Катализатор для получения синтетических базовых масел и способ его приготовления

Изобретение относится к катализатору для получения синтетических базовых масел в процессе олигомеризации гексена-1, содержащему каталитически активный компонент, в качестве которого используют хром, нанесенный на носитель, при этом в качестве носителя используется силикагель с размером частиц 2,2-4,0 мм, размером пор не менее 100 и площадью удельной поверхности не менее 300 м2/г, при этом содержание хрома находится в пределах 1-3% масс. Изобретение также относится к способу приготовления катализатора, включающему нанесение хрома на силикагель методом пропитки органическим раствором соли хрома, сушку катализатора при комнатной температуре в течение 2-3 часов, активацию воздухом при температуре 500-600°C в течение 3-5 часов и восстановление катализатора при температуре 300-350°C в токе монооксида углерода продолжительностью не менее 2 часов. Технический результат заключается в получении катализатора с высокой каталитической активностью и сроком службы, существенно повышающим качество получаемого синтетического базового масла. 2 н.п. ф-лы, 1 табл., 8 пр.

 

Изобретение относится к нефтехимической промышленности, а именно к технологии получения катализаторов для получения синтетических базовых масел.

Интенсивное развитие техники, создание новых типов современных машин и оборудования, а также интенсификация их эксплуатации сопровождается ужесточением требований к смазочным материалам. В связи с этим созданы и в промышленных масштабах реализуются процессы получения синтетических смазочных материалов, из которых наибольшее распространение получили поли-α-олефиновые масла (ПАОМ). Это наиболее востребованный тип синтетических масел, в полной мере отвечающих возросшим техническим и экологическим требованиям к основам смазочных масел. Роль ПАОМ очень важна при создании низкотемпературных смазочных композиций. Данные продукты являются высоковостребованными на внутреннем рынке, особенно ввиду климатических условий РФ. Различные свойства, такие как: кинематическая вязкость, динамическая вязкость при низких температурах, индекс вязкости, температура застывания, термическая и окислительная стабильность, испаряемость, чувствительность к антиоксидантам, температура вспышки, являются исключительными по сравнению с минеральными базовыми маслами.

Известен катализатор для получения основы синтетических базовых масел в процессе олигомеризации смеси, содержащей от 60 до 90% масс.1-додецена и от 10 до 40% масс.1-децена, представляющий собой комбинацию BF3 катализатора и спиртового промотора (этанола, 1-бутанола, 1-пропанола). В присутствии указанного катализатора при температуре от 20 до 60°C, давлении 0,1-0,4 МПа в процессе олигомеризации с последующей дистилляцией смеси и гидрогенизацией, получают полиолефиновое масло, имеющее кинематическую вязкость при 100°С в диапазоне ориентировочно от 4 до 6 мм2/с, испаряемость по Ноак в диапазоне от 4 до 9%, индекс вязкости в диапазоне от 130 до 145 и температуру потери текучести в диапазоне от минус 50° до минус 60°C (Патент РФ №2309930).

Главным недостатком этого способа получения полиолефиновых основ синтетических масел является использование катализатора, включающего легколетучий, токсичный и коррозионно-активный трехфтористый бор. При промышленной реализации этих процессов используются технологически сложные, большие по объему и по металлоемкости реакторы смешения в антикоррозионном исполнении.

Известен способ приготовления катализатора для получения синтетических базовых масел в процессе олигомеризации децена-1. Катализатор готовят путем нанесения на оксид кремния смеси хлористого алюминия (AlCl3) и этилалюминийдихлорида (EtAlCl2). Данный катализатор обеспечивает хороший баланс между каталитической активностью и ММР олигомеров. Олигомеризация децена-1 в присутствии данной каталитической системы позволяет получить базовые масла с индексом вязкости в диапазоне 138-140 (Патент РФ №6096678).

Недостатками данного катализатора являются сложная процедура его приготовления, коррозионность и низкая активность в процессе олигомеризации, что требует применения крупногабаритных по объему, металлоемких реакторов смешения.

