Летательный аппарат вертикального взлета и посадки

Изобретение относится к летательным аппаратам вертикального взлета и посадки. Летательный аппарат вертикального взлета и посадки, дисковидной компоновки содержит два привода и вентиляторы противоположного вращения, один из которых, центробежный, обеспечивает движение потока из внутреннего пространства дисковидного корпуса, а другой, осевой в кольце, нагнетает поток вдоль наружной поверхности «Коанда». Наружный дисковидный корпус содержит размещенный эквидистантно его внутренней поверхности удобообтекаемый модуль оборудования и целевой нагрузки, состоящий из обшивки двойной кривизны, меридиональных и экваториальных элементов каркаса, с прикрепленными к ним узлами крепления опор шасси, оборудования и целевой нагрузки. Изменение величины подъемной силы и управление аппаратом в пространстве осуществляются отклонениями дополнительного кольцевого крыла, обдуваемого потоком воздуха реактивной струи. Развороты аппарата вокруг вертикальной оси обеспечивают выдвижные из модуля оборудования и целевой нагрузки аэродинамические управляющие поверхности. Достигается повышение КПД аппарата, безопасности, надежности и эффективности управления. 5 ил., 2 фото.

 

Изобретение относится к авиационной технике и может быть использовано в летательных аппаратах вертикального взлета и посадки, выполняющих задачи радиоэлектронной разведки, видеомониторинга, охраны объектов, патрулирования в зонах с нестабильными метеоусловиями, выполняющих полеты с палуб кораблей и запускаемых с борта самолета.

Известен летательный аппарат вертикального взлета и посадки (см. патент США №3243146, кл. В64С, 29 марта 1966 г., заявлено 27 апреля 1964 г.), который имеет круглое аэродинамическое крыло с центральным отверстием, в которое вмонтирована крыльчатка, прокачивающая через отверстие воздух. Над отверстием, соосно с ним, к аэродинамическому крылу крепится крышка, образующая с крылом канал. На входе в канал смонтированы поворотные элероны и рули, которые омываются воздушным потоком и обеспечивают управление аппаратом. Под воздействием крыльчатки воздух по верхней поверхности динамического крыла течет к его центру, создавая разрежение над поверхностью, что в свою очередь приводит к возникновению подъемной силы на круглом аэродинамическом крыле, затем воздух обтекает элероны, рули внутри канала и выбрасывается вниз, создавая тягу.

Недостатком данного технического решения является расположение поворотных элеронов и рулей на малом плече, кроме того, данная компоновка летательного аппарата имеет значительные гидравлические потери при подводе воздуха к вышеназванным органам управления, что снижает их эффективность.

Известен летательный аппарат (см. патент Франции №2407131 (А1), 7830758, от 30 октября 1978 г., В64С 27/00), отличающийся тем, что его несущая конструкция, имеющая в поперечном сечении форму профиля крыла, приводится во вращение моментом, прикладываемым приводом. При этом направление вращения несущей конструкции противоположно вращению выходного вала привода. Устройство управления и кабина экипажа закреплены на оси, которая установлена в шарикоподшипниках на платформе, и имеют свободу вращения относительно конструкции и привода.

Однако в этом летательном аппарате несущая конструкция крыла вращается, что является существенным недостатком и ведет, во-первых, к повышению требований к точности изготовления элементов крыла, во-вторых, к невозможности эффективного использования внутреннего объема крыла, так как при его вращении на грузы, расположенные в крыле, действуют значительные центробежные силы.

Наиболее близким по совокупности существенных признаков к предлагаемому изобретению является летательный аппарат вертикального взлета и посадки дисковидной компоновки с центробежным вентилятором и центростремительным направлением расширения реактивной струи. Проект отражен в материалах доклада ООО «ПКФ Нева Плюс», представленных на Первом московском Международном форуме «Беспилотные многоцелевые комплексы в интересах ТЭК», «UVS-ТЕСН 2007».

В данном техническом решении аппарат выполнен в виде дисковидного несущего корпуса и образован двумя линзообразными поверхностями, установленными с определенным зазором одна относительно другой. Зазор выполняет функции кольцевого сопла аппарата и обеспечивает центростремительное направление расширения реактивной струи.

Верхняя поверхность корпуса оснащена всасывающим отверстием для обеспечения подачи воздуха к центробежному вентилятору, нижняя, более выпуклая, формирует определенный профиль истечения воздушной струи, обеспечивая необходимую подъемную силу и устойчивость аппарата. Нижняя же поверхность корпуса аппарата оснащена отдельными поворотными крылообразными поверхностями управления по тангажу, крену и курсу.

Недостатками данного технического решения являются:

во-первых, наличие отдельных крылообразных, легкоповреждаемых поверхностей управления по тангажу, крену и курсу на нижней поверхности корпуса аппарата, которые выходят за его габариты;

во-вторых, такие поверхности управления в горизонтальном полете создают дополнительное лобовое сопротивление и дестабилизирующие моменты;

в-третьих, в кольцевой зоне выхода воздуха из сопла на нижней поверхности аппарата имеет место падение давления выходящего воздуха на большом плече, приводящее к возникновению отрицательной подъемной силы, что в целом приводит к снижению КПД всего устройства.

