Способ получения структурированной поверхности полупроводников



Способ получения структурированной поверхности полупроводников
Способ получения структурированной поверхности полупроводников

 


Владельцы патента RU 2519865:

Федеральное государственное бюджетное учреждение науки Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук (ИФП СО РАН) (RU)

Изобретение относится к области полупроводниковой технологии и может быть использовано при изготовлении наноструктур. Способ получения структурированной поверхности полупроводников, заключающийся в том, что на поверхности полупроводниковой пластины выращивают защитный слой, на который наносят маску со вскрытыми окнами заданного размера, затем проводят облучение поверхности полупроводниковой пластины потоком ионов через маску и защитный слой, что приводит к получению аморфного слоя в полупроводниковой пластине во вскрытых окнах маски. Полученный аморфный слой перед удалением окисляют, затем удаляют оксиды, а также с поверхности полупроводниковой пластины удаляют защитный слой и маску. Использование способа позволяет значительно увеличить площадь структурированной поверхности полупроводниковых пластин с упорядоченно расположенными затравочными областями нанометрового размера, расширить диапазон размеров и сохранить заданные размеры затравочных областей, защитить поверхность полупроводниковой пластины от загрязнений. 8 з.п. ф-лы, 2 ил.

 

Изобретение относится преимущественно к области полупроводниковой технологии, индустрии наносистем и материалов и может быть использовано при изготовлении наноструктур, например, для создания затравочных областей при изготовлении фильтров и наномембран, для структур с пространственно упорядоченным расположением нанокристаллов в кристаллической полупроводниковой матрице, которые можно использовать при изготовлении, например, фотоприемников.

Известен способ получения структурированной поверхности полупроводников (Detlev Grutzmacher, Thomas Fromherz, Christian Dais, Julian Stangl, Elisabeth Muller, Yasin Ekinci, Harun H. Solak, Hans Sigg, Rainer T. Lechner, Eugen Wintersberger, Stefan Birner, Vaclav Holy, and Gunther Bauer. "Three-Dimensional Si/Ge Quantum Dot Crystals" - Journal of NANO LETTERS, 2007, Vol.7, No.10, 3150-3156), в котором используют интерференционную ультрафиолетовую литографию с длиной волны 13,5 нм и последующее реактивное ионное травление. Способ включает в себя нанесение резиста на поверхность кремния, проведение интерференционной ультрафиолетовой литографии, вскрытие окон на участках засвеченного резиста, травление поверхности через маску-резист, в области вскрытых окон, и формирование тем самым затравочных областей нанометрового размера, упорядоченно расположенных на поверхности полупроводниковой пластины.

Основными недостатками данного способа являются малая площадь сканирования поверхности, загрязнение пластины остатками резиста и ионно-реактивного травления, низкая селективность скорости травления различных материалов, уход от размеров за счет травления поверхности под маской, затруднены воспроизводимость элементов с нанометровыми размерами и контроль клина травления.

Из известных способов получения структурированной поверхности полупроводников наиболее близким к заявленному является способ, представленный в работе (Qiangmin wei, Jie Lian, Wei Lu, and Lumin Wang. "Highly Ordered Ga Nanodroplets on a GaAs Surface Formed by a Focused Ion Beam"-Physical Review Letters, 2008, v.100, 076103). Согласно этому способу структурированную поверхность полупроводника получают при локальном облучении поверхности сфокусированным пучком ускоренных ионов Ga+. Затем галлий и аморфный слой, созданный ионным облучением, удаляют химическим (в растворе HCl:H2O) и термическим способом, отжигая структуру при температуре 1250°C. В результате получают области затравки - ямки нанометрового размера (~100 нм) глубиной нескольких десятков нанометров.

Основным недостатком данного способа является дорогостоящее оборудование, требуемое для проведения процесса, и низкая производительность, т.к. сканирование сфокусированным ионным пучком требует большие временные затраты экспонирования, что влечет за собой малые площади сканирования поверхности, загрязнение поверхности Ga, который очень реакционноспособный и подвижный. Отмеченные недостатки затрудняют широкомасштабное использование получаемых структурированных поверхностей как в исследовательских целях, так и для создания приборов на их основе.

Техническим результатом изобретения является:

- значительное увеличение площади структурированной поверхности полупроводниковых пластин с упорядоченно расположенными затравочными областями нанометрового размера,

- расширение диапазона размеров и сохранение заданного размера затравочных областей,

- защищенность поверхности полупроводниковой пластины от загрязнений.