Известен способ приготовления катализатора олигомеризации α-олефинов для получения основ синтетических базовых масел на основе деалюминированного цеолита Y с различным соотношением SiO2/Al2O3.

Катализатор готовят методом влажной пропитки носителя - цеолита Y, водным раствором солей металлов, в качестве которых используют катионы металлов групп III В, IV В, VI В, VII В. Количество металла составляет 10% масс. (Патент США №5120891).

Недостатками указанного способа получения катализатора являются его низкая активность, а также коксуемость катализатора в процессе олигомеризации.

Наиболее близким к предлагаемому техническому решению является катализатор олигомеризации децена-1 для получения синтетических базовых масел, содержащий в качестве носителя силикагель с размером частиц 0,3-2 мм. Способ получения катализатора на основе силикагеля включает адсорбцию растворенного фторида бора на носителе в процессе олигомеризации децена-1 при температуре 15-150°C, давлении 0,17-3,6 МПа и объемной скорости подачи децена-1 5 ч-1 (Патент США №4308414).

Недостатком данного катализатора является применение токсичного и коррозионно-активного трехфтористого бора, который со временем смывается олигомеризатом с поверхности подложки, что в результате приводит к снижению активности катализатора и сокращению его срока службы.

Технической задачей данного изобретения является повышение каталитической активности катализатора, выражаемой в конверсии гексена-1 и величине выхода целевого продукта, а также улучшение его эксплуатационных свойств и повышение качества получаемого синтетического базового масла, характеризуемого индексом вязкости и температурой застывания.

Техническая задача решается тем, что катализатор содержит активный компонент, в качестве которого используют хром, нанесенный на носитель, предпочтительно силикагель с размером частиц 2,2-4,0 мм, причем носитель должен обладать размером пор не менее 100 Ǻ и иметь площадь удельной поверхности не менее 300 м2/г, при этом содержание хрома находится в пределах 1-3% масс.

Техническая задача решается также тем, что активный компонент наносится путем пропитки носителя раствором соли хрома (наиболее целесообразно - ацетата или нитрата). В качестве растворителя может использоваться этанол, метанол, уксусная кислота. После пропитки катализатор сушат при комнатной температуре в течение 2-3 часов, затем продувают воздухом при температурах 500-600°C в течение 3-5 часов. Катализатор охлаждают инертным газом (азот, аргон) до температуры 300-350°C и восстанавливают в токе монооксида углерода в течение не менее двух часов. Обычно катализатор обрабатывается монооксидом углерода в соотношении, вдвое превышающем стехиометрическое, позволяющим понизить валентность хрома до Cr II. После восстановления катализатор охлаждают до температуры синтеза в токе азота.

Указанные отличительные признаки существенны. Применение указанного активного компонента в сочетании с носителем, обладающим заданными свойствами и условиями предварительной термообработки и восстановления катализатора, обеспечивает в целом существенное повышение каталитической активности катализатора и качества получаемого базового масла.

Изобретение реализуют следующим образом.

Для получения синтетических базовых масел предлагается процесс олигомеризации гексена-1 в присутствии нанесенного и восстановленного хромоксидного катализатора. Процесс проводится таким образом, чтобы минимизировать побочные реакции изомеризации 1-олефинов, крекинга, переноса водорода и ароматизации.

Процесс олигомеризации гексена-1 проводили в трубчатом реакторе со стационарным слоем катализатора при давлении от 250 до 360 psi, температуре 180-200°C. Объемная скорость подачи сырья варьируется от 0,5 до 2 ч-1.

Полученный продукт олигомеризации гексена-1 после отделения непрореагировавшего сырья и легкокипящих компонентов представляет собой целевую масляную фракцию, которая имеет следующие показатели: кинематическая вязкость при 100°C - 4,7-5,2 мм2/с, индекс вязкости - 146-149, температура застывания - ниже минус 60°C. Далее целевую фракцию подвергают гидрированию и фракционированию с получением различных марок базовых масел с вязкостью при 100°C, равной 2, 4, 5 и 6 мм2/с.