Задачей, на решение которой направлено предполагаемое изобретение, является создание такого аппарата, который мог бы эффективно управляться путем изменения величины аэродинамических сил, возникающих на поверхности корпуса аппарата.

Кроме того, ставится задача получить аппарат, скомпонованный таким образом, чтобы его поверхности управления были эффективными и не выступали за габариты аппарата.

Третьей задачей изобретения является повышение КПД всего устройства, его безопасности и надежности.

Поставленные технические задачи решаются в результате того, что летательный аппарат вертикального взлета и посадки, дисковидной компоновки оснащен силовым агрегатом, выполненным комбинированным, содержащим два привода и вентиляторы противоположного вращения, один из которых, центробежный, обеспечивает движение потока с его центростремительным расширением на выходе из внутреннего пространства наружного дисковидного корпуса, а другой, осевой в кольце, прикрепленном коаксиально с зазором к внешней поверхности наружного дисковидного корпуса, нагнетает поток с изменением направления от осевого к радиальному вдоль поверхности «Коанда», причем наружный дисковидный корпус содержит размещенный эквидистантно его внутренней поверхности удобообтекаемый модуль оборудования и целевой нагрузки, состоящий из обшивки двойной кривизны, меридиональных и экваториальных элементов каркаса, с прикрепленными к ним узлами крепления опор шасси, оборудования и целевой нагрузки, а изменение величины подъемной силы, управление и перемещения аппарата в пространстве осуществляются отклонениями дополнительного кольцевого крыла, обдуваемого потоком воздуха реактивной струи, причем развороты аппарата вокруг вертикальной оси обеспечивают выдвижные из модуля оборудования и целевой нагрузки аэродинамические управляющие поверхности.

Частными существенными признаками изобретения являются следующие.

Применение комбинированного силового агрегата на основе двух приводов, оснащенных вентиляторами противоположного вращения, один из которых центробежный, а другой осевой в кольце.

Наличие осевого вентилятора противоположного вращения, нагнетающего поток воздуха вдоль вертикальной оси аппарата, с последующим центробежным изменением направления истечения воздушной струи.

Использование наружной поверхности аппарата, сформированной в виде поверхности «Коанда», для создания дополнительной подъемной силы путем ее обдува потоком воздуха, создаваемого осевым вентилятором.

Использование реактивной струи воздуха, истекающей из кольцевого сопла центробежного вентилятора, обтекающей верхнюю поверхность дополнительного кольцевого крыла, для создания управляемого приращения подъемной силы.

Применение подвижного крепления крыла с помощью эластомерных втулок, независимо скользящих вдоль опор шасси аппарата, позволяющих менять углы установки крыла, величину дополнительной аэродинамической силы и положение аппарата в пространстве по тангажу и крену.

Использование выдвижных аэродинамических управляющих поверхностей для управления аппаратом по курсу и его разворотов, которые работают в потоке воздуха реактивной струи в пределах габаритов аппарата, позволяя сократить число выступающих элементов.

Обеспечиваемый технический результат заключается в интеграции использования аэродинамических эффектов и особенностей компоновки аппарата, которые позволяют придать новые свойства классу летательных аппаратов, выполненных по схеме «Летающая тарелка».

Заявляемый летательный аппарат вертикального взлета и посадки способен выполнять требуемые условия решаемых задач с повышенным значением КПД, с использованием эффективного способа управления, с пониженным значением лобового сопротивления. Аппарат ветроустойчив и может быть использован в горных районах, северных широтах, а также в Военно-Морском Флоте России, со снижением стоимости выполнения операций.

Предлагаемое изобретение поясняется чертежами, где:

- на Фиг.1 - вид аппарата сбоку в разрезе в полете и при стоянке на земле;

- на Фиг.2 - вид аппарата сверху;

- на Фиг.3 - схема возникновения равных дополнительных аэродинамических сил Yдоп.;

- на Фиг.4 - схема возникновения неравных дополнительных аэродинамических сил Yдоп., создающих Мтангажа, при виде на аппарат сбоку в горизонтальном полете; φ - угол отклонения вертикальной оси кольцевого крыла управления по тангажу и крену; б1, б2 - величина зазора, характеризующая удаление верхней поверхности кольцевого крыла управления по тангажу и крену от кольцевого сопла центробежного вентилятора; б1+ увеличение зазора б1 по отношению к зазору б2; б2+ увеличение зазора б2 по отношению к зазору б1. ← НП - направление полета; ← П - направление нагнетаемого потока центробежным вентилятором;

- на Фиг.5 - схема возникновения неравных дополнительных аэродинамических сил Yдоп., создающих Мкрена, при виде на аппарат спереди.