Технический результат достигается тем, что в способе получения структурированной поверхности полупроводников, включающем ионное облучение поверхности полупроводниковой пластины и последующее удаление полученного аморфного слоя, дополнительно перед ионным облучением на поверхности полупроводниковой пластины выращивают защитный слой, на который наносят маску со вскрытыми в ней окнами, а ионное облучение поверхности полупроводниковой пластины проводят потоком ионов через маску и защитный слой, что приводит к созданию аморфного слоя в полупроводниковой пластине во вскрытых окнах маски, полученный аморфный слой перед удалением окисляют, затем удаляют оксиды, а также с поверхности полупроводниковой пластины удаляют защитный слой и маску.

В способе защитный слой заданной толщины на поверхности полупроводниковой пластины выращивают высокотемпературным окислением поверхности полупроводниковой пластины в атмосфере сухого кислорода или пиролитическим осаждением окисла, или анодным окислением.

В способе маску на поверхности защитного слоя наносят с помощью импринт-литографии, или электронно-лучевой литографии, или наносферной литографии, или используя пленки пористого Al2O3 или Ti2O3.

В способе ионное облучение поверхности полупроводниковой пластины через маску с заданными размерами окон и защитный слой осуществляют с помощью различных источников ионов.

В способе аморфный слой получают ионным облучением поверхности полупроводниковой пластины в местах открытых для проникновения ионов.

В способе удаление маски проводят в плазме кислорода или химическом растворе.

В способе удаление защитного слоя проводят в растворе плавиковой кислоты.

В способе удаление аморфного слоя проводят заданным количеством циклов - окисления аморфного слоя в растворе NH4OH+H2O+H2O2 (1:10:1) при комнатной температуре с последующим удалением оксида в плавиковой кислоте.

В способе ионное облучение проводят с энергией от 0.5 кэВ до 500 кэВ и дозой от 1012см-2 до 1016см-2.

Сущность изобретения поясняется нижележащим описанием и прилагаемыми фигурами.

На фиг.1 приведена схема получения структурированной поверхности полупроводника: позиция 1 - полупроводниковая пластина (1) с защитным слоем (2); позиция 2 - полупроводниковая пластина (1) с защитным слоем (2) и маской со вскрытыми окнами (3); позиция 3 - облучение поверхности полупроводниковой пластины (1) ионами (4) низких или высоких энергий через маску со вскрытыми окнами (3) и защитный слой (2); позиция 4 - создание аморфного слоя (5) за счет ионного облучения полупроводниковой пластины (1) через маску (3) в местах открытых для проникновения ионов; позиция 5 - полупроводниковая пластина (1) с затравочными областями, которые формируют в области травления аморфного слоя (6).

На фиг.2 показана морфология поверхности Si (по данным атомно-силовой микроскопии): (а) - затравочные области (канавки) глубиной 50 нм, полученные после создания маски с помощью наноимпринт-литографии, облучения поверхности ионами Ge+ с энергией 80 кэВ и дозой ионов 1015см-2 через маску и защитный слой, и 8 циклов окисления/удаления оксида. Размер сканированной области - 800×800 нм.; (б) - затравочные области (ямки) глубиной 10 нм, полученные после создания маски с помощью электронно-лучевой литографии, облучения поверхности ионами Ge+ через маску и защитный слой (энергия ионов 60 кэВ, доза ионов 1015см-2), и 5 циклов окисления/удаления оксида. Размер сканированной области - 1000×1000 нм.

Сущность изобретения заключается в следующем.

При получении структурированной поверхности полупроводника перед ионным облучением поверхности полупроводниковой пластины проводят дополнительные операции, не применяемые в известном способе, а именно: на поверхности полупроводниковой пластины создают защитный слой, на который наносят маску, в которой вскрывают окна заданного размера. После ионного облучения поверхности полупроводниковой пластины в местах, где вскрыты окна в маске, получают аморфный слой, затем с поверхности полупроводниковой пластины удаляют маску и защитный слой, а перед удалением аморфного слоя его окисляют, а затем удаляют.

