Способ вибродиагностики механизмов по характеристической функции вибрации

Изобретение относится к вибродиагностике машин и механизмов и может использоваться для вибродиагностики машин в условиях производства или/и эксплуатации при отсутствии машин-эталонов с известными погрешностями. При реализации способа измеряют вибрацию в информативной точке корпуса машины, выделяют составляющую вибрации, присущую диагностируемому механизму машины, оценивают ее параметры, по которым судят о техническом состоянии данного механизма машины. При этом измеряют характеристическую функцию вибрации, оценивают ее интегральную характеристику - площадь под кривой модуля характеристической функции, и по ее близости к 0 определяют степень деградации состояния механизма. Технический результат заключается в повышении достоверности результатов диагностики. 3 ил., 1 табл.

 

Изобретение относится к вибродиагностике машин и механизмов и может использоваться для вибродиагностики машин в условиях производства или/и эксплуатации при отсутствии машин-эталонов с известными погрешностями, т.е. в условиях априорной неопределенности относительно предельно допускаемых значений вибрации машин.

Вибродиагностика машин и механизмов основывается на анализе статистических характеристик параметров вибрации [3]. При этом, в идеальном случае, определяют функцию распределения параметров вибрации, по которой и получают все оценки.

Известны способы диагностики подшипников качения по амплитудному спектру вибрации механизма с подшипниками качения [1, 2]. Результаты диагностики по этим способам зависят от погрешностей измерения амплитуд составляющих спектра вибрации, которые не являются инвариантными диагностическими признаками. Это существенно затрудняет назначение предельно допускаемых значений вибрации даже для однотипных механизмов вследствие их большого разброса.

Известен способ диагностики механизмов по безразмерным амплитудным дискриминантам [3, с.136-139]. В этом способе устранены недостатки предыдущего аналога путем использования инвариантных диагностических признаков, которые не зависят от амплитуды вибрации, а используют стохастические свойства вибрационных процессов через отношения моментов распределения высших порядков. Недостатком этого способа является сложность и большая погрешность определения этих моментов и их отношений, поскольку для этого необходимо возводить значения вибропроцесса в высокие степени (2, 4 и более), интегрировать и извлекать корни высоких степеней (4-й и т.д.), что в условиях ограниченного динамического диапазона измерительных устройств весьма проблематично. Другим недостатком является неопределенность выбора предельных значений этих отношений.

Известен способ диагностики механизмов по безразмерным спектральным инвариантам [4]. В этом способе, принятом нами за прототип, устранены недостатки предыдущего аналога путем использования инвариантных диагностических признаков, которые не зависят от моментов распределения амплитуды вибрации высших порядков, а используют стохастические свойства вибрационных процессов через отношения сумм амплитуд спектральных составляющих вибрации. Эти диагностические признаки имеют нормированный диапазон изменения от 0 (хорошее состояние механизма) до 1 (неудовлетворительное состояние механизма). Недостатком способа-прототипа является сложность получения и распознавания большого числа отдельных спектральных составляющих, число которых доходит до 9 и квадраты амплитуд которых участвуют в формировании спектральных инвариант. Это снижает достоверность результатов диагностики.

Целью настоящего изобретения является повышение достоверности результатов диагностики. Поставленная цель в способе вибродиагностики механизмов по характеристической функции вибрации, заключающемся в том, что измеряют вибрацию в информативной точке корпуса машины, выделяют составляющую вибрации, присущую диагностируемому механизму машины, оценивают ее параметры, по которым судят о техническом состоянии данного механизма машины, достигается тем, что измеряют характеристическую функцию (х.ф.) вибрации:

θ ( v ) = m 1 { exp ( i v x ( t ) ) } = m 1 { cos [ v x ( t ) ] + i sin [ v x ( t ) ] } = A ( v ) + i B ( v ) = | θ ( v ) | exp ( j γ ( v ) ) ( 1 )

где θ(v) - одномерная характеристическая функция вибрации x(t);

v - параметр характеристической функции вибрации x(t);

x(t) - случайная вибрация в точке измерения;

A(v)=m1{cos[vx(t)} - действительная часть характеристической функции;

B(v)=m1{sin[vx(t)]} - мнимая часть характеристической функции;

| θ ( v ) | = A 2 ( v ) + B 2 ( v ) - модуль характеристической функции;

γ(v)=arctg[A(v)/B(v)] - аргумент характеристической функции;

m1 - символ математического ожидания (статистического среднего),

оценивают ее интегральную характеристику - площадь под кривой модуля характеристической функции:

S | θ ( v ) | = | θ ( v ) | d v ( 2 )

и по ее близости к 0 определяют степень деградации состояния механизма, например, в соответствии с таблицей.