Летательный аппарат вертикального взлета и посадки (Фиг.1, Фиг.2) снабжен двухприводным комбинированным силовым агрегатом. В состав силового агрегата входит вентилятор 1, размещенный в туннеле 2, который приводится во вращение приводом осевого вентилятора 3 и закреплен пилонами 4 внутри туннеля 2. Нижняя торцевая часть туннеля 2 оснащена лопатками диффузора 5. В состав силового агрегата также входит центробежный вентилятор 6, приводимый в противоположное вращение приводом центробежного вентилятора 7, закрепленный на плате крепления привода 8, в корпус 9.

Наружный дисковидный корпус 10 летательного аппарата спрофилирован в виде поверхности «Коанда», посредством лопаток диффузора осевого вентилятора 5 состыкован с туннелем осевого вентилятора 2, образуя устройство, способное создавать подъемную силу.

К внутренней поверхности наружного дисковидного корпуса 10 прикреплены лопатки диффузора центробежного вентилятора 11, а к ее периферийной части - спрямляющие лопатки диффузора 12. Внутри наружного дисковидного корпуса 10 размещен эквидистантно его внутренней поверхности удобообтекаемый модуль оборудования и целевой нагрузки 13, образованный верхней обшивкой двойной кривизны 14, нижней обшивкой двойной кривизны 15 и съемной формообразующей крышкой люка обслуживания 16. При этом верхняя обшивка двойной кривизны 14 модуля 13 подкреплена меридиональными элементами каркаса 17 и экваториальными элементами каркаса 18. На максимальном радиусе удобообтекаемого модуля оборудования и целевой нагрузки 13 установлены с возможностью поступательного перемещения в радиальном направлении выдвижные лопатки управления по курсу 19, которые в четном количестве связаны тросовой проводкой управления по курсу 20 с объединенным узлом управления по курсу 21. Поворот объединенного узла управления по курсу задается одним из сервоприводов системы управления 22. В силовой конструкции удобообтекаемого модуля оборудования и целевой нагрузки 13, в его периферийной части, со стороны нижней обшивки двойной кривизны, вмонтированы узлы крепления опор шасси 23, со стойками опор шасси 24, которые являются скользящими направляющими, обеспечивающими независимое качание кольцевого крыла управления по тангажу и крену 25, на эластомерных втулках 26. Внутри стоек опор шасси 24 посредством резьбового соединения закреплены пружинящие стойки опор шасси 27 с амортизаторами 28, которые опираются на эластичные опорные башмаки 29.

Привод осевого вентилятора 3 в своей верхней части закрыт носовым обтекателем 30. Нижняя торцевая часть туннеля 2, оснащенная лопатками диффузора 5, образует кольцевое сопло осевого вентилятора 31 и предназначена для подачи потока воздуха на поверхность наружного дисковидного корпуса 10 летательного аппарата, спрофилированного в виде поверхности «Коанда».

Между нижней частью обшивки двойной кривизны 15 и нижней кромкой верхней обшивки 14, на периферии, образовано кольцевое сопло центробежного вентилятора 32 с центростремительным расширением потока воздушной струи.

Кольцевое крыло управления по тангажу и крену 25 приводится в движение (качание) приводными кронштейнами 33, соединенными тягами и качалками с системой 34 наклона кольцевого крыла управления.

Летательный аппарат вертикального взлета и посадки (Фиг.1, Фиг.2) работает следующим образом. При стоянке на земной поверхности аппарат опирается на стойки опор шасси 24. Стойки опор шасси 24 посредством узлов крепления 23 закреплены в конструкции аппарата. Внутри стоек опор шасси 24 закреплены пружинящие стойки опор шасси 27 с амортизаторами шасси 28, которые, в свою очередь, опираются на эластичные опорные башмаки 29 и передают усилия от массы аппарата на земную поверхность.

Перед выполнением взлета аппарата включается двухприводной комбинированный силовой агрегат. В состав двухприводнго комбинированного силового агрегата входит высокооборотный привод центробежного вентилятора 7, который вращает центробежный вентилятор 6. Центробежный вентилятор 6 сжимает воздух и нагнетает его между верхней обшивкой двойной кривизны 14 и внутренней поверхностью наружного дисковидного корпуса 10. Там же, между верхней обшивкой двойной кривизны 14 и внутренней поверхностью наружного дисковидного корпуса 10, размещены лопатки диффузора центробежного вентилятора 11. Нагнетаемый поток воздуха проходит между лопатками диффузора 11, расширяется, преобразуя, таким образом, в соответствии с законом Бернулли, энергию скоростного напора воздуха в энергию давления. Кроме того, направление закрутки лопаток диффузора 11 создает силу, позволяющую уменьшить действие реактивного момента от силовой установки на конструкцию аппарата. На входе потока воздуха в кольцевое сопло центробежного вентилятора 32 происходит его выравнивание спрямляющими лопатками 12. Струя воздуха, истекая из кольцевого сопла центробежного вентилятора 32 в центростремительном направлении (Фиг.3), обтекает верхнюю поверхность кольцевого крыла управления по тангажу и крену 25 и создает на его поверхности аэродинамические силы Yдоп.1 и Yдоп.2, Yдоп.1=Yдоп.2. Данное распределение аэродинамических сил характерно для полета аппарата в конфигурации зависания. Величина аэродинамических сил может меняться в зависимости от удаления верхней поверхности кольцевого крыла управления по тангажу и крену 25 от кольцевого сопла центробежного вентилятора 32 с зазором б1 и б2 (Фиг.4, где б12; Yдоп.1<Yдоп.2), (Фиг.5, где б12; Yдоп.1>Yдоп.2). При этом изменение интенсивности обдува верхней поверхности кольцевого крыла управления по тангажу и крену 25 приводит к соответствующему изменению величин управляющих моментов Мтантажа, Мкрена, что и легло в основу принципа управления данным аппаратом вокруг осей X и Z.