Полученные продукты являются базовыми маслами для гидравлических масел в авиационной и ракетно-космической технике, эксплуатируемой при низких температурах, а также могут использоваться как компоненты моторных масел.

Изобретение иллюстрируется следующими примерами.

Пример 1

Образец катализатора состава Cr - 1%, SiO2 - 99% по массе готовят следующим способом.

3,9 г хром (II) нитрата Cr(NO3)3·9H2O растворяют в 60 мл метилового спирта. Полученный раствор добавляют к 50 г силикагеля (площадь удельной поверхности 320 м2/г, размер пор 104 Ǻ, объем пор 0,9 мл/г, размер частиц 2,2 мм). Смесь перемешивается в течение получаса при комнатной температуре и высушивается на открытом воздухе в течение 2 часов.

Катализатор, приготовленный способом, описанным выше, в количестве 26 г (40 см3) загружают в трубчатый реактор из нержавеющей стали. Катализатор продувают воздухом при температуре 500°C в течение 3 часов. Катализатор охлаждают в инертной атмосфере до температуры 350°C и затем в течение двух часов подают монооксид углерода с концентрацией 99,99%. По окончании восстановления катализатор охлаждают до температуры синтеза в токе азота. Предварительно очищенный гексен-1 насосом подают в реактор при температуре 180°C, давлении 2482 КПа (360 psi) и скорости 50 мл/час. Синтез проводят в течение 2 часов. Продукты реакции подвергают ректификации для отделения непрореагировавшего сырья и легкокипящих компонентов с температурой кипения ниже 300°C. В кубовом остатке получается чистая, бесцветная жидкость с вязкостью и индексом вязкости, подходящими для основы смазочного масла.

Пример 2

Образец катализатора состава Cr - 1%, SiO2 - 99% по массе готовят следующим способом.

1,8 г хром (II) ацетата (Cr2(ОСОСН3)4·2H2O) растворяют в 50 мл горячей уксусной кислоты. Полученный раствор добавляют к 50 г силикагеля (площадь удельной поверхности 340 м2/г, размер пор 106 Ǻ, объем пор 1 мл/г, размер частиц 2,8 мм). Смесь перемешивается в течение получаса при комнатной температуре и высушивается на открытом воздухе в течение 3 часов.

Катализатор, приготовленный способом, описанным выше, в количестве 26 г (40 см3) загружают в трубчатый реактор из нержавеющей стали. Катализатор продувают воздухом при температуре 500°C в течение 3 часов. Катализатор охлаждают в инертной атмосфере до температуры 300°C и затем в течение двух часов подают монооксид углерода с концентрацией 99,99%. По окончании восстановления катализатор охлаждают до температуры синтеза в токе азота. Предварительно очищенный гексен-1 насосом подают в реактор при температуре 180°C, давлении 2 482 КПа (360 psi) и скорости 20 мл/час. Синтез проводят в течение 3 часов. Продукты реакции подвергают ректификации для отделения непрореагировавшего сырья и легкокипящих компонентов с температурой кипения ниже 300°C. В результате получаются высококачественные базовые масла с высоким индексом вязкости.

Пример 3

Образец катализатора состава Cr - 3%, SiO2 - 97% по массе готовят следующим способом.

11,9 г хром (II) нитрата Cr(NO3)3·9H2O растворяют в 60 мл метанола. Полученный раствор добавляют к 50 г силикагеля (площадь удельной поверхности 300 м2/г, размер пор 108 Ǻ, объем пор 0,9 мл/г, размер частиц 3,0 мм). Смесь перемешивается в течение получаса при комнатной температуре и высушивается на открытом воздухе в течение 2 часов.

