Способ измерения пористости частиц сыпучих материалов целесообразно применять при производстве гранулированных катализаторов, сорбентов, а также для определения свойств пористых материалов различного назначения. Способ измерения пористости частиц сыпучих материалов включает измерение истинной плотности частиц сыпучего материала и перепада давления на слое материала в режимах фильтрации газа и псевдоожижения, формируемых путем изменения расхода газа, по которым судят о пористости его частиц. Техническим результатом является простота реализации, отсутствие использования токсичных веществ, дефицитных материалов, а также обеспечение возможности экспресс-измерений свойств гидрофобных сыпучих материалов с ярко выраженными сорбционными свойствами и развитой поверхностью.

 

Изобретение относится к области испытания и определения свойств материалов и может быть использовано при производстве гранулированных катализаторов, сорбентов, а также для определения свойств сыпучих материалов различного назначения.

Известен способ измерения пористости, включающий измерение первоначального объема материала, размещение материала в камере с жидкостью, увеличение давления в камере для вдавливания жидкости в материал, измерение объема жидкости, вдавленной в материал, определение пористости материала по отношению измеренного объема жидкости к первоначальному объему материала (Патент РФ №2172942 МПК G01N 15/08. - Опубл. 27.08.2001 г.).

Ограничением этого метода является невозможность контроля сыпучих материалов (СМ) вследствие сложности определения первоначального объема их частиц, необходимость выбора жидкости для обеспечения ее наилучшего проникновения в поровое пространство материала, при расчете пористости не учитывается объем закрытых пор, недоступных для жидкостного заполнения. Кроме того, данный способ относится к группе разрушающих, так как после измерения проба материала теряет свои первоначальные качества.

Наиболее близким по технической сущности является способ измерения пористости (Плаченов Т.Г., Колосенцев С.Д. Порометрия. - Л.: Химия, 1988. - С.155 - 160), заключающийся в фильтрации газа и измерении его количества, прошедшего сквозь пористый материал за единицу времени при постоянном перепаде давления, по которому судят о пористости.

Недостатком способа измерения пористости, принятого за прототип, является невозможность его использования для измерения пористости частиц СМ.

Такой признак прототипа, как фильтрация газа сквозь пористый материал, совпадает с существенным признаком заявляемого способа.

Технической задачей изобретения является обеспечение возможности измерения пористости частиц СМ.

Решение поставленной технической задачи достигается за счет измерения истинной плотности и перепадов давления на слое сыпучего материала в режимах фильтрации газа и псевдоожижения, формируемых путем изменения расхода газа, по которым судят о пористости его частиц.

Способ осуществляется следующим образом.

Сыпучий материал с известной либо измеренной по любой методике описанной в нормативной документации истинной плотностью частиц ρи, помещают в измерительную емкость, представляющую собой проточную камеру (например, трубку, верхний конец которой открыт, а снизу подводится газ) и подают газ.

Фильтрационный перенос газа или жидкости в пористой среде при ламинарном режиме движения описывается уравнением Дарси:

Q = Δ P 1 S h 0 μ K , ( 1 )

где Q - объемный расход газа, м3/с; ΔP1 - перепад давления на неподвижном слое сыпучего материала, Па; µ - динамическая вязкость газа, Па·с; S - площадь поперечного сечения емкости с сыпучим материалом, м2; К - проницаемость, м2.

Для учета свойств среды при оценке проницаемости используется гипотеза Козени-Кармана, в соответствии с которой для подчиняющегося закону Дарси потока газа проницаемость пористой среды характеризуется соотношением [2]:

K = ε 0 3 ( 1 ε 0 ) 2 d ч 2 120 , ( 2 )

где ε0 - концентрация газовой фазы в слое СМ (порозность); dч - средний диаметр частиц сыпучего материала, м.