Зависимость технического состояния (Д, ТПМ, НДП) объекта от площади под кривой модуля х.ф. S|θ(v)|
«Допустимо» (Д) «Требует принятия мер» (ТПМ) «Недопустимо» (НДП)
S|θ(v)|≥0,7 0,2< S|θ(v)|<0,7 S|θ(v)|<0,2

Для центрированных случайных вибрационных процессов, с четной функцией плотности вероятности, например нормальной, характеристическую функцию определяют:

θ ( v ) = | θ ( v ) | = A ( v ) = m 1 { c o s ( v x ( t ) ) } = l i m N 1 N i = 1 N c o s [ v x i ( t ) ] > 0 ( 3 )

где x(t1) - мгновенное значение реализации случайной вибрации в момент времени t1, 1≤i≤N, N - число отсчетов в реализации случайной вибрации машины, площадь под кривой модуля х.ф. определяют по формуле [5]:

где а, b - границы интегрирования, при которых величина х.ф. принимает значения более 0,025 на всем интервале интегрирования, n - количество равных элементарных отрезков на интервале [а; b], при этом v0=a, vn=b, vn-1/2 - середины равных элементарных отрезков. При этом погрешность определения площади при n≥5 составляет менее 4%.

Анализ отличительных признаков предлагаемого способа вибродиагностики механизмов и обеспечиваемых ими технических результатов показал, что:

1) применение для диагностики характеристической функции вибрации дает возможность получить интегральную характеристику виброакустического процесса со следующими свойствами [6, с.31-32, с.48 - табл.2.3, 7, с.209-344]:

- функция распределения однозначно определяется своей характеристической функцией;

- х.ф. связана с плотностью вероятности вибрационного процесса обратным преобразованием Фурье

θ ( v ) = p ( x ) e j v x d x ( 5 )

где p(x) - плотность вероятности,

и тем самым отражает и описывает все свойства вибрационного процесса;

- модуль х.ф. в широком диапазоне изменения параметра х.ф. v заключен между 1 и 0, которые являются естественными физическими эталонами «хорошего» и «плохого» состояния механизма, известными с математической точностью, что следует из определения х.ф. по формуле (1), где символ <m1> - символ математического ожидания, т.е. усреднения:

| θ ( v ) | = cos 2 ( v x ( t ) ) + sin 2 ( v x ( t ) ) = 1

2) оценка интегральной характеристики характеристической функции, т.е. площади под кривой х.ф. S|θ(v)| является необходимым и достаточным условием для оценки технического состояния механизма;

3) оценивание интегральной характеристики характеристической функции S|θ(v)| и определение по ее близости к 0 степени деградации состояния механизма, например в соответствии с таблицей «Зависимость технического состояния (Д, ТПМ, НДП) объекта от площади под кривой модуля х.ф. S|θ(v)|», позволяет с высокой достоверностью осуществить диагностирование механизма;

4) определение интегральной характеристики характеристической функции для центрированных случайных вибрационных процессов, с четной функцией плотности вероятности, например нормального, по формуле:

S | θ ( v ) | = A ( v ) d v = lim Δ v 0 i = 1 n A ( v i ) Δ v i

обеспечивает простоту и точность реализации способа и устройств диагностики на его основе, поскольку, как показывают многолетние исследования авторов, виброакустические процессы, используемые для диагностики машин, имеют четную функцию плотности вероятности, близкую к нормальному закону распределения.

Таким образом, предлагаемая совокупность признаков изобретения не очевидна и не вытекает из существующего уровня техники. Предлагаемая совокупность признаков изобретения представляется новой и не описана в известной литературе.