Создание защитного слоя на поверхности полупроводниковой пластины позволит получить атомарно чистую поверхность после ионного облучения и удаления защитного слоя. Изменение геометрических параметров структурированной поверхности в широком диапазоне в зависимости от рисунка маски, типа ионов, энергии и дозы ионов, а также от количества повторяющихся операций окисления и удаления окисла, увеличение площади структурированной поверхности полупроводниковой пластины с упорядоченным расположением повторяющихся затравочных областей, имеющих нанометровые размеры, позволит упростить способы создания структурированной поверхности полупроводников и структур с упорядоченным расположением нанокристаллов, что приведет к уменьшению дисперсии дискретного энергетического спектра наноструктур, повысит достоинства систем с дискретным спектром состояний, увеличит абсолютную интенсивность фотоотклика в фотоприемниках на основе нанокристаллов, позволит упростить существующие способы создания нанофильтров.

Перед нанесением маски поверхность полупроводниковой пластины предварительно окисляют, создавая защитный слой (фиг.1, позиция 2). Окисление поверхности пластины осуществляется одним из способов:

высокотемпературным окислением в атмосфере сухого кислорода или пиролитическим осаждением, или анодным окислением. Маска на поверхности защитного слоя создается с помощью импринт-литографии, или электронно-лучевой литографии, или наносферной литографии, или используя пленки пористого Al2O3 или Ti2O3. Параметры маски (толщина, рисунок, период расположения и размер вскрытых в ней окон) и толщина защитного слоя подбираются в зависимости от требуемых параметров структурированной поверхности. Структура «полупроводниковая пластина/защитный слой/маска» (фиг.1, позиция 3) облучается ионами с энергией от 0.5 кэВ до 500 кэВ и дозой ионов от 1012см-2 до 1016см-2. При облучении можно использовать ионы средних и тяжелых масс, например Ge+, Si+, Ar+, Kr+, Xe+. Ионы достигают поверхности полупроводника через вскрытые в маске окна, что приводит к формированию аморфного слоя в полупроводнике (фиг.1, позиция 4). После облучения с поверхности полупроводниковой пластины удаляется защитный слой и маска, полученный аморфный слой окисляется, а затем удаляется.

Для создания структурированной поверхности полупроводника подбирается энергия ионов такая, которая при облучении структуры «полупроводниковая пластина/защитный слой/маска» позволяет создать аморфные слои (затравочные области) только в свободных от маски областях. Подбор энергии выполняется с помощью компьютерной программы SRIM. Для расчетов нижней границы энергии ионов (0.5 кэВ) выбирается минимальная толщина защитного слоя (-2 нм), при которой через вскрытые окна в маске, ионы, падая на поверхность защитного слоя, проникают в полупроводник. Верхняя граница энергии ионов (500 кэВ) определяется максимальной толщиной маски (~150 нм) и защитного слоя (~500 нм). Энергию ионов подбирают такой, чтобы в областях закрытых маской ионы не достигали поверхности полупроводника.

Геометрические параметры структурированной поверхности зависят от энергии и дозы ионов. Нижняя граница энергии ионов определяется только толщиной защитного слоя. Верхняя граница определяется толщиной маски и защитного слоя. При энергии ионов ниже 0.5 кэВ ионы не достигают поверхности полупроводника через защитный слой. При энергии ионов выше 500 кэВ пробег ионов достаточен для разупорядочения поверхности полупроводника, в том числе в областях закрытых маской. Ионное облучение при дозах ниже 1012см-2 не приводит к созданию разупорядоченного (аморфного) слоя полупроводника, поверхность полупроводника остается гладкой без каких-либо особенностей. При дозах ионов выше 1016см-2 в полупроводнике создается большое количество дефектов. Это влечет за собой уход размеров затравочных областей от заданного размера в маске, перекрытие затравочных областей. После облучения структуры маску удаляют в плазме кислорода или химическом растворе H2SO4+H2O2 (1:1). Удаление защитного слоя, например оксидного слоя, осуществляется в растворе плавиковой кислоты (HF). Аморфизованные слои удаляют путем последовательного проведения заданного количества циклов окисления поверхности и удаления оксида в химических растворах. После первого цикла в местах, подвергавшихся облучению, появляются затравочные области глубиной до нескольких нанометров. Последующее окисление и удаления оксида приводит к увеличению скорости травления так, что после проведения, например, 5 повторяющихся операций глубина затравочной области увеличивается до 50 нм (фиг.1, позиция 5). При этом размеры затравочных областей и период их расположения совпадают с рисунком маски.