Из (1) и (2) получаем

Q = Δ P 1 S h 0 μ ε 0 3 ( 1 ε 0 ) 2 d ч 2 120 ,

откуда

ε 0 3 ( 1 ε 0 ) 2 = Q Δ P 1 h 0 μ S 120 d ч 2 . ( 3 )

Введем в выражении (3) замену y=1-ε0 и x = 120 d ч 2 Q Δ P 1 h 0 μ S . Получим уравнение

( 1 y ) 3 y 2 = x ,

аппроксимация которого функцией вида у=(а+сх)/(1+bx) при условии изменения порозности от 0,3 до 0,8 дает выражение

у=(0,741+0,423х)/(1+1,737х)

или

1 ε 0 = ( 0,741 + 50,76 d ч 2 Q Δ P 1 h 0 μ S ) / ( 1 + 208,44 d ч 2 Q Δ P 1 h 0 μ S ) , 0,3 ε 0 0,8. ( 4 )

Объем частиц СМ, включающий объем их закрытых и открытых пор, определяется как

V V = V о б щ V г , ( 5 )

где Vобщ=Sh - объем слоя СМ; Vг - объем газовой фазы в слое СМ.

С учетом концентрации газовой фазы в слое СМ ε0 выражение (5) примет вид

V V = ( 1 ε 0 ) S h 0 . ( 6 )

В момент начала псевдоожижения масса СМ, приходящаяся на единицу площади поперечного сечения измерительной емкости, уравновешивается силой гидравлического сопротивления слоя

Δ P 2 = m с л g S , ( 7 )

где ΔP2 - перепад давления на псевдоожиженном слое сыпучего материала, Па; mсл - масса слоя сыпучего материала, кг; g - ускорение свободного падения, м/с2.

Истинный объем частиц СМ (объем твердой фазы) определим из соотношения

V т в = m с л ρ и ,

откуда с учетом (7)

V т в = Δ P 2 S g ρ и . ( 8 )

По определению пористость материала есть отношение объема пор к объему, задираемому этим материалом, т.е.

П = V п о р V V 100 %

или

П = ( 1 V т в V V ) 100 % . ( 9 )

Подстановка (6) и (8) в (9) с учетом (4) дает выражение

П = [ 1 Δ P 2 ( 1 + 208,44 d ч 2 Q Δ P 1 h 0 μ S ) / ρ и g h 0 ( 0,741 + 50,76 d ч 2 Q Δ P 1 h 0 μ S ) ] 100 % .

Таким образом, пористость частиц СМ определяется путем измерения перепадов давления ΔР1 и ΔР2 в режиме фильтрации и в момент псевдоожижения.

Разработанный метод отличается простотой реализации, обеспечивает измерение пористости частиц сыпучих материалов и может быть использован для экспресс-измерений пористости материалов с ярко выраженными сорбционными свойствами и развитой поверхностью.

Способ измерения пористости частиц сыпучих материалов, включающий фильтрацию газа сквозь пористый материал под действием перепада давления, отличающийся тем, что измеряют истинную плотность частиц сыпучего материала, изменяя расход газа, приводят слой в псевдоожиженное состояние, измеряют перепады давления на слое сыпучего материала в режимах фильтрации газа сквозь сыпучий материал и псевдоожижения, по которым судят о пористости его частиц.



 

Похожие патенты:

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для прогнозирования изменения характеристик призабойной зоны нефтегазосодержащих пластов.

Изобретение относится к машиностроению и может быть использовано при измерении проницаемости пористых пластически деформируемых материалов для жидкости. Способ заключается в том, что образец помещают в замкнутую цилиндрическую полость между поршнем, создающим давление, и проницаемым для жидкости дном.

Изобретение относится к способу испытания бумажных фильтрующих элементов для очистки жидкостей, нефтепродуктов. Способ контроля ресурса фильтроэлемента включает прокачку жидкости, смешанной с искусственным загрязнителем, и фиксацию перепада давления на фильтроэлементе через равные величины его прироста.

Изобретение относится к области тестирования на герметичность и может быть использовано для тестирования на герметичность фильтрованного устройства (2) для сепарации аэрозолей и пылей из объемного потока газа.

Изобретение относится к методам неразрушающего контроля горных пород, а именно к способам установления детальной характеристики структуры трещинно-порового пространства кристаллических пород, определения скрытых неоднородностей, флюидопроницаемости.

Изобретение относится к области технологического контроля пористости хлебобулочных изделий в процессе их производства и может быть использовано при отработке оптимального режима технологии получения заданной пористости в цеховых лабораторных условиях.
Изобретение относится к области экологии и сельского хозяйства и предназначено для определения коэффициента фильтрации плывунного грунта в зоне распространения подзолистых почв.