Сущность изобретения поясняется чертежами:

Фиг.1 - площадь под кривой модуля х.ф. |θД(v)| от параметра х.ф. v для исправного подшипника качения, имеющего состояние «Допустимо» (Д), установленного в корпусе центробежного насоса;

Фиг.2 - площадь под кривой модуля х.ф. |θТПМ(v)| от параметра х.ф. v для подшипника качения с зарождающимися дефектами, имеющего состояние «Требует принятия мер» (ТПМ), установленного в корпусе центробежного насоса;

Фиг.3 - площадь под кривой модуля х.ф. |θНДП(v)| от параметра х.ф. v для неисправного подшипника качения, имеющего развитые дефекты и находящегося в состоянии «Недопустимо» (НДП), установленного в корпусе центробежного насоса.

Реализуемость способа проверялась на примере вибродиагностики опорных подшипников центробежных насосов путем измерения вибрации в информативной точке корпуса центробежного насоса - в зоне установки опорного подшипника качения и выделения составляющей вибрации, присущей подшипнику насоса, путем полосовой фильтрации в полосе частот 6-9 кГц с последующей оценкой параметров характеристической функции вибрации. Как показывают многолетние исследования авторов, виброакустические процессы, используемые для диагностики машин и несущие информацию об их состоянии, имеют четную функцию плотности вероятности, близкую к нормальному закону распределения.

Вначале исследовались 10 насосов с исправными опорными подшипниками, находящимися в состоянии «Допустимо» (Д) - Фиг.1. В декартовой системе координат, где по оси абсцисс откладывался параметр х.ф. v - 1, а по оси ординат откладывался модуль х.ф. |θД(v)| - 2, оценивали площадь под кривой х.ф. - 3. Для определения зависимости х.ф. вибрации использовали выражение (2). Число отсчетов реализации вибрации машины брали N=20000 при частоте дискретизации 25 кГц. Длина реализации составляла 800 мс. Параметр х.ф. v изменяли в диапазоне от -2 до 2 с шагом 0,1. Общее время, затраченное на получение этой зависимости, составило менее 20 сек. Типичная характеристическая функция, усредненная по результатам испытания 10 насосов, для исправных подшипников приведена в виде зависимости 3, показанной на Фиг.1. Аналогичным образом были получены характеристические функции для подшипников с начальными, зарождающимися, дефектами, находящихся в состоянии ТПМ, - усредненная зависимость 4 на Фиг.2 и характеристические функции для подшипников с сильными, развитыми, дефектами, находящихся в состоянии НДП, - усредненная зависимость 5 на Фиг.3.

Установлены три оценки технического состояния:

- «ДОПУСТИМО» (Д) - допустимо при длительной эксплуатации. Характеризует полностью работоспособное состояние агрегата при малой вероятности отказа;

- «ТРЕБУЕТ ПРИНЯТИЯ МЕР» (ТПМ) - допустимо при непродолжительной эксплуатации. Предупреждает о приближении технического состояния к предельному, наличии развивающихся дефектов, постепенной утрате работоспособности и росте вероятности отказа. Служит для текущего обслуживания и/или планомерного вывода агрегата в ремонт;

- «НЕДОПУСТИМО» (НДП) - недопустимо при эксплуатации. Характеризует наличие развитых дефектов и достижение агрегатом предельного либо опасного состояния с высокой вероятностью отказа. Служит для немедленного останова агрегата и вывода его в ремонт.

Действия персонала: При переходе агрегата в предельное состояние «НЕДОПУСТИМО» его следует немедленно остановить и вывести в ремонт. При переходе агрегата в состояние «ТРЕБУЕТ ПРИНЯТИЯ МЕР» необходимо выполнить техническое обслуживание, включая добавление или замену смазки. Если это не привело агрегат в состояние «ДОПУСТИМО», то необходимо планомерно вывести его в ремонт.

Изменение интегральной характеристики - площади под кривой модуля х.ф. S|θ(v)| при разном техническом состоянии подшипников, приведенные на Фиг.1-3, наглядно подтверждает ее преимущества перед известными методами диагностики.

Учитывая, что нормированные границы для значений площади под кривой модуля х.ф. S|θ(v)| стремятся к 0 при деградации состояния механизма, исключается необходимость подбора исправных и неисправных машин-эталонов конкретных типов для установления предельных значений параметра х.ф. S|θ(v)| и обучения систем диагностики, существенно сокращая сроки их разработки и внедрения.

