Способ получения фторированных арил(триметил)силанов



Способ получения фторированных арил(триметил)силанов
Способ получения фторированных арил(триметил)силанов
Способ получения фторированных арил(триметил)силанов
Способ получения фторированных арил(триметил)силанов
Способ получения фторированных арил(триметил)силанов
Способ получения фторированных арил(триметил)силанов
Способ получения фторированных арил(триметил)силанов
Способ получения фторированных арил(триметил)силанов
Способ получения фторированных арил(триметил)силанов
Способ получения фторированных арил(триметил)силанов
Способ получения фторированных арил(триметил)силанов
Способ получения фторированных арил(триметил)силанов
Способ получения фторированных арил(триметил)силанов
Способ получения фторированных арил(триметил)силанов
Способ получения фторированных арил(триметил)силанов
Способ получения фторированных арил(триметил)силанов
Способ получения фторированных арил(триметил)силанов
Способ получения фторированных арил(триметил)силанов

 


Владельцы патента RU 2521168:

Закрытое акционерное общество научно-производственное Объединение "ПиМ-Инвест" (ЗАО НПО "ПиМ-Инвест") (RU)

Изобретение относится к способам получения фторированных ароматических силанов. Предложен способ получения полифторарил(триметил)силанов формулы (I):

где

R = F, H, Si(CH3)3, CH3,

взаимодействием фторированных ароматических кислот с триметилхлорсиланом с получением соответствующих силиловых эфиров и последующим нагреванием этих эфиров с галогенидами щелочных металлов в полярных апротонных растворителях с получением фторарил(триметил)силанов и выделением их известными методами. Технический результат: предложенный способ прост в технологическом отношении и позволяет получать разнообразные полифторарил(триметил)силаны с высокими выходами (75-91%) из доступных промышленно выпускаемых исходных веществ. 2 з.п. ф-лы, 1 табл., 18 пр.

 

Изобретение относится к способам получения полифторарил(триметил)силанов, в частности полифторарил(триметил)силанов и перфторарилен-бис-(триметил)силанов, содержащих во фторированом ароматическом ядре также атомы водорода, и алкильные заместители.

Фторарил(триметил)силаны являются универсальными реагентами для введения фторароматических фрагментов в различные классы органических и элементоорганических соединений. Соединения, содержащие фторароматические фрагменты, находят применение в электронике при создании диодов (Adv.Mater., 2004, v.16, 2001), жидкокристаллических дисплеев (J. Mater. Chem., 1999, v.9, p.2755), в полиграфии (Патент США 5744273, 1999) и других областях современной техники.

Известен двухстадийный способ полученения пентафторфенил(триметил)силана взаимодействием реактивов Гриньяра, полученных из пентафторбром- или пентафторхлорбензолов с триметилхлорсиланом в диэтиловом эфире или в тетрагидрофуране. Выходы пентафторфенил(триметил)силана в эфире и тетрагидрофуране достигают 42% (Angewandte Chemie, v.76, (1964), p.953) и 85% (Journal of Organometallic Chemistry, v.25(1970), p.273-276) соответственно.

Также известно получение фторарил(триметил)силанов взаимодействием литиевых производных, полученных из соответствующих фторированных бензолов с триметилхлорсиланом (Journal of Organometallic Chemistry, v.19, (1969), p.17-27, Journal of Organometallic Chemistry, v.13, (1968), p.73, 77, 78). Во всех этих методах используют эфирные растворители и инертную атмосферу, что делает их внедрение в производство сложным и опасным.

Также известен способ получения фторарил(триметил)силанов взаимодействием полифторарилбромидов или иодидов с триметилхлорсиланом в присутствии трисдиалкиламинофосфинов (Журнал Общей Химии, 1992, т.62, с.2342-2349; Изв. АН СССР Сер.хим., 1997, с.813-817). Выходы силанов в пентане, гексане и хлористом метилене достигают 63-68%. Существенным недостатком этого способа является необходимость использования трисдиалкиламинофосфинов, высокотоксичных и канцерогенных веществ, требующих также при работе инертной атмосферы.

Известен способ получения пентафторфенил(триметил)силана взаимодействием пентафторбензоил хлорида с гексаметилдисиланом при катализе комплексом палладия PdCl2(PhCN)2 в присутствии триэтилфосфита. Реакция проходит при кипячении смеси в толуоле в атмосфере аргона в течение 5 дней, выход продукта достигает 85% (Organometallics, 2006, v.25, p.4648-4652). Этот способ также требует инертной атмосферы, а также применения значительных количеств дорогостоящего катализатора.