Катализатор, приготовленный способом, описанным выше, в количестве 26 г (40 см3) загружают в трубчатый реактор из нержавеющей стали. Катализатор продувают воздухом при температуре 600°C в течение 5 часов. Восстановление образца катализатора проводят согласно Примеру 1. Предварительно очищенный гексен-1 насосом подают в реактор при температуре 200°C, давлении 1723 КПа (250 psi) и скорости 80 мл/час. Синтез проводят в течение 2 часов. Жидкий поток собирается и направляется на отгонку, где отделяются легкие продукты с температурой кипения ниже 300°C.

Пример 4

Образец катализатора состава Cr - 1%, SiO2 - 99% по массе готовят следующим способом.

3,9 г хром (II) нитрата Cr(NO3)3·9H2O растворяют в 60 мл метилового спирта. Полученный раствор добавляют к 50 г силикагеля (площадь удельной поверхности 300 м2/г, размер пор 100 Ǻ, объем пор 1 мл/г, размер частиц 2,4 мм). Смесь перемешивается в течение получаса при комнатной температуре и высушивается на открытом воздухе в течение 2 часов.

Катализатор в количестве 26 г (40 см3) загружают в трубчатый реактор из нержавеющей стали. Катализатор продувают воздухом при температуре 500°C в течение 3 часов. Катализатор охлаждают в инертной атмосфере до температуры 300°C и затем в течение двух часов подают монооксид углерода с концентрацией 99,99%. По окончании восстановления катализатор охлаждают до температуры синтеза в токе азота. Предварительно очищенный гексен-1 насосом подают в реактор при температуре 180°C, давлении 2 482 КПа (360 psi) и скорости 20 мл/час. Синтез проводят в течение 3 часов. Продукты реакции подвергают ректификации для отделения непрореагировавшего сырья и легкокипящих компонентов с температурой кипения ниже 300°C. В результате получаются высококачественные базовые масла с высоким индексом вязкости.

Пример 5

Образец катализатора состава Cr - 2%, SiO2 - 98% по массе готовят следующим способом.

7,85 г хром (II) нитрата Cr(NO3)3·9H2O растворяют в 50 мл этанола. Полученный раствор добавляют к 50 г силикагеля (площадь удельной поверхности 310 м2/г, размер пор 107 Ǻ, объем пор 1 мл/г, размер частиц 4,0 мм). Смесь перемешивается в течение получаса при комнатной температуре и высушивается на открытом воздухе в течение 2,5 часов.

Активацию и восстановление катализатора проводят, как в Примере 1.

Предварительно очищенный гексен-1 насосом подают в реактор при температуре 190°C, давлении 2068 кПа (300 psi) и скорости 40 мл/час. Синтез проводят в течение 4 часов. В результате получаются высококачественные масла с высоким индексом вязкости и низкой температурой застывания.

Пример 6

Образец катализатора состава Cr - 3%, SiO2 - 97% по массе готовят следующим способом.

5,6 г хром (II) ацетата (Cr2(ОСОСН3)4·2H2O) растворяют в 50 мл горячей уксусной кислоты. Полученный раствор добавляют к 50 г силикагеля (площадь удельной поверхности 305 м2/г, размер пор 107 Ǻ, объем пор 0,9 мл/г, размер частиц 3,5 мм). Смесь перемешивается в течение получаса при комнатной температуре и высушивается на открытом воздухе в течение 2-3 часов.

Активацию катализатора проводят, как в Примере 3.

Восстановление катализатора проводят, как в Примере 1.

Свежий образец катализатора загружается в реактор и 1-гексен подается насосом в реактор при температуре 180°C, давлении 2206 кПа (320 psi) и скорости 50 мл/час. Синтез проводят в течение 2 часов. Жидкий поток собирается и направляется на отгонку, где отделяются легкие продукты с температурой кипения ниже 300°C.

Пример 7

Образец катализатора состава Cr - 2%, SiO2 - 98% по массе готовят следующим способом.

3,7 г хром (II) ацетата (Cr2(ОСОСН3)4*2H2O) растворяют в 50 мл метанола. Полученный раствор добавляют к 50 г силикагеля (площадь удельной поверхности 315 м2/г, размер пор 108 Ǻ, объем пор 1 мл/г, размер частиц 3,8 мм). Смесь перемешивается в течение получаса при комнатной температуре и высушивается на открытом воздухе в течение 2 часов.