Предлагаемый способ позволяет существенно сократить продолжительность диагноза, поскольку одноактный расчет площади под кривой модуля х.ф. позволяет получить параметр, который учитывает статистические свойства измеряемой величины, а не использовать такие характеристики как дисперсия процесса, асимметрия, эксцесс, вид и параметры функции распределения и др. В результате появляется возможность интегральной оценки технического состоянии объекта всего по одному измеряемому параметру, например в соответствии с таблицей «Зависимость технического состояния (Д, ТПМ, НДП) объекта от площади под кривой модуля х.ф. S|θ(v)|».

На Фиг.1 показано, что при нахождении механизма в состоянии Д, S|θ(v)|=0,98 с2/м, т.е. существенно превышает указанную в таблице границу 0,7.

На Фиг.2 показано, что при нахождении механизма в состоянии ТПМ, S|θ(v)|=0,52 c2/м, находится в соответствующих таблице границах 0,2<v<0,7.

На Фиг.3 показано, что при нахождении механизма в состоянии НДП, S|θ(v)|=0,12 c2/м, т.е. существенно ниже указанной в таблице границы 0,2.

Алгоритм (2) определения х.ф. отличается простотой реализации средствами современной микропроцессорной техники и аналого-цифрового преобразования. Среднеквадратическая ошибка s оценки модуля х.ф. при N=20000 не превышает:

s<(2N)-1/2<0,5%.

Таким образом, предлагаемый способ виброакустической диагностики механизмов по характеристической функции вибрации, основанный на измерении и использовании для диагностики принципиально нового инварианта - площади под кривой модуля х.ф. вибрации, позволяет повысить достоверность результатов диагностики при одновременном упрощении диагностической аппаратуры.

Источники информации

1. Авторское свидетельство СССР №360579 МПК G01M 13/04, 1971.

2. Авторское свидетельство СССР №890110 МПК GO1M 13/04, 1981.

3. Генкин М.Д., Соколова А.Г. Виброакустическая диагностика машин и механизмов. - М.: Машиностроение, 1987. - 288 с. - С.136-139.

4. Патент РФ на изобретение №2 337 341 МПК G01M 15/00, G01M 7/02.

5. Выгодский М.Я. Справочник по высшей математике. - М.: Наука, 1977. - 872 с. - С.482-483.

6. Вешкурцев Ю.М. Прикладной анализ характеристической функции случайных процессов. - М.: Радио и связь, 2003. - 204 с. - С.31-32, с.48 - табл.2.3.

7. Гнеденко Б.В. Курс теории вероятностей. Учебник. - Изд. 6.е, перераб. и доп. - М.: Наука. Гл. ред. физ.-мат. лит., 1998. - 448 с.

Способ вибродиагностики механизмов по характеристической функции вибрации, заключающийся в том, что измеряют вибрацию в информативной точке корпуса машины, выделяют составляющую вибрации, присущую диагностируемому механизму машины, оценивают ее параметры, по которым судят о техническом состоянии данного механизма машины, отличающийся тем, что измеряют зависимость модуля характеристической функции вибрации от ее параметра, контролируют площадь этой зависимости в координатах θ(ν) и параметра ν в установленном диапазоне с выбранным шагом, оценивают ее интегральную характеристику - площадь под кривой модуля характеристической функции , где θ(ν) - одномерная характеристическая функция вибрации x(t); ν - параметр характеристической функции вибрации x(t), которую принимают в виде инварианта, контролируют тенденцию ее уменьшения к 0 при деградации механизма, во всем установленном диапазоне изменений параметра ν, при S|θ(v)|≥0,7 состояние механизма считается допустимым для длительной эксплуатации, при соотношении 0,2<S|θ(v)|<0,7 состояние механизма допустимо при непродолжительной эксплуатации и при S|θ(v)|≤0,2 состояние механизма считается недопустимым для эксплуатации.



 

Похожие патенты:

Изобретение относится к вибродиагностике машин и механизмов и может использоваться для диагностирования машин в условиях производства или/и эксплуатации при отсутствии машин-эталонов с известными погрешностями, т.е.

Группа изобретений относится к области измерительной техники и может быть использована для контроля состояния вращающихся лопаток газотурбинных двигателей. Настоящее изобретение раскрывает способ определения событий вибраций с резонансной частотой в узле вращающихся лопаток, установленных на роторе, и ряд отстоящих друг от друга по периферии стационарных зондов таймирования, связанных с лопатками, обнаруживают моменты, когда лопатки проходят соответствующие зонды.