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов влагопроводности ортотропных капиллярно-пористых материалов в бумажной, легкой, строительной и других отраслях промышленности.

Изобретение может быть использовано при разработке месторождений углеводородов. Устройство для оценки динамики процесса прямоточной капиллярной пропитки образцов пород относится к области петрофизических исследований.

Изобретение относится к области исследования структуры порового пространства горных пород и предназначено для определения латеральной анизотропии фильтрационных свойств терригенного коллектора по результатам исследования его керна.

Изобретение относится к сельскохозяйственному машиностроению, в частности к машинам и орудиям для обработки почвы и может найти применение научно-исследовательскими и производственными организациями при проектировании, исследованиях и эксплуатации рабочих органов почвообрабатывающих машин и орудий. Сущность: определяют потенциал деформируемости почв, представляющий собой отношение энергии, затраченной на деформацию и массообменные процессы к единице массы почвы в конкретных условиях ее залегания, по формуле ϕ = − ( E 1 m n 3 − A 1 m n 1 ) + ( E 2 m n 4 − A 2 m n 2 ) ,                               ( 1 ) где А1, А2 - механическая работа, затраченная соответственно на деформацию почвы при тестировании твердомером до и после ее обработки, Дж; mn1, mn2 - соответственно масса деформированной почвы при тестировании твердомером до и после ее обработки, кг; E1, Е2 - свободная энергия Гиббса, характеризующая состояние влаги в почве и тем самым определяющая энергию связей между подвижными почвенными частицами в образце почвы до и после воздействия на нее рабочих органов почвообрабатывающих машин и орудий, Дж; mn3, mn4 - соответственно масса почвы в образце, взятом на тестируемом участке до и после механической обработки, кг. В указанной формуле противоположные знаки слагаемых E1 и А1, а также Е2 и А2 показывают, что энергия связей между подвижными почвенными частицами в образце почвы после воздействия на нее рабочих органов возрастает, а работа, затрачиваемая на механическую деформацию почвы, уменьшается. Измерение входящих в формулу физических величин, таких как усилие на участке прямой пропорциональности диаграммы P=f(h), глубина погружения цилиндрического наконечника твердомера производят твердомером на тестируемом участке до и после механического воздействия на почву рабочих органов. Измерения физических величин, таких как плотность твердой фазы почвы, пористость, удельная свободная, поверхностная энергия на границе раздела вода-воздух, объемная удельная поверхность твердой фазы почвы, объемная влажность и объемная масса почвы производят на одних и тех же образцах почвы ненарушенного сложения, отобранных на тестируемом участке соответственно до и после механической обработки в тех же точках, участок тестировался твердомером. Техническим результатом является повышение точности энергетической оценки механического воздействия обрабатывающих почву рабочих органов машин и орудий. 1 ил., 5 табл.

Изобретение относится к области физико-химического анализа и может быть использовано для определения наличия трещин на поверхности образцов стального проката с полимерным покрытием, преимущественно при испытании полимерного покрытия на прочность при изгибе по ГОСТ Р 52146-2003. В способе определения сплошности полимерного покрытия, включающем контакт исследуемого образца с электропроводной жидкостью и измерение электрического тока, согласно изобретению ток образуется не от внешнего источника питания, а в результате появления на дефектных участках покрытия активного электрода - металлической полосы. Кроме того, в качестве электропроводной жидкости может применяться соляной раствор. Для реализации данного способа используют устройство для определения сплошности полимерного покрытия, включающее рабочий элемент с электропроводной жидкостью и прибор контроля тока, отличающееся тем, что рабочий элемент выполнен в виде электролитической ячейки, изготовленной из диэлектрического материала, в нижней части которой располагается электрод, выполненный из материала, не пассивирующегося в применяемой электропроводной жидкости, а верхняя часть которой имеет контактный элемент, выполненный из пластичного коррозионно-стойкого материала, при этом электролитическая ячейка снабжена системой ее заполнения и поддержания уровня выпуклого мениска в контактном элементе и контактирует с электропроводным элементом. Кроме того, электропроводный элемент может быть выполнен в форме металлического стакана, электрод - из графита, а контактный элемент - из резины. Техническим результатом является создание способа и устройства, которые обеспечивают точность, объективность, простоту и оперативность определения сплошности полимерного покрытия. 2 н. и 4 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к контрольно-измерительной технике и может найти применение в почвоведении, мелиорации, гидрологии, грунтоведении, строительном деле и других областях науки и производства, связанных с исследованием свойств пористых материалов. Способ заключается в том, что измерение производится по принципу просачивания воздуха через пористый материал с известной пористостью и влажностью. Образец известной длины и объема помещают в устройство, обеспечивающее измерение разности давлений на его входе и выходе и объема воздуха, протекшего через образец в стационарном режиме при давлении, близком к атмосферному. На основе измеренных пористости, влажности, разности давлений между торцами образца и времени протекания через него измеренного объема воздуха рассчитывают удельную поверхность конденсированной фазы, удельную поверхность твердой фазы и потенциал влаги однородных пористых материалов по формулам. При этом измерение входящих в формулу физических величин, таких как объем газа, протекающего через образец, время протекания газа, перепад давлений, производят на одних и тех же образцах пористых материалов. Техническим результатом является повышение точности определения удельной поверхности твердой фазы, удельной поверхности конденсированной фазы, потенциала влаги однородных пористых материалов. 1 ил., 4 табл.