Активацию катализатора проводят, как в Примере 1. Восстановление и тестирование образца катализатора проводят согласно Примеру 5.

Пример 8 (Сравнение)

Образец катализатора состава Cr - 1%, Al2O3 - 99% готовят следующим способом.

3,9 г хром (II) нитрата Cr(NO3)3·9H2O растворяют в 60 мл этанола. Полученный раствор добавляют к 50 г промышленного оксида алюминия А-64 (удельная площадь поверхности 200 м2/г, средний диаметр пор 93 Ǻ). Смесь перемешивается в течение получаса при комнатной температуре и высушивается на открытом воздухе в течение 2-3 часов.

Активацию катализатора и синтез проводили, как в Примере 1.

Результаты тестирования образцов катализаторов, полученных и испытанных в соответствии с Примерами 1-8, приведены в Таблице.

Таблица
Характеристики базовых масел
Пример Конверсия гексена-1, % Выход целевой фракции, % Кинематическая вязкость, мм2
Индекс вязкости Температура застывания
40°C 100°C
1 76 72 20,99 4,702 149 Ниже минус 60°C
2 73 70 21,62 4,656 142 Ниже минус 60°C
3 77 74 24,28 5,154 146 Ниже минус 60°C
4 75 71 20,85 4,723 150 Ниже минус 60°C
5 77 73 21,52 4,695 143 Ниже минус 60°C
6 75 72 21,98 4,775 145 Ниже минус 60°C
7 74 70 22,97 4,853 142 Ниже минус 60°C
8 65 64 16,36 3,828 131 Минус 50°

Как видно из таблицы, применение заявленного катализатора обеспечивает получение синтетических базовых масел с высокими индексами вязкости (от 142 до 150) и с низкой температурой застывания (ниже минус 60°C).

1. Катализатор для получения синтетических базовых масел в процессе олигомеризации гексена-1, содержащий каталитически активный компонент, в качестве которого используют хром, нанесенный на носитель, отличающийся тем, что в качестве носителя используется силикагель с размером частиц 2,2-4,0 мм, размером пор не менее 100 и площадью удельной поверхности не менее 300 м2/г, при этом содержание хрома находится в пределах 1-3% масс.

2. Способ приготовления катализатора по п.1, включающий нанесение хрома на силикагель методом пропитки органическим раствором соли хрома, сушку катализатора при комнатной температуре в течение 2-3 часов, активацию воздухом при температуре 500-600°C в течение 3-5 часов и восстановление катализатора при температуре 300-350°C в токе монооксида углерода продолжительностью не менее 2 часов.



 

Похожие патенты:

Изобретение относится к области катализа. Описан способ приготовления катализатора для окислительной конденсации метана (ОКМ) до C2+ углеводородов, включающий нанесение марганца и вольфрамата натрия на носитель диоксид кремния путем его последовательной пропитки водными растворами нитрата марганца и затем вольфрамата натрия с последующей прокалкой на воздухе при температуре 800°C, в котором полученную композицию Mn - Na2WO4/SiO2 с суммарным содержанием марганца 1-2 мас.% и вольфрамата натрия 3-5 мас.% смешивают с инертным материалом, активно поглощающим СВЧ энергию, на основе карбида металла при массовом соотношении компонентов 2-4:1, соответственно.
Изобретение относится к способам получения катализаторов олигомеризации пропилена. Описан способ получения катализатора для олигомеризации пропилена путем взаимодействия бис(ацетилацетонато)никеля, диизобутилалюминийхлорида, промотирующего соединения - воды в присутствии органического растворителя н-октана и процесс проводят при 5-15°C при непрерывной подаче пропилена в реактор при атмосферном давлении.

Изобретение относится к способу получения линейных альфа-олефинов (ЛАО) олигомеризацией этилена в присутствии растворителя и гомогенного катализатора. Способ включает (