Выше описанный способ структурирования поверхности подходит для любого типа полупроводниковых пластин, например, таких как Si, Ge, GaAs.

Пример 1

Пластина кремния диаметром 76 мм предварительно термически окисляется, толщина полученного защитного слоя составляет 50 нм. На поверхности защитного слоя - оксида кремния (SiO2) после стандартных операций наноимпринт-литографии, создается маска в виде канавок (ширина канавки составляла 80 нм и глубина - 120 нм, период - 180 нм). Структура «полупроводниковая пластина/оксидный слой/маска» облучается ионами Ge+ с энергией 80 кэВ и дозой ионов 1015 см-2. Облучение проводится при комнатной температуре. Затем удаляется маска в химическом растворе H2SO4+H2O2 (1:1) и защитный слой SiO2 в плавиковой кислоте. Далее проводится несколько циклов окисления поверхности кремния в растворе NH4OH+H2O+H2O2 (1:10:1) и удаления оксида в плавиковой кислоте. В процессе каждого цикла удаляется примерно 1 нм кристаллического кремния. После первого цикла в местах, подвергающихся облучению, появляются затравочные области - канавки глубиной до 2 нм. Последующие окисления и снятия оксида приводят к увеличению скорости травления так, что после снятия 8 нм кристаллического кремния канавка травления в области облучения увеличивается до 50 нм (фиг.2,а). При этом ширина канавки соответствует заданной ширине канавки в маске (80 нм).

Такие же результаты достигаются, когда в технологическом маршруте меняется способ удаления маски (удаление маски проводилось в плазме кислорода).

Если облучение поверхности проводится при температуре выше 100°C, то максимальная глубина канавки достигала 10 нм.

Увеличивая энергию ионов от 0.5 кэВ до 100 кэВ, при фиксированных параметрах маски, защитного слоя, дозы ионов и температуры подложки при облучении, приводит к немонотонному изменению глубины канавки. Так, например, в диапазоне энергий от 0.5 кэВ до 25 кэВ глубина рельефа не превышает 5 нм. С увеличением энергии от 30 кэВ до 100 кэВ глубина рельефа возрастает от 7 нм до 100 нм.

При дозе 1012см-2 наблюдается изменение рельефа поверхности полупроводниковой пластины в пределах 2 нм и сохраняется период повторения канавок, соответствующий маске. В диапазоне доз от 1013 см-2 до 1016см-2 глубина канавки увеличивается от 5 нм до 60 нм, рисунок маски сохраняется.

Изменение толщины защитного слоя от 50 нм до 20 нм приводит к увеличению глубины канавки.

Пример 2

Пластина кремния предварительно термически окисляется, толщина защитного слоя составляет 40 нм. На поверхности защитного слоя оксида кремния (SiO2) наносится маска толщиной 90 нм. После стандартной операции электронно-лучевой литографии получается маска в виде решетки с «ямками» диаметром 50 нм и глубиной 90 нм, повторяющимися с периодом 100 нм. Структуры «полупроводниковая пластина/оксидный слой/маска» облучаются ионами Ge с энергией 60 кэВ и дозой ионов 1015см-2. Облучение проводится при комнатной температуре. Затем удаляется маска в химическом растворе H2SO4+H2O2 (1:1) и защитный слой SiO2 в плавиковой кислоте. Далее проводится несколько циклов окисления поверхности пластины кремния в растворе NH4OH+Н2О+H2O2 (1:10:1) и удаления оксида в плавиковой кислоте. После повторения 5 циклов окисления и удаления оксида в местах, подвергавшихся облучению, появляются затравочные области в виде ямок диаметром 50 нм и глубиной 10 нм (фиг.2,б).

Таким образом, полученные результаты дают возможность создавать структурированную поверхность полупроводниковых пластин Si, Ge, GaAs на большой площади, параметры которой можно менять в широком интервале, регулируя энергию, дозу облучения, параметры маски и защитного слоя, и открывают новые перспективы для формирования упорядоченных массивов наноструктур.

Контроль морфологии поверхности на всем протяжении технологического процесса проводился с помощью атомно-силовой микроскопии (АСМ).