Изобретение относится к способам описания характеристик двухмерных и трехмерных образцов для определения распределений размеров тела пор и каналов пор, а также кривых зависимости капиллярного давления в пористой среде. Входная информация включает петрографические изображения высокого разрешения и лабораторные измерения пористости. Выходная информация включает распределения размеров тела пор и каналов пор и моделирование кривых зависимости капиллярного давления как для тела пор, так и каналов пор. 3 н. и 27 з.п. ф-лы, 27 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для повышения достоверности оценки запасов углеводородов и математического моделирования пластовых процессов в низкопроницаемых коллекторах нефти и газа. Техническим результатом является определение повышенных значения капиллярных давлений в низкопроницаемых образцах горных пород без явления разрыва жидких флюидов при вращении центрифуги. Способ включает вытеснение насыщающего образец породы флюида вытесняющим флюидом при вращении центрифуги. При этом перед вращением центрифуги в загерметизированном кернодержателе центрифуги повышают начальное давление путем закачки в него вытесняющего флюида до уровня, превышающего прогнозируемое максимальное значение капиллярного давления в образце породы. Также предложено устройство для реализации способа. 2 н.п. ф-лы, 2 ил.

Изобретение относится к измерению физических свойств, связанных с прохождением текучей фазы в пористом материале. Способ оценки физических параметров пористого материала, находящегося в потоке текучих сред, содержит этапы, на которых образец (2) материала помещают в герметичную камеру (1) таким образом, чтобы входная сторона (3) образца сообщалась с первым объемом (V0) и чтобы его выходная сторона (4) сообщалась со вторым объемом. В первом объеме осуществляют модуляцию давления и в течение времени измеряют изменения соответствующих давлений в первом объеме и во втором объеме. При помощи дифференциального уравнения, параметрами которого являются собственная проницаемость материала, его пористость и его коэффициент Клинкенберга, производят цифровой анализ изменений измеряемых давлений для оценки по меньшей мере собственной проницаемости и коэффициента Клинкенберга, а также предпочтительно его пористости в ходе одного эксперимента. Техническим результатом является повышение оценки проницаемости kI и коэффициента Клинкенберга b, а также возможность одновременно производить оценку пористости ϕ в ходе одного эксперимента. 12 з.п. ф-лы, 28 ил., 4 табл.
Изобретение относится к области исследований параметров грунтов. Представлен способ определения коэффициента фильтрации плывунного грунта, по которому через образец грунта пропускают поток воды, на поверхности образца грунта размещают грузик, фиксируют начало погружения грузика, измеряют параметры образца и потока воды, рассчитывают по измеренным показателям коэффициент фильтрации грунта. Новым является то, что фиксируют величину концентрации полиакриламида в потоке воды, прошедшем через образец грунта, и при снижении величины концентрации больше 8% от начального значения вводят в поток воды, направляемый в образец грунта, раствор полиакриламида, восстанавливая величину концентрации полиакриламида в потоке воды, прошедшем через образец грунта, до начального значения. Достигается расширение функциональных возможностей. 1 пр., 1 табл.