Для реализации возможности заданного изменения интенсивности обдува верхней поверхности кольцевого крыла управления по тангажу и крену 25 и создания, таким образом, контролируемых управляющих моментов Мтантажа и Мкрена оно подвешено шарнирно с возможностью качания вокруг осей X и Z на 4-х эластомерных втулках 26. Эластомерные втулки 26 своими центральными частями имеют возможность скользить вдоль осей стоек опор шасси 24. При этом периферийные части эластомерных втулок 26 закреплены в конструкции кольцевого крыла управления по тангажу и крену 25. Такая схема подвески кольцевого крыла управления по тангажу и крену 25 позволяет его противоположно расположенным частям попеременно то удаляться, то приближаться к кольцевому соплу центробежного вентилятора 32, с переменным зазором б1, б2. В результате этого меняется интенсивность обдува этих участков кольцевого крыла 25. Сам процесс качания кольцевого крыла управления по тангажу и крену 25 во всем диапазоне его отклонений на заданные углы практически не сказывается на аэродинамике полета аппарата ввиду очень малых относительных значений углов его отклонения.

Управление аппаратом по тангажу посредством изменения интенсивности обдува верхней поверхности кольцевого крыла управления по тангажу и крену 25 производится следующим образом. После получения команды (например, угол тангажа должен быть отрицательным, направление полета влево ← НП) (Фиг.4) задний участок верхней поверхности кольцевого крыла управления по тангажу и крену 25 относительно кольцевого сопла центробежного вентилятора 32 имеет величину зазора б2, интенсивность его обдува неизменна, а величина аэродинамической силы равна Yдоп.2. При этом передний участок кольцевого крыла 25 отклоняется сервоприводом 22 на величину зазора б1+ между кольцевым крылом 25 и кольцевым соплом 32. В этом случае падает интенсивность обдува переднего участка кольцевого крыла 25, что ведет к уменьшению величины аэродинамической силы Yдоп.1. Соответственно, момент управляющего воздействия (Мтангажа), возникающий от аэродинамической силы Yдоп.2, на плече, близком к величине радиуса кольцевого крыла 25, заставляет этот участок кольцевого крыла 25 опускаться вместе с наружным дисковидным корпусом 10. В режиме горизонтального полета это приводит к выходу аппарата на отрицательный угол тангажа, т.е. полету со снижением.

Для увеличения угла тангажа аппарата обдуваемый участок кольцевого крыла управления по тангажу и крену 25 меняется на противоположно расположенный. В этом случае отклонение сервоприводом 22 осуществляется через систему наклона кольцевого крыла 34 заднего участка кольцевого крыла 25 до величины зазора б2+.

В случае получения команды на изменение угла крена (например, крен должен быть «вправо») (Фиг.5) левый участок верхней поверхности кольцевого крыла управления по тангажу и крену 25 относительно кольцевого сопла центробежного вентилятора 32 имеет величину зазора б1, интенсивность его обдува неизменна, а величина аэродинамической силы равна Yдоп.1. При этом правый участок кольцевого крыла 25, после получения команды на изменение угла крена, отклоняется одним из сервоприводов 22 до величины зазора б2+ между кольцевым крылом 25 и кольцевым соплом 32. В этом случае уменьшается интенсивность обдува правого участка кольцевого крыла 25, что ведет к уменьшению величины аэродинамической силы Yдоп.2. Соответственно, момент управляющего воздействия (Мкрена), возникающий от аэродинамической силы Yдоп.1, на плече, близком к величине радиуса кольцевого крыла 25, заставляет опускаться этот участок кольцевого крыла 25 «вправо», вместе с наружным дисковидным корпусом 10, т.е. заставляет летательный аппарат крениться «вправо». В режиме горизонтального полета аппарат совершает правый крен, изменяя траекторию полета.

Для осуществления крена аппарата «влево» обдуваемый участок кольцевого крыла управления по тангажу и крену 25 меняется на противоположно расположенный. В этом случае отклонение одним из сервоприводов 22 осуществляется через систему наклона кольцевого крыла 34 левого участка кольцевого крыла 25 до величины зазора б1+.