1. Способ получения структурированной поверхности полупроводников, включающий ионное облучение поверхности полупроводниковой пластины и последующее удаление полученного аморфного слоя, отличающийся тем, что перед ионным облучением на поверхности полупроводниковой пластины выращивают защитный слой, на который наносят маску со вскрытыми в ней окнами, а ионное облучение поверхности полупроводниковой пластины проводят потоком ионов через маску и защитный слой, что приводит к созданию аморфного слоя в полупроводниковой пластине во вскрытых окнах маски, полученный аморфный слой перед удалением окисляют, затем удаляют оксиды, а также с поверхности полупроводниковой пластины удаляют защитный слой и маску.

2. Способ по п.1, отличающийся тем, что защитный слой заданной толщины на поверхности полупроводниковой пластины выращивают высокотемпературным окислением поверхности полупроводниковой пластины в атмосфере сухого кислорода или пиролитическим осаждением окисла, или анодным окислением.

3. Способ по п.1, отличающийся тем, что маску на поверхности защитного слоя наносят с помощью импринт-литографии, или электронно-лучевой литографии, или наносферной литографии, или используя пленки пористого Al2O3 или Ti2O3.

4. Способ по п.1, отличающийся тем, что ионное облучение поверхности полупроводниковой пластины через маску с заданными размерами окон и защитный слой осуществляют с помощью различных источников ионов.

5. Способ по п.1, отличающийся тем, что аморфный слой получают ионным облучением поверхности полупроводниковой пластины в местах, открытых для проникновения ионов.

6. Способ по п.1, отличающийся тем, что удаление маски проводят в плазме кислорода или химическом растворе.

7. Способ по п.1, отличающийся тем, что удаление защитного слоя проводят в растворе плавиковой кислоты.

8. Способ по п.1, отличающийся тем, что удаление аморфного слоя проводят заданным количеством циклов - окисления аморфного слоя в растворе NH4OH+H2O+H2O2 (1:10:1) при комнатной температуре с последующим удалением оксида в плавиковой кислоте.

9. Способ по п.1, отличающийся тем, что ионное облучение проводят с энергией от 0.5 кэВ до 500 кэВ и дозой от 1012 см-2 до 1016 см-2.



 

Похожие патенты:

Изобретение относится к области медицины, в частности к фармакологии и фармацевтике, и касается антипсихотического средства, представляющего собой аминокислоту глицин, иммобилизованную на частицах детонационного наноалмаза размером 2-10 нм, обладающего повышенной эффективностью, и способа его получения.

Изобретение относится к области медицины, в частности к фармакологии и фармацевтике, и касается антиоксиданта, представляющего собой аминокислоту глицин, иммобилизованную на частицах детонационного наноалмаза размером 2-10 нм, обладающего повышенной эффективностью, и способа его получения.

Изобретение относится к области медицины, в частности к фармакологии и фармацевтике, и касается антидепрессанта, представляющего собой аминокислоту глицин, иммобилизованную на частицах детонационного наноалмаза размером 2-10 нм, и способа его получения.

Изобретение относится к области медицины, в частности к фармакологии и фармацевтике, и касается анксиолитика, представляющего собой аминокислоту глицин, иммобилизованную на частицах детонационного наноалмаза размером 2-10 нм, и способа его получения.

Изобретение относится к медицине и ветеринарии, а именно к медицинским и ветеринарным препаратам, предназначенным для профилактики и лечения кишечных инфекций различной этиологии у человека и животных.

Изобретение относится к области гальванотехники и может быть использовано для получения биосовместимых защитных покрытий металлических частей протезов, инертных в отношении биологических объектов, а также в радиоэлектронике и физике полупроводников.
Способ получения органомодифицированного монтмориллонита с повышенной термической стабильностью включает получение немодифицированного очищенного бентонита на основе монтмориллонита путем первичной подготовки исходного сырья, включающей просев полученного с карьера бентонитового порошка, состоящего преимущественно из монтмориллонита, от крупных механических включений, диспергирование бентонитового порошка в водной среде в высокоскоростной коллоидной мельницы, его дополнительную химическую обработку в емкостях с верхнеприводными смесителями, обработку в системе гидроциклонных установок и вибросит, обработку в высокоскоростной центрифуге барабанного типа, обработку в смесителе Z-образного типа, снабженного модулем вакуумирования, сушку и помол готовой продукции - немодифицированного очищенного бентонита на основе монтмориллонита.