Группа изобретений относится к частотному анализу данных. В частности, к анализу данных испытаний самолетов на допуск к области полетных режимов.

Изобретение относится к испытательной технике и может быть использовано для выделения и фильтрации исследуемых сигналов из воспроизводимого стационарного случайного процесса и измерения в реальном времени параметров сигнала.

Изобретение относится к измерительной технике и может быть использовано для вибродиагностики оборудования, оказывающегося в опасных зонах при подаче на него напряжения (высоковольтных камерах, в герметизированных отсеках, отсеках обрабатывающих центров с работающим высокоскоростным оборудованием), а также мотор-вентиляторов, применяемых на железнодорожном транспорте.

Изобретение относится к области испытаний на механические воздействия (вибрационные испытания) аппаратуры. .

Изобретение относится к испытательной технике и может быть использовано при испытании объектов машиностроения, стройиндустрии, бытовой техники и других изделий на вибропрочность и виброустойчивость.

Изобретение относится к области исследования зданий и сооружений с расположенными внутри или в непосредственной близости механизмами или агрегатами, являющимися источниками сейсмических колебаний, и анализа для интерпретации полученных сейсмических данных.

Изобретение относится к способам вибрационной диагностики дефектов подшипников качения турбомашин в эксплуатационных условиях и может найти применение в авиадвигателестроении и энергомашиностроении для выявления наличия дефекта смазки подшипника качения.

Изобретение относится к области измерительной техники, в частности к технике высокоточных измерений, и может быть использовано для измерения перемещений и вибраций.

Изобретения относятся к контрольно-измерительной технике и могут быть использованы на объектах, оснащенных системами вибрационного контроля. Способ включает использование датчиков целостности исследуемого объекта, которые установлены непосредственно на исследуемом объекте, и удаленного датчика, который расположен на расстоянии от исследуемого объекта, регистрацию колебаний от внешних источников на исследуемом объекте и на расстоянии от исследуемого объекта. Дополнительно синхронно регистрируют вибрации на исследуемом объекте и на расстоянии от исследуемого объекта. В качестве датчиков целостности исследуемого объекта и удаленного датчика используют датчики вибрации с эквивалентными техническими характеристиками. Расстояние от исследуемого объекта до удаленного датчика выбирают не более длины сейсмической волны от внешнего источника и таким образом, чтобы амплитуды вибраций в месте установки удаленного датчика были пренебрежимо малы по сравнению с амплитудами вибраций исследуемого объекта. Систему вибрационного контроля выполняют учитывающей разность между показаниями удаленного датчика и показаниями датчиков целостности исследуемого объекта при сейсмических воздействиях от внешних источников. Комплекс включает датчики целостности исследуемого объекта, которые установлены непосредственно на исследуемом объекте и удаленный датчик, который расположен на расстоянии от исследуемого объекта, а также систему вибрационного контроля исследуемого объекта. Датчики целостности объекта и удаленный датчик выполнены в виде датчиков вибрации с эквивалентными техническими характеристиками, осуществляющими регистрацию вибраций синхронно. При этом удаленный датчик выполнен расположенным от исследуемого объекта на расстоянии не более длины сейсмической волны от внешнего источника и таким образом, чтобы амплитуды вибраций в месте установки удаленного датчика были пренебрежимо малы по сравнению с амплитудами вибраций исследуемого объекта. Система вибрационного контроля выполнена учитывающей разность между показаниями удаленного датчика и показаниями датчиков целостности исследуемого объекта при сейсмических воздействиях от внешних источников. Технический результат заключается в увеличении надежности работы систем вибрационного контроля, в возможности исключения ложных срабатываний, в простоте реализации. 2 н. и 2 з.п. ф-лы, 1 ил.

Изобретение относится к области акустики и предназначено для создания акустических волн в газовой среде. Способ генерирования акустических волн осуществляется путем образования колебательного тела из облака ионизированного газа в электростатическом поле с последующим моделированием колебательного тела высокочастотным электрическим полем, при этом в качестве электростатического поля используется переменное электрическое поле. Устройство для осуществления способа содержит два звукопроницаемых электрода 1, разделенные диэлектрическим корпусом 2, содержащим полость 3, которая образует в совокупности с электродами 1 ионизационную камеру, ионизирующий электрод 4, источник постоянного напряжения 5 и модулятор напряжения 6. Изобретение позволяет осуществить генерацию акустических волн в широком частотном и мощностном диапазоне. 2 ил.