Система наклона кольцевого крыла 34 включает в себя четыре сервопривода 22, которые посредством жесткой проводки управления связаны с центральными частями эластомерных втулок 26 и приводными кронштейнами кольцевого крыла управления 33. Реализуя команды управления аппаратом во всех конфигурациях полета, сервоприводы 22 через систему наклона кольцевого крыла 34 и приводные кронштейны кольцевого крыла управления 33 передают усилия на кольцевое крыло управления по тангажу и крену 25. Эластомерные втулки 26, закрепленные в конструкции кольцевого крыла 25, имеют возможность своими центральными частями скользить по поверхности стоек опор шасси 24 вдоль их оси и обеспечивать, таким образом, возможность независимого качания кольцевого крыла управления по тангажу и крену 25 относительно осей X, Y. Управление аппаратом по курсу вокруг оси Y, как аварийный вариант, может обеспечиваться разницей величин вращающих моментов привода осевого вентилятора 3 и привода центробежного вентилятора 7, которые обеспечиваются разным по величине напряжением питания приводов.

В штатном режиме развороты аппарата вокруг вертикальной оси Y обеспечивают вводимые в поток между верхней обшивкой двойной кривизны 14 и внутренней поверхностью наружного дисковидного корпуса 10 выдвижные лопатки управления по курсу 19, которые убираются в удобообтекаемый модуль оборудования и целевой нагрузки 13. Выдвижные лопатки 19 имеют такие углы установки и площади, что способны создавать аэродинамические силы, противодействующие реактивному моменту, создаваемому комбинированным силовым агрегатом, и даже превышать это значение. В убранном положении лопатки 19 не выступают за пределы габаритов удобообтекаемого модуля оборудования и целевой нагрузки 13. Действующие на лопатки 19 аэродинамические силы в этом случае равны 0.

Введение в поток и увод из потока выдвижных лопаток управления по курсу 19 осуществляется от одного из сервоприводов системы управления 22 через объединенный узел управления по курсу 21 и тросовую проводку управления по курсу 20.

Воздушный поток, истекающий из кольцевого сопла центробежного вентилятора 32, выходя за пределы кольцевого крыла управления по тангажу и крену 25, устремляется вдоль поверхности нижней обшивки двойной кривизны 15 и съемной формообразующей крышки люка обслуживания 16. Реактивная струя, расширяясь в центростремительном направлении, улучшает стабилизацию полета ЛА и обеспечивает возникновение основной аэродинамической подъемной силы аппарата.

Для повышения общей тяговооруженности аппарата в данном техническом решении используется двухприводной комбинированный силовой агрегат. В состав силового агрегата, кроме высокооборотного привода центробежного вентилятора 7, вращающего центробежный вентилятор 6, входит привод осевого вентилятора 3, оснащенный осевым вентилятором 1 в туннеле 2, который имеет противоположное вращение по отношению к приводу центробежного вентилятора 7. Данный агрегат расположен над наружным дисковидным корпусом 10 с зазором, равным высоте кольцевого сопла осевого вентилятора 31. Он нагнетает поток воздуха в туннеле осевым вентилятором 2 и в соответствии с конфигурацией наружного дисковидного корпуса 10, в месте установки туннеля 2, обеспечивает поворот воздушной струи на угол около 85 градусов, инициируя его интенсивное истечение из кольцевого сопла осевого вентилятора 31. Поток, истекая из кольцевого сопла осевого вентилятора 31, вдоль внешней поверхности наружного дисковидного корпуса 10, выполненной в соответствии с математическим описанием поверхности «Коанда», обеспечивает возникновение второй дополнительной аэродинамической подъемной силы аппарата.

Летательный аппарат вертикального взлета и посадки может быть изготовлен на небольших производственных площадях с использованием современных материалов и технологий.

При реализации изобретения могут использоваться различные конструктивные исполнения приводов, лопаточных и безлопаточных диффузоров, различные конструктивные решения кольцевых сопл и спрямляющих устройств. Могут применяться различные устройства управления лопатками осевых и центробежных нагнетателей, а также различные методы формообразования воздухозаборников, воздуховодов и их протяженности, отличающихся от описанных в данной заявке и приведенных на чертежах, иллюстрирующих изобретение, без отхода от идеологии и рамок настоящего изобретения, определяемых объемом притязаний, изложенных в формуле изобретения.

Таким образом, создана концепция летательного аппарата, имеющего повышенную безопасность, надежность и эффективность в условиях турбулентной атмосферы, в том числе обладающего необходимой маневренностью в широком диапазоне скоростей полета вплоть до зависания аппарата в воздухе и выполнения вертикальной посадки.

Авторами изготовлена летающая модель для отработки аэродинамических свойств аппарата, исследования динамики полета при вертикальном взлете и посадке (два фото).