Изобретение относится к нанотехнологиям. Способ включает эксфолиацию заготовок из слоистых кристаллических материалов, закрепленных с одной стороны на опоре из глипталя, с использованием клейкой ленты, глипталь по окончании эксфолиации растворяют в ацетоне, где образуется взвесь кристаллических пластин (слоев) халькогенидов металлов, которые выделяют из взвеси путем осаждения их на подложку.

Группа изобретений относится к области сцинтилляционной техники, к эффективным быстродействующим сцинтилляционным детекторам, предназначенным для регистрации гамма-излучения, в приборах для быстрой диагностики в медицине, промышленности, космической технике, научных исследованиях и высоких технологиях.

Изобретение относится к промышленности строительных материалов и может быть использовано для получения бетонных строительных изделий. Технический результат - снижение плотности заполнителя и изделия, снижение теплопроводности при сохранении прочности.
Изобретение относится к области получения оптически активной стеклокерамики на основе фторидных стекол и может быть использовано на предприятиях стекольной и оптической промышленности для получения материалов, проводящих лазерное излучение. Способ включает введение нанопорошка фторида редкоземельного элемента (РЗЭ) в шихту: порошок фторидного стекла, механическое перемешивание порошка фторидного стекла и нанопорошка фторида РЗЭ с одновременным помолом фторидного стекла до размеров частиц 0,1-0,5 мкм и прессование. Шихту помещают в форму для прессования, прикладывают необходимое давление и нагревают до температуры стеклования, не снижая давления. Технический результат - придание новых свойств фторидным стеклам путем их активизации с помощью фторидов РЗЭ. 3 пр.

Изобретение относится к области магнитной записи информации, конкретно к способу получения пленок для магнитной записи информации. Способ получения полимерных нанокомпозиций в виде тонких пленок для сверхплотной записи информации включает получение прекурсора, состоящего из поливинилового спирта, воды и смеси водорастворимых солей трех- и двухвалентного железа, с последующей обработкой по крайне мере одним водорастворимым диальдегидом при pH от 0 до 3 в присутствии кислоты в качестве подкисляющего агента, получение тонкой пленки на диэлектрической немагнитной подложке путем нанесения прекурсора на вращающуюся на центрифуге подложку с образованием пленки геля, обработку полученной пленки геля щелочью, при введении щелочи в количестве, обеспечивающем полное протекание реакции щелочного гидролиза смеси солей железа с образованием смеси магнетита и маггемита, при этом обработку щелочью полученной пленки геля осуществляют в парах аммиака, образующегося из водного раствора аммиака (NH4OH) или гидразин-гидрата (N2H4·H2O) в течение 5,0-15,0 часов. Технический результат - уменьшение разброса наночастиц магнетита и маггемита по размерам, получение нанокомпозиции равномерной структуры. Полученная структура может использоваться в качестве запоминающей среды для сверхплотной магнитной записи информации. 2 ил. 1 пр.