Была показана возможность получения пентафторфенил(триметил)силана электрохимически (Электрохимия, 2000, т.36, с.210-218). Однако этот метод требует сложного специального оборудования.

Задачей, на решение которой направлено предлагаемое изобретение, является создание нового способа получения полифторарил(триметил)силанов, простого в технологическом отношении, позволяющего получать разнообразные полифторарил(триметил)силаны с высокими выходами из доступных исходных веществ, выпускаемых промышленностью.

Поставленная задача решается заявляемым способом получения полифторарил(триметил)силанов формулы (I):

где

R = F, H, Si(CH3)3, CH3,

из фторароматических кислот, заключающимся в том, что полифторароматическую моно- или дикислоту подвергают взаимодействию с триметилхлорсиланом (ТМХС) при соотношении кислоты и ТМХС 1:1-6 в интервале температур 60-70°C, при этом из монокарбоновой кислоты образуется моно(триметил)силиловый эфир, а из дикислоты образуется моно- или бис-(триметил)силиловый эфир в зависимости от соотношения реагентов. После отгонки непрореагировавшего ТМХС к образовавшемуся (триметил)силиловому эфиру кислоты добавляют апротонный растворитель, такой как диметилформамид, диметилацетамид, N-метилпирролидон или сульфолан, и галогенид щелочного металла MX (где M=Na, K, Cs, а Х=Cl, F, Br), взятый в мольном соотношении (0,01-1):1 к (триметил)силиловому эфиру, и нагревают реакционную смесь при температуре 70-130°C, получая целевой продукт, который выделяют известными методами.

Способ осуществляется следующим образом: вначале взаимодействием ароматической фторированной кислоты с триметилхлорсиланом при нагревании до 60-70°C получают соответствующий (триметил)силиловый эфир, причем из дикарбоновых ароматических кислот получают как моно-, так и бис-(триметил)силиловые эфиры, в зависимости от количества взятого для реакции триметилхлорсилана. При мольном соотношении дикарбоновой кислоты и ТМХС 1:1 получают моно(триметил)силиловые эфиры, а при соотношении кислоты к ТМХС 1:2-6 и более длительном нагревании - бис-(триметил)силиловые эфиры дикарбоновых кислот. Затем при необходимости избыток триметилхлорсилана отгоняют, добавляют к полученному (триметил)силиловому эфиру апротонный полярный растворитель и нагревают раствор в присутствии галогенида щелочного металла MX (где M=Na, K, Cs, a X=Cl, F, Br), взятого в мольном соотношении 0,01-1:1 к (триметил)силиловому эфиру, до температуры 70°C, выдерживают при этой температуре около часа, затем нагревают до 110°C и выдерживают до прекращения газовыделения, в результате чего образуется соответствующий полифторарил(триметил)силан (I), который выделяют, выливая реакционную смесь в воду и отделяя нижний органический слой, который затем сушат над сульфатом магния и перегоняют. Выходы продуктов составляют 75-91% от теории в расчете на исходную кислоту. Обе стадии осуществляются последовательно в одном реакторе.

где

R = F, H, CH3, COOH, COOSi(CH3)3,

М = Na, К, Cs,

Х = F, Cl, Br,

растворитель = ДМФА, ДМАА, сульфолан, N-метилпирролидон.

Преимуществами заявляемого способа являются:

- использование в качестве исходных соединений фторароматических кислот, которые производятся в промышленных масштабах;

- использование в способе простых в аппаратурном оформлении реакций, не требующих ни инертной атмосферы, ни специального оборудования.

Технический результат изобретения состоит в создании нового способа получения полифторфенил(триметил)силанов из доступного в промышленности сырья и простого в аппаратурном оформлении, где весь производственный цикл проводится в одном реакторе.

Изобретение иллюстрируется приведенными ниже примерами

Пример 1

(i) К 150 г триметилхлорсилана добавляют при перемешивании 100 г пентафторбензойной кислоты. Реакционную смесь постепенно нагревают до 70°C, по завершении газовыделения отгоняют избыток триметилхлорсилана. Получают 133 г (триметил)-силилового эфира пентафторбензойной кислоты. 19F ЯМР (от CFCl3):-140 м. (2F), -152 м. (1F), -163 м. (2F).