Летательный аппарат вертикального взлета и посадки, дисковидной компоновки с центробежным вентилятором и центростремительным направлением расширения потока реактивной струи, отличающийся тем, что его силовой агрегат выполнен комбинированным, содержащим два привода и вентиляторы противоположного вращения, один из которых, центробежный, обеспечивает движение потока с его центростремительным расширением на выходе из внутреннего пространства наружного дисковидного корпуса, а другой, осевой в кольце, прикрепленном коаксиально с зазором к внешней поверхности наружного дисковидного корпуса, нагнетает поток с изменением направления от осевого к радиальному вдоль поверхности «Коанда», причем наружный дисковидный корпус содержит размещенный эквидистантно его внутренней поверхности удобообтекаемый модуль оборудования и целевой нагрузки, состоящий из обшивки двойной кривизны, меридиональных и экваториальных элементов каркаса, с прикрепленными к ним узлами крепления опор шасси, оборудования и целевой нагрузки, а изменение величины подъемной силы, управление и перемещения аппарата в пространстве осуществляются отклонениями дополнительного кольцевого крыла, обдуваемого потоком воздуха реактивной струи, причем развороты аппарата вокруг вертикальной оси обеспечивают выдвижные из модуля оборудования и целевой нагрузки аэродинамические управляющие поверхности.



 

Похожие патенты:

Изобретение относится к устройствам для создания аэродинамической подъемной силы. Аэродинамический движитель содержит корпус в виде цилиндрической камеры с плоской верхней крышкой, под корпусом закреплена нижняя крышка в виде конической поверхности вращения с установленным осевым воздухозаборником.

Изобретение относится к области авиационной техники, в частности к беспилотным летательным аппаратам. Беспилотный летательный аппарат вертикального взлета и посадки содержит корпус выпуклой формы, выполненный в виде сжатого десятиугольника в плане, силовой элемент, размещенный в центре корпуса, на верхней части которого расположены два вентилятора, интегрированный обтекатель с кольцевыми каналами, элементы управления.

Изобретение относится к летательным аппаратам, способным совершать вертикальный взлет и посадку. Летательный аппарат (ЛА) содержит планер, включающий крыло (1), две разнесенные продольные балки (2), горизонтальное оперение (3) и вертикальное оперение (4).

Изобретение относится к области авиационной техники, в частности к конструкциям легких вертолетов. Одноместный вертолет содержит трубчатый каркас, в нижней части которого располагается силовая установка с узлами и механизмами, необходимыми для передачи и распределения крутящего момента через валы на пару соосных воздушных несущих винтов противоположного направления вращения, расположенных в верхней части вертолета.

Изобретение относится к области авиации, в частности к летательным аппаратам вертикального взлета и посадки. В первом варианте летательный аппарат вертикального взлета и посадки имеет дискообразный или тороидальный фюзеляж с двигательным устройством, ось которого совпадает с осью фюзеляжа, расположенным внутри канала, образованного фюзеляжем или выше фюзеляжа.

Изобретение относится к области авиации, в частности к способам управления летательными аппаратами вертикального взлета и посадки. Способ управления летательным аппаратом вертикального взлета и посадки, содержащим дискообразный или тороидальный фюзеляж с несущими винтами, ось вращения которых совпадает с осью фюзеляжа, расположенными внутри канала, образованного фюзеляжем, или выше его, предусматривает установку в фюзеляже по периферии тороидального герметичного резервуара, который заполняют жидкой средой, и средств, обеспечивающих перераспределение жидкой среды в тороидальном герметичном резервуаре.

Изобретение относится к области авиации, в частности к летательным аппаратам вертикального взлета и посадки. Самолет вертикального взлета и посадки включает планер в форме несущего профилированного дискообразного центроплана с расположением носового отсека фюзеляжного типа со стороны переднего полукруга дискообразного центроплана и подъемного вентилятора, вписанного в геометрически среднюю нижнюю часть центроплана, крыльевые консоли, вертикальное и горизонтальное оперение, воздушные винты.

Изобретение относится к области авиации, в частности к летательным аппаратам вертикального взлета и посадки. Транспортное средство содержит корпус, центральный двигатель в виде верхнего и нижнего дисков с лопастями и крутящими приводами соответственно, причем лопасти выполнены профилированными, образуя между лопастями вихревые ячейки, камеру смешения и вихревую камеру.

Изобретение относится к летальным аппаратам тяжелее воздуха и касается аппаратов вертикального взлета и посадки. Летательный аппарат выполнен по схеме «летающее крыло» и содержит силовые агрегаты, шасси, кабину, механизм управления, расположенный по всей задней кромке крыла, три винта, вал, через который осуществляется привод и обеспечивается синхронная работа винтов от силовых агрегатов.

Движитель // 2493052
Изобретение относится к области авиации, в частности к движителям летательных аппаратов тяжелее воздуха с вертикальным взлетом и посадкой. Движитель содержит корпус (1), щелевое сопло (4), канал (3), соединяющий выход компрессора и сопло (4), плоскость (5), примыкающую к нижней части щелевого сопла (4), ловушку (6), канал (7), соединяющий ловушку (6) и вход в компрессор.