Изобретение относится к измерительной технике, а именно к оптическим измерителям и датчикам вибрации, и служит для решения задачи виброконтроля в условиях вибрационных нагрузок больших электрических машин (турбогенераторы, гидроэлектрические насосы/генераторы, электродвигатели, силовые трансформаторы). Волоконно-оптический преобразователь вибрации содержит несущее основание, элемент вибрации, оптические световоды, относительно торцов которых на расстоянии сформирована отражающая поверхность, каждый из оптических световодов выполняет одновременно функцию подвода и отвода светового потока, несущее основание из пластины монокристалла изготовлено за одно целое с элементом вибрации, сверху и снизу несущего основания закреплены световоды, оси которых перпендикулярны отражающей поверхности, причем продолжения осей указанных световодов пересекают ее верхнюю и нижнюю границы. Технический результат - повышение точности, надежности и срока эксплуатации волоконно-оптического преобразователя вибрации и датчиков/измерителей, в составе которых он используется. 2 з.п. ф-лы, 7 ил.

Изобретение относится к испытательному оборудованию и может быть использовано в различных отраслях промышленности для испытания изделий на виброустойчивость в трех взаимно перпендикулярных положениях. Устройство содержит вибратор со столом, на котором установлено приспособление для закрепления в нем испытываемого изделия. Приспособление имеет возможность производить переориентацию и фиксацию изделия в трех взаимно перпендикулярных положениях без снятия его с приспособления. В корпусе приспособления установлены две, одна в другой, подвижные рамки с взаимно перпендикулярными осями вращения, вокруг которых рамки могут поворачиваться на 90°, причем каждая из них имеет свое устройство фиксации после переориентации, выполненное в виде дискового тормоза и клинового зажима. Внутренняя рамка имеет механизм передачи крутящего момента от привода к изделию. На основании вибратора установлен портал в виде стойки и опоры, на горизонтальной балке которой на специальных кронштейнах установлены два валика, шкив выходного вала их поочередно соединяется резиновым пассиком с рабочим шкивом приспособления при испытаниях в динамическом режиме изделия. Технический результат заключается в возможности проведения испытания изделий на виброустойчивость по трем взаимно перпендикулярным направлениям за одну установку изделия в приспособление, а также обеспечивающего возможность проведения испытания изделий в статическом и динамическом режимах состояния изделия. 13 ил.

Изобретение относится к области механики сплошных сред и предназначено для оценки напряженно-деформированного состояния объектов механических систем. Способ заключается в измерении пространственной вибрации, накапливании массива векторных величин деформаций и воспроизведении пространственного годографа измерительной точки. При этом синхронно с измерениями осуществляют аналитический синтез 3D-суперпозиции спектра измерений и накапливают массив векторных величин напряжений. Диагностику напряженно-деформированного состояния объекта осуществляют по визуальному образу, представленному в виде пространственной трехмерной диаграммы физического состояния объекта мониторинга в измерительной точке, представляющей в связанном виде законы Гука и Пуассона. Технический результат заключается в реализации возможности отражения в реальном времени текущего ресурса конструкционной прочности объекта мониторинга, повышении достоверности оценки физического состояния объектов мониторинга. 5 ил.

Изобретение относится к испытательной технике, а именно к установкам для испытания на вибрацию в трех взаимно перпендикулярных положениях прицела, при воздействии условий внешней среды. Стенд для испытаний прицела на вибрацию содержит вибровозбудитель со столом, устройство для размещения испытываемого изделия в форме куба с крышкой, который жестко скреплен со столом вибровозбудителя. На наружных поверхностях куба выполнены окна под электрические разъемы, и объектив прицела, и ребра жесткости, в верхней части куба расположены две направляющие с пазами, образующие усеченную призму, крышка куба выполнена в виде плиты - имитатора объекта, к которой закреплен прицел, и содержит выступ, взаимодействующий с пазами направляющих. В частном случае для ограничения продольных перемещений и усилий на крепежные элементы плиты - имитатора объекта, контактирующие поверхности отверстий плиты - имитатора объекта и крепежных элементов выполнены с уклоном конуса, равным 2. Технический результат - повышение точности измерения перегрузок вибропередачи в требуемом диапазоне частот прицела путем повышения жесткости конструкции стенда. 1 з.п. ф-лы, 6 ил.