(ii) К полученному (триметил)силиловому эфиру пентафторбензойной кислоты добавляют при перемешивании 100 мл ДМФА и 0,3 г фтористого калия, нагревают до 70°C, выдерживают 1 час, затем нагревают до 110°C и перемешивают при этой температуре до окончания газовыделения, после чего раствор охлаждают до комнатной температуры и выливают в воду. Нижний слой отделяют, сушат над сульфатом магния, фильтруют, перегоняют. Получают 95 г пентафторфенил(триметил)силана в виде бесцветной прозрачной жидкости. Т.кип. 60-61°C/20 мм рт.ст., 19F ЯМР (от CFCl3)-128 м. (2F), -152 м. (1F), -162 м. (2F), что соответствует лит. данным (Organometallics, 2006, v.25(19), p.4648-4652). Выход 84%.

Пример 2

(i) К 140 г триметилхлорсилана добавляют при перемешивании 100 г тетрафтортерефталевой кислоты, реакционную смесь постепенно нагревают до 70°C, по завершении газовыделения отгоняют избыток триметилхлорсилана. Получают 160 г бис-(триметил)силилового эфира тетрафтортерефталевой кислоты. 19F ЯМР (CDCl3), (от CFCl3) - 141 м (4F), 1Н ЯМР (CDCl3) 0,78 с.

(ii) К полученному бис(триметил)силиловому эфиру тетрафтортерефталевой кислоты при перемешивании добавляют 100 мл ДМФА и 0,18 г фтористого калия, нагревают до 70°C, выдерживают 1 час, затем нагревают до 110°C и перемешивают при этой температуре до окончания газовыделения, после чего раствор охлаждают до комнатной температуры и выливают в воду. Нижний слой отделяют, сушат над сульфатом магния, фильтруют, перегоняют. Получают 102 г (перфтор-1,4-фенилен)-бис(триметилсилана) в виде белого порошка. Т.пл. 52°C, 19F ЯМР (CDCl3), (от CFCl3) -129 м (4F). Характеристики продукта согласуются с литературными данными (Organometallics, 2006, v.25 (19), p.4648-4652). Выход 83%.

Пример 3

(i) К 150 г триметилхлорсилана добавляют при перемешивании 91 г 2,3,4,5-тетрафторбензойной кислоты, реакционную смесь постепенно нагревают до 70°C, по завершении газовыделения отгоняют избыток триметилхлорсилана. Получают 125 г (триметил)силилового эфира 2,3,4,5-тетрафторбензойной кислоты.

(ii) К полученному (триметил)силиловому эфиру 2,3,4,5-тетрафторбензойной кислоты добавляют при перемешивании 100 мл ДМФА и 0,27 г фтористого калия, нагревают до 70°C, выдерживают 1 час, затем нагревают до 110°C и перемешивают при этой температуре до окончания газовыделения, после чего раствор охлаждают до комнатной температуры, выливают в воду. Нижний слой отделяют, сушат сульфатом магния, фильтруют, перегоняют. Получают 86 г 2,3,4,5-тетрафторфенил(триметил)силана в виде бесцветной прозрачной жидкости. Т.кип 66-67°C/15 мм рт.ст. 19F ЯМР (CDCl3), (от CFCl3): - 137,4 м. (1F), - 141,0 м. (1F), - 151,7 м. (1F), - 157,4 м (1F). Выход 75%.

Пример 4

(ii) К 133 г (триметил)силилового эфира пентафторбензойной кислоты, полученного как в примере 1, при перемешивании добавляют 100 мл ДМАА и 0,3 г фтористого калия, нагревают до 70°C, выдерживают 1 час, затем нагревают до 110°С и перемешивают при этой температуре до окончания газовыделения, после чего раствор охлаждают до комнатной температуры и выливают в воду. Нижний слой отделяют, сушат над сульфатом магния, фильтруют, перегоняют. Получают 90 г пентафторфенил-(триметил)силана в виде бесцветной прозрачной жидкости. Характеристики совпадают с описанными в примере 1. Выход 80%.

Пример 5

(ii) К 133 г (триметил)силилового эфира пентафторбензойной кислоты, полученного как в примере 1, при перемешивании добавляют 100 мл N-метилпирролидона и 0,3 г фтористого калия, нагревают до 70°C, выдерживают 1 час, затем нагревают до 110°C и перемешивают при этой температуре до окончания газовыделения, после чего раствор охлаждают до комнатной температуры, выливают в воду. Нижний слой отделяют, сушат над сульфатом магния, фильтруют, перегоняют. Получают 99 г пентафторфенил(триметил)силана в виде бесцветной прозрачной жидкости. Характеристики совпадают с описанными в примере 1. Выход 88%.

Пример 6

(i) К 48 г тетрафтортерефталевой кислоты добавляют 22 г ТМХС, реакционную смесь нагревают до кипения и кипятят до прекращения газовыделения. После охлаждения получают 53 г (триметил)силилового эфира терефталевой кислоты 19F ЯМР (CDCl3), (от CFCl3) - 138 м(.(2F), -140 м(.(2F). 1H ЯМР (CDCl3) 0,78 с. (9Н), 13 с. (1Н).