Изобретение относится к области авиации, в частности к конструкциям индивидуальных летательных аппаратов. Летательный аппарат (1) содержит раму (3), снизу которой установлены два воздушных винта (5), (7) противоположного вращения на вертикальной оси, использующих общую ось (8) вращения. Воздушные винты (5), (7) приводятся в действие двумя двигателями (9) через общий приводной механизм (10). Двигатели (9) установлены на раме (3) над воздушными винтами (5), (7) и продольно разнесены друг от друга вдоль рамы (3). Рукоятки (21) подвижно установлены на раме (3) между креслом (15) и носовой частью (13). Пользователь аппарата (1), таким образом, сидит в центре, над воздушными винтами (5), (7), его ноги широко расставлены над двигателями (9) и приводным механизмом (10), как на мотоцикле. Каждый воздушный винт оснащен механизмом управления шагом лопастей, при этом лопасти каждого винта управляются отдельно от другого. Вокруг воздушных винтов расположена круговая юбка, содержащая множество вертикально разнесенных колец, соединенных множеством вертикальных стоек. Достигается повышение надежности управления летательным аппаратом. 3 н. и 13 з.п. ф-лы, 28 ил.

Изобретение относится к области авиации, в частности к летательным аппаратам вертикального взлета и посадки. Летательный аппарат содержит корпус круглой формы или в форме эллипса с выпуклой верхней поверхностью и плоской нижней поверхностью, с выступающей вниз его центральной частью. В центральной части расположены кабина с системой управления и силовой отсек, в котором установлены не менее четырех двигателей, передающих вращение через трансмиссии на шесть винтовентиляторов. Четыре винтовентилятора установлены в вертикальных овальных сквозных отверстиях корпуса, а два винтовентилятора установлены с лобовой и кормовой сторон летательного аппарата. Малые оси симметрии двух отверстий расположены вдоль продольной оси симметрии корпуса, а двух других расположены вдоль поперечной оси симметрии корпуса. Внутри указанных отверстий вдоль их малых осей симметрии установлены поворотные оси из труб. Все воздушные винтовентиляторы способны изменять общий шаг как совместно, так и раздельно. Достигается повышение грузоподъемности летательного аппарата при сохранении высокого уровня безопасности полета. 2 ил.

Изобретение относится к области авиастроения, а именно к летательным аппаратам с вертикальным взлетом и посадкой. Летательный аппарат вертикального взлета и посадки с управлением высотой и направлением полета с помощью реактивной силы содержит корпус, двигатели, сопла, газовод, выполненный с возможностью разделения газового потока из сопла реактивного двигателя перегородкой на два тракта: тракт вертикальной и тракт горизонтальной тяги. Тракт вертикальной тяги содержит сопла, расположенные в нижней части корпуса аппарата справа и слева от продольной оси на всем ее протяжении и служит для создания вертикальной тяги. Тракт горизонтальной тяги содержит сопла, расположенные на концах продольной оси аппарата для горизонтального полета. Аппарат содержит вертикальную заслонку между соплом двигателя и трубопроводом газовой струи для плавного переключения потока газовой струи между трактами, обеспечивающими горизонтальную и вертикальную тягу. Повышается устойчивость летательного аппарата при вертикальном взлете и посадке и на переходных режимах к горизонтальному полету. 4 ил.

Изобретение относится к области авиации, в частности к летательным аппаратам вертикального взлета и посадки. Летательный аппарат вертикального взлета и посадки состоит из устройства для движения крыльев, кабины, двигателей, вентилятора. Устройство для движения крыльев состоит из четырех ферм, которые образованы из направляющих для направления движения подшипников труб крыльев, уголков и полосок, крыльев, которые имеют возможность создавать воздушный поток, зубчатых ремней, к которым крепятся крылья, шкивов, двух валов, на которых посажены шкивы, рычагов управления углами атаки крыльев, направляющих подшипников рычагов, приваренных к правой и левой фермам, двух ведомых звездочек и листа ограждения. Угол атаки крыльев не изменяется при их движении на прямолинейных участках вверху и внизу. Крылья имеют возможность изменять угол атаки при движении по полуокружности. Достигается возможность вертикального взлета и посадки, повышается эффективность силовой установки. 3 з.п. ф-лы, 12 ил.

Изобретение относится к авиации, в частности к конструкции топливных систем беспилотных летательных аппаратов. Система содержит N топливных баков, встроенных в кольцевой обтекатель. Баки расположены по окружности, симметрично относительно вертикальной оси аппарата. Трубопроводы, подающие топливо в двигатель, соединяют топливные баки последовательно друг с другом, при этом каждый последующий присоединенный бак расположен оппозитно или примерно оппозитно, относительно вертикальной оси обтекателя, предыдущему баку. Последний бак подсоединен трубопроводом к двигателю. Достигается упрощение конструкции системы подачи топлива. 6 з.п. ф-лы, 4 ил.