Изобретение относится к контрольно-измерительной и экспериментальной технике и может быть использовано для контроля качества фильтрующих материалов. Способ определения максимального размера пор мембраны включает установку мембраны в ячейку и заполнение ячейки жидкостью, создание условий для проникновения льда сквозь мембрану и расчет значения максимального размера пор мембраны. Способы измерения максимального размера сквозных каналов пористого материала и повышения надежности испытаний установкой мембраны делят ячейку на две полости. Заполняют ячейку с мембраной дегазированной дистиллированной водой и охлаждают ее до температуры ниже 0°C при атмосферном давлении. В одну из полостей ячейки вносят затравку льда и по истечении времени полного замерзания воды начинают понижать температуру ячейки до тех пор, когда начнется кристаллизация воды во второй полости ячейки. По температуре начала кристаллизации и зависимости понижения температуры фазового равновесия воды и льда от радиуса пор находят максимальный размер пор мембраны. Техническим результатом является разработка простого неразрушающего способа измерения максимального размера сквозных каналов пористого материала, повышение надежности испытаний и расширение области измеряемого диапазона сквозных каналов в область более мелких пор. 1 ил.

Изобретение относится к газовой промышленности и может быть использовано для моделирования, проектирования подземных хранилищ газа (ПХГ) в водоносных структурах пласта коллектора и оценки активного объема ПХГ. Способ включает в себя отбор представительных образцов породы, имеющих типичные для подземного хранилища газа значения пористости и проницаемости, формирование имитатора породы пласта путем последовательного размещения представительных образцов породы в кернодержателе, подключение на вход имитатора породы пласта прецизионных насосов для закачки воды и газа, заполнение имитатора породы пласта водой и газом в объемах, соответствующих значениям начальной газо- и водонасыщенности подземного хранилища газа, определение открытого объема порового пространства имитатора породы пласта по объему закачанных в имитатор породы пласта воды и газа, установление пластовой температуры, создание в имитаторе породы пласта давления обжима и пластового давления, соответствующих значениям горного и пластового давлений подземного хранилища газа, и закрытие выхода имитатора породы пласта, последующую закачку газа на вход в имитатор породы пласта с помощью прецизионного насоса, достигая максимального для подземного хранилища газа значения пластового давления, имитацию отбора газа путем выпуска газа со входа имитатора породы пласта, достигая минимального для подземного хранилища газа значения пластового давления с регистрацией объема вышедшего газа и воды, определение активного газового объема имитатора породы пласта по разнице объемов газа и воды, вышедших из имитатора породы пласта, с последующим определением активного газового объема подземного хранилища газа, который определяют как произведение открытого объема порового пространства подземного хранилища газа на частное от деления активного газового объема имитатора породы пласта и открытого объема порового пространства имитатора породы пласта. Предложенное изобретение обеспечивает моделирование и оценку активного объема ПХГ в водоносных трещиновато-поровых структурах, адекватно отражающего поведение натурного пласта-коллектора проектируемого ПХГ. 7 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике и может быть использовано при оценке качества пористых материалов, например керамики, металлокерамики. Задачей, решаемой изобретением, является повышение точности измерения. Устройство содержит измерительные камеры 1, насос 6, соединенный через клапаны 7, 9 с измерительной камерой 1, ЭВМ 12, соединенную с измерительными камерами 1 с одной стороны и насосом 6 с другой, рабочую камеру 2, соединенную с атмосферой, систему управления измерением 11, соединенную с насосом 6 с одной стороны и ЭВМ 12 с другой, датчики давления 10, установленные на измерительных камерах 1, и датчик температуры 13, установленный на рабочей камере 2. Датчик температуры 13 связан с ЭВМ 12. В измерительных камерах 1 выполнено несколько изолированных друг от друга полостей 3. В рабочей камере 2 выполнена одна полость 4. Датчик времени встроен в ЭВМ 12. Датчики давления 10 связаны с системой управления измерением 11, а их число соответствует числу полостей в камерах. Техническим результатом является повышение точности. 1 ил.
Наверх