(ii) К полученному (триметил)силиловому эфиру тетрафтортерефталевой кислоты добавляют 100 мл ДМФА и 1,1 г KF и нагревают до 70°C, выдерживают 1 час, затем нагревают до 110°C и перемешивают при этой температуре до окончания газовыделения. После обычной обработки получают 37 г 2,3,5,6-тетрафторфенил(триметил)силана в виде бесцветной прозрачной жидкости. Т.кип 65°C/15 мм рт.ст. 19F ЯМР (CDCl3), (от CFCl3), -129,0 м. (2F), - 141,7 м. (2F). Лит.данные: Т.кип. (температура бани) 80-85°C/20 мм рт.ст. 19F ЯМР (CDCl3), (от CFCl3), -128 м. (2F), -139 м. (2F). (Tetrahedron, 1988, v.44(13), 4135-4145). Выход из тетрафтортерефталевой кислоты 83%.

Пример 7

(i) К 75 г ТМХС добавляют при перемешивании 45 г 2,3,4,5-тетрафторбензойной кислоты, реакционную смесь постепенно нагревают до 70°C и перемешивают до завершения газовыделения. Получают 63 г (триметил)силилового эфира 2,3,4,5-тетрафторбензойной кислоты.

(ii) К полученному (триметил)силиловому эфиру 2,3,4,5-тетрафторбензойной кислоты добавляют 50 мл ДМФА и 0,78 г CsF, нагревают до 70°C, выдерживают 1 час при этой температуре, затем нагревают до 110°C и перемешивают до окончания газовыделения. После обычной обработки получают 45 г 2,3,4,5-тетрафторфенил-(триметил)силана. Характеристики совпадают с описанными в примере 3. Выход из 2,3,4,5-тетрафторбензойной кислоты 87%.

Пример 8

(ii) К (триметил)силиловому эфиру 2,3,4,5-тетрафторбензойной кислоты, полученному как в примере 7, добавляют 50 мл ДМФА и 0,61 г KBr, нагревают до 70°C, выдерживают час при этой температуре, затем нагревают до 110°C и перемешивают окончания газовыделения. После обычной обработки получают 38 г 2,3,4,5-тетрафторфенил(триметил)силана, характеристики совпадают с описанными в примере 3. Выход из 2,3,4,5-тетрафторбензойной кислоты 73%.

Другие примеры осуществления способа (примеры 9-18) приводятся в таблице 1.

Способ получения полифторарил(трифторметил)силанов формулы (I):

где
R = F, H, Si(CH3)3, CH3,
заключающийся в том, что полифторароматическую моно- или дикислоту подвергают взаимодействию с триметилхлорсиланом (ТМХС) при соотношении кислоты и ТМХС 1:(1-6) в интервале температур 60-70°C; после удаления непрореагировавшего ТМХС к образовавшемуся (триметил)силиловому эфиру кислоты добавляют апротонный растворитель, такой как диметилформамид, диметилацетамид, N-метилпирролидон или сульфолан, и галогенид щелочного металла MX, (где M=Na, K, Cs, а X=Cl, F, Br), взятый в мольном соотношении (0,01-1):1 к (триметил)силиловому эфиру и нагревают реакционную смесь при температуре 70-130°C, получая целевой продукт, который выделяют известными методами.

2. Способ по п.1, в котором при мольном соотношении реагентов дикислоты и триметилхлорсилана 1:1 получают полифторарил(триметил)силаны формулы (I), где R=F, Н, CH3.

3. Способ по п.1, в котором при мольном соотношении дикислоты и триметилхлорсилана 1:(2-6) получают соответствующие полифторарил-(трифторметил) силаны формулы (I), где где R=Si(CH3)3.



 

Похожие патенты:

Изобретение относится к способу получения фторсодержащих ароматических силанов. Предложен способ получения полифторарил(триметил)силанов формулы взаимодействием полифторароматических кислот с раствором гидроксида калия с образованием соответствующих калиевых или дикалиевых солей, последующим взаимодействием выделенных солей с триметилхлорсиланом в полярных апротонных растворителях, таких как ДМФА, ДМАА, N-метилпирролидон, сульфолан, при температуре 70-130°C.

Изобретение относится к новому способу получения триметилсилильных соединений кремния, содержащих фторированные заместители, которые используются в фармацевтической промышленности для получения различных биологически активных веществ.