Изобретение относится к способу очистки немодифицированного бентонита, пригодного для получения нанокомпозиционных материалов на его основе. Способ очистки немодифицированного бентонита на основе монтмориллонита включает первичную подготовку исходного сырья, включающую просев полученного с карьера бентонитового порошка, состоящего преимущественно из монтмориллонита, от крупных механических включений, диспергирование бентонитового порошка в водной среде с использованием высокоскоростной коллоидной мельницы, дополнительную химическую обработку в емкостях с верхнеприводными смесителями, обработку в системе гидроциклонных установок и вибросит, обработку в высокоскоростной центрифуге барабанного типа, обработку в модулях сушки и помола готовой продукции - немодифицированного очищенного бентонита на основе монтмориллонита или обработку в модулях сушки и помола готовой продукции с предварительной дополнительной химической обработкой очищенного бентонита в смесителе Z-образного типа, снабженного модулем вакуумирования. Обработку бентонитового порошка осуществляют путем реакций катионного обмена с использованием фосфатов, например фосфата натрия и полифосфатов натрия, таких как триполифосфата натрия, являющимся триммером соли ортофосфорной кислоты Na5P3O10. Способ позволяет получить бентониты высокой степени очистки от различного рода примесей. 2 з.п. ф-лы, 3 табл.
Изобретение относится к области полимерного материаловедения и может быть использовано в авиационной, аэрокосмической, автотранспортной и электронной промышленности. Получают нанотрубки методом пиролитического газофазного осаждения в магнитном поле из углеродосодержащих газов с использованием металлов-катализаторов в виде нанодисперсного ферромагнитного порошка, причем нанотрубки торцами присоединены к ферромагнитным наночастицам металлов-катализаторов. Осуществляют магнитную сепарацию частиц порошка с выросшими на них нанотрубками, которые используют при получении композиционного материала на основе полимера. После заполнения полимером прикладывают постоянное магнитное поле вплоть до отверждения полимера. В качестве наполнителя материал содержит углеродные нановолокна и/или газопоглощающий сорбент, например, силикагель, и/или силипорит, и/или полисорб. Повышается механическая прочность, твердость, жесткость, тепло- и электропроводность. 2 н. и 2 з.п. ф-лы, 3 пр.
Клеевая композиция с наномодификатором для древесно-стружечных плит содержит связующее на основе термореактивной смолы, отвердитель и наномодификатор в виде нанодисперсного порошка шунгита в количестве от 1% до 20% от массы связующего. Частицы нанодисперсного шунгита имеют размеры, не превышающие 100 нм, и распределены в связующем на основе карбамидоформальдегидной смолы с массовой долей 79-95%. Отвердитель - хлористый аммоний - имеет массовую долю 1%. Клеевая композиция повышает прочность плиты при растяжении, уменьшает разбухание плиты при увлажнении. 2 табл.
Изобретение относится к производству органонаполненных полимерных композиций и может быть использовано в производстве строительных материалов, автомобилестроении и мебельной промышленности. Полимерная композиция на основе органического наполнителя для изготовления изделий содержит органический наполнитель с размерами частиц от 1 до 20000 мкм и влажностью от 0 до 50 мас.%, высокомолекулярное соединение с температурой плавления от 4 до 400°С, целевые добавки, модифицирующую добавку в виде наноразмерных частиц, в качестве которых применяются углеродные нанотрубки, нановолокна, наноалмазы. Изобретение обеспечивает увеличение прочности, долговечности и атмосферостойкости.

Изобретение относится к способу диспергирования синтетических или натуральных наночастиц и нанокомпозитных материалов, способу получения иерархических структур и их применению в различных отраслях, включая керамические материалы, покрытия, полимеры, строительство, краски, катализаторы, лекарственные средства и порошковые материалы в целом. Способ включает перемешивание наночастиц с размером меньше чем 100 нм, в сухой среде в низкоскоростном вибраторном смесителе. Технический результат состоит в снижении агломерации частиц. 4 н. и 11 з.п. ф-лы, 18 ил., 5 пр.

Изобретение относится к области исследования изменения теплофизических свойств конструкционных материалов при нанообработке нестационарным методом неразрушающего контроля. Способ состоит в воздействии тепловым импульсом на поверхность образца, регистрации температуры и временного интервала от начала теплового воздействия до достижения температурой в точке регистрации заранее заданного значения. На контактную зону воздействуют тепловым импульсом через индентор, закрытый термоизолятором и имеющий встроенные датчик температуры, нагреватель, и сферическую рабочую часть индентора, выполненную из природного алмаза, которую вдавливают в обработанный поверхностный слой с силой, обеспечивающей заданную длину пятна контакта, нагревают до определенного фиксированного значения температуры, выключают нагреватель и регистрируют время, за которое температура уменьшится до заданного уровня, и по формуле определяют коэффициент теплопроводности. Технический результат - повышение точности определения коэффициента теплопроводности. 1 ил.

Изобретение относится к области медицины, в частности к фармакологии и фармацевтике, и касается средства, обладающего противоинсультным действием и представляющего собой аминокислоту глицин, иммобилизованную на частицах детонационного наноалмаза размером 2-10 нм, и способа его получения. Средство обладает повышенной эффективностью. 2 н. и 3 з.п. ф-лы, 7 ил., 12 табл., 3 пр.

Изобретение может быть использовано в медицине при производстве препаратов для послеоперационной поддерживающей терапии. Проводят термическое разложение метана в герметичной камере на подложках из кремния или никеля при давлении 10-30 Торр и температуре 1050-1150 °С. Нагрев осуществляют пропусканием электрического тока через пластину из углеродной фольги, ткани, войлока или конструкционного графита, на которой размещены подложки. Над этой пластиной установлена аналогичная пластина, на которую подают потенциал смещения от внешнего источника. На подложках осаждаются наноалмазы размером от 4 нм до 10 нм. 1 ил., 6 пр.
Наверх