Изобретение относится к области измерительной технике и касается оптико-электрического преобразователя механических волн. Преобразователь механических волн содержит осветитель, водяную емкость с зеркальным узлом и стойку, поддерживающую светочувствительный элемент. Осветитель установлен на демпфере под углом к вертикали. Лучи от осветителя падают на зеркальный узел, находящийся в водяной емкости, и отражаются от него на светочувствительный элемент, установленный на текстолитовой стойке. Размер чувствительной площадки светочувствительного элемента выбирают из условия равенства размеру светового пятна отраженного излучения. Технический результат заключается в повышении чувствительности и надежности устройства. 1 ил.

Способ проверки затяжки сердечника статора электрической машины, содержащей сердечник (2) статора и ротор (3), образующие воздушный зазор (5) между собой, причем способ включает в себя этапы, на которых вводят контрольно-измерительный прибор (12), который соединен с подвижной опорой (10), в воздушный зазор (11), вводят пластину (21) между стальными листами (5) сердечника статора и приводят пластину (21) во вращение, располагают локально контрольно-измерительный прибор (12) и осуществляют локальную проверку определенных зон сердечника (2) статора генератора. Устройство для реализации способа, содержащее подвижную опору (10), вводимую в воздушный зазор (11) между сердечником (2) статора и ротором (3), приводимую во вращение пластину (21) между стальными листами (5) сердечника, и контрольно-измерительный прибор (12), установленный на подвижной опоре (10). Техническая задача - выполнение проверки для определения затяжки сердечника статора без необходимости извлечения ротора с помощью предложенного способа и устройства, а также уменьшение риска повреждения сердечника статора и/или ротора в результате проверки. 2 н. и 6 з.п. ф-лы, 6 ил.

Изобретение относится к вибрационной технике. Способ предполагает использование вибратора, в котором пьезоэлемент выполняют в виде пакета пьезокерамических колец, при этом внутри колец располагают цилиндрическую оправку. Ось симметрии оправки располагают перпендикулярно основанию, а диск располагают в ее верхней части так, что он контактирует с верхним пьезокерамическим кольцом пакета пьезокерамических колец пьезоэлемента, а на верхней поверхности диска устанавливают измерительные пьезоэлементы, контактирующие с двухступенчатым цилиндрическим диском, к верхней части которого присоединяют наконечник. Внешний диаметр диска выполняют равным внешнему диаметру пакета пьезокерамических колец, а основание представляет собой прямоугольной формы пластину с четырьмя пазами для крепления к исследуемому объекту. При этом нижнюю плоскость цилиндрической оправки располагают с зазором по отношению к верхней плоскости основания, а токонепроводящий корпус выполняют в виде цилиндрической обечайки. В верхней деформируемой части основания наклеивают тензодатчики, а в цилиндрической оправке выполняют полость и заполняют ее элементами, создающими дополнительное стохастическое движение. Технический результат - расширение частотного диапазона виброускорений. 2 ил.

Изобретение относится к области транспортного машиностроения. Испытательный стенд для исследовательских и доводочных работ по оценке влияния внешнего воздействия дождя на виброакустику автомобиля содержит установку имитации дождя, состоящую из четырех регулируемых по высоте телескопических стоек с установленным на них дождевальным устройством, устройство подачи воды с расходомером и запорной арматурой, измерительную и анализирующую виброакустическую аппаратуру, установленную в салоне исследуемого ТС, размещенного под дождевальным устройством. Дождевальное устройство выполнено в виде открытого корпуса с дном, перфорированным сквозными отверстиями. Установка имитации дождя выполнена с возможностью перемещения посредством колес со стопорным механизмом, закрепленных на регулируемых телескопических стойках. Стенки открытого корпуса дождевального устройства образованы скрепленными между собой фигурными планками с угловым и Z-образным профилем. Дно открытого корпуса, перфорированное сквозными отверстиями, выполнено в виде съемной панели. Достигается повышение качества исследовательских и доводочных работ за счет реализации возможности исследования влияния внешнего воздействия дождя на виброакустический комфорт в условиях свободного звукового поля внешней среды. 2 з.п. ф-лы, 5 ил.
Наверх