Изобретение относится к области авиации, в частности к конструкциям самолетов вертикального взлета и посадки (СВВП). СВВП состоит из фюзеляжа, крыла, стабилизатора, компрессора с воздухозаборником и двигателя. Соосно продольной оси самолета расположен вал дизельного двигателя, связанный через вал мультипликатора с валом компрессора. Ресивер компрессора воздухопроводом, проходящим через фюзеляж и оснащенным дроссельными заслонками с электромеханическим приводом, сообщается с воздухопроводом передней и задней кромкок крыла и передней кромки стабилизатора, которые оснащены соплами щелевого типа. Сопла воздухопроводов передних кромок крыла и стабилизатора направлены по касательной к верхним обшивкам, сопло воздухопровода задней кромки крыла направлено по хорде. Дроссельные заслонки с электромеханическим приводом связаны с системой стабилизации самолета в вертикальной плоскости на основе цифрового процессора. Выходной конец вала компрессора может быть оснащен воздушным винтом. Достигается возможность вертикального взлета и посадки, снижение шума. 1 з.п. ф-лы, 5 ил.

Изобретение относится к области авиации, а именно к способам создания системы сил и летательным аппаратам вертикального взлета и посадки. Способ создания тяги заключается в направлении из сопла газовой струи по касательной к верхней выпуклой поверхности крыла аэродинамического сечения. Истекающая плоская пульсирующая газовая струя образуется в нестационарном сверхзвуковом эжекторе, сформированном системой двух входных каналов, связанных с воздухозаборными щелями постоянной площади, расположенными на верхней поверхности аэродинамического профиля, камерой смешения и реактивным соплом в виде выходной щели на верхней поверхности аэродинамического профиля. Летательный аппарат содержит крыло аэродинамического сечения с верхней выпуклой поверхностью. Нестационарный сверхзвуковой эжектор, размещенный внутри крыла, образован системой каналов, связывающих воздухозаборную щель постоянной площади, являющуюся маршевым впускным устройством, и воздухозаборную щель постоянной площади, являющуюся стартовым впускным устройством, расположенную в верхней точке аэродинамического профиля. Воздушные потоки соединяются в зоне коллектора горючего, а образующиеся в камере смешения продукты сгорания истекают через щелевое сопло, размещаемое на верхней поверхности крыла между стартовым впускным устройством и задней кромкой профиля. Достигается повышение КПД и аэродинамического качества летательного аппарата. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области авиации, в частности к способам создания подъемной силы и к конструкциям летательных аппаратов вертикального взлета и посадки. Способ создания подъемной силы летательного аппарата заключается в использовании газовой струи, выходящей из сопла реактивного двигателя летательного аппарата, направляемой в несущее устройство, снабженное газоводом, в котором установлены разъединитель и подъемные элементы. При прохождении струи газов от двигателя создается подъемная сила за счет изменения направления движения газов в подъемных элементах. Устройство для реализации указанного способа создания подъемной силы содержит летательный аппарат с реактивным двигателем и несущим устройством с газоводом. В газоводе установлены один или несколько подъемных элементов, выполненных в виде протяженных сот, прямых или изогнутых по ходу движения газовой струи, причем изгиб подъемных элементов выполнен таким образом, чтобы создать подъемную силу, действующую на несущее устройство через подъемные элементы. Несущий элемент снабжен разъединителем газового потока, установленным в газоходе. Достигается увеличение подъемной силы, снижение расхода горючего и увеличение дальности и скорости полета. 3 н. и 1 з.п. ф-лы, 8 ил.

Изобретение относится к области авиации, в частности к конструкциям летательных аппаратов вертолетного типа. Летательный аппарат содержит ротор с закрепленными на его валу полусферами, приемник рабочего тела, выполненный в центральной части ротора, примыкающий к внешней окружности ротора направляющий аппарат. Ротор выполнен из неподвижных относительно друг друга мембран, с верхними и нижними сферическими поверхностями, разделенными бандажами и воздушными слоями. Указанные мембраны расположены между приемником рабочего тела и направляющим аппаратом. Направляющий аппарат содержит закрепленный на его внешней окружности пневматический кольцевой бандаж. Ротор выполнен с возможностью ускорения воздушных потоков пограничными слоями и центробежной силой. Поддержка геометрической формы выполненных в виде сфер пленочных поверхностей мембран выполнена за счет центробежной силы воздушных потоков, строп и бандажей. Лопатки направляющего аппарата выполнены из гибкой прочной пленки с опорной армирующей нитью в их передней кромке. Достигается увеличение времени полета и снижение заметности летательного аппарата. 5 з.п. ф-лы, 1 ил.

Изобретение относится к области авиации и может быть использовано для создания безаэродромных вертикально взлетающих ЛА. Способ создания подъемной силы для ЛА заключается в том, что подъемную силу создают вращением диска, при этом одну из поверхностей вращающегося диска изолируют от невозмущенного потока воздуха неподвижным изолятором в виде соосного с диском стакана, куда помещают диск, чем обеспечивают разность между атмосферным давлением невозмущенного воздуха, действующим на изолятор, и статическим давлением потока, омывающего незакрытую изолятором поверхность вращающегося диска. Вращение диска внутри изолятора осуществляют исключая их взаимное осевое перемещение на опорах. Вышеуказанные среды разделяют уплотнениями. Реактивный и гироскопический моменты уравновешивают за счет использования второй пары «диск-изолятор», которую устанавливают на одной оси с первой. Достигается возможность получения подъемной силы летательного аппарата. 3 ил.
Наверх