Изобретение относится к промышленным способам производства фенилтрихлорсилана и метилфенилдихлорсилана, используемых в синтезе кремнийорганических полимерных материалов для производства силиконовых лаков, смол и эластомеров.

Изобретение относится к процессам Гриньяра для получения фенилсодержащих хлорсилановых продуктов. .

Изобретение относится к химической технологии кремнийорганических соединений. .
Изобретение относится к технологии гидрометаллургических производств и, в частности, к производству глинозема по способу спекания. .

Изобретение относится к химии кремнийорганических соединений, в частности к новым функциональным карбосиланам, содержащих трис( -трифторпропил)силильную группу, которые могут быть широко использованы в кремнийорганической химии в качестве модификаторов полимеров, благодаря специфическим поверхностным свойствам.

Изобретение относится к новым замещенным 3-(4-метилкарбамоил-3-фторфениламино)тетрагидрофуран-3-енкарбоновой кислоты или их эфирам общей формулы 1 и их стереоизомерам.

Настоящее изобретение относится к способу получения соединения формулы 682, которое находится в кристаллической форме, где указанный способ включает: (i) обработку соединения формулы 682-9 пальмитиновым ангидридом в смеси Н2О/диоксан с образованием соединения формулы 682; (ii) обработку продукта, полученного на стадии (i), метанолом с получением соединения формулы 682 в форме сольвата с метанолом (форма К); (iii) выделение полученного на стадии (ii) соединения формулы 682 в форме сольвата с метанолом (форма К); (iv) необязательную очистку продукта стадии (iii) с помощью перекристаллизации.

Изобретение относится к способу получения фторсодержащих ароматических силанов. Предложен способ получения полифторарил(триметил)силанов формулы взаимодействием полифторароматических кислот с раствором гидроксида калия с образованием соответствующих калиевых или дикалиевых солей, последующим взаимодействием выделенных солей с триметилхлорсиланом в полярных апротонных растворителях, таких как ДМФА, ДМАА, N-метилпирролидон, сульфолан, при температуре 70-130°C.

Изобретение относится к замещенным производным 4-аминоциклогексана общей формулы I: где: R1 и R2 независимо друг от друга означают C1-3-алкил, Н или R1 и R2 вместе с атомом N образуют кольцо (СH2)3, (СН2)4; R3 означает при необходимости связанный через C1-3-алкильную цепь фенил или тиенил, каждый незамещенный; или незамещенный С1-6-алкил; R4 означает индол, пирроло[2,3-b]пиридин, пирроло[2,3-с]пиридин, пирроло[3,2-с]пиридин, пирроло[3,2-b]пиридин, необязательно моно- или многократно замещенный заместителем, выбранным из группы, включающей F, Cl, Br, CN, СН3, C2H5, NH2, трет-бутил, Si(этил)3, Si(метил)2(трет-бутил), SO2СН3, SO2-фенил, С(O)СН3, NO2, SH, СF3, ОСF3, ОН, ОСН3, ОС2Н5, N(СН3)2; в виде рацемата; энантиомеров, диастереомеров, смесей энантиомеров или диастереомеров или отдельного энантиомера или диастереомера; оснований и/или солей физиологически совместимых кислот или катионов; а также лекарственному средству на основе соединений I для лечения невропатической боли.

Изобретение относится к способу получения глицидилокси-алкилалкоксисиланов путем гидросилилирования простого олефин-глицидного эфира в присутствии катализатора.

Изобретение относится к полимерам на основе поли(ферроценил)силана, использующимся в фотонных полупроводниковых матрицах. .

Изобретение относится к способу получения 1-алкил-2-(триметилсилил)циклопропанов. .

Изобретение относится к технологии получения алкилсиланов на основе реакций восстановительного дегалогенирования алкилхлорсиланов гидридом лития. .

Изобретение относится к силиконовому (мет)акриламидному мономеру, молекулы которого содержат линейную силоксанильную группу и предпочтительно гидроксильную группу. Предложен силиконовый (мет)акриламидный мономер общей формулы (а), где R - водород или метил; R1 - водород или алкил, содержащий 1-20 атомов углерода, который может быть замещен гидроксилом; R2 - C1-10-алкиленовая группа, которая может быть замещена гидроксилом; R3-R9 независимо представляет собой C1-20-алкил, который может быть замещен гироксилом, n - целое число от 1 до 10. Предложен также получаемый из указанного мономера полимер, а также изготовленные из него офтальмологическая и контактная линзы. Технический результат - возможность получения линз с высокой кислородной проницаемостью и гибкостью. 4 н. и 14 з.п. ф-лы, 1 ил., 2 табл., 21 пр.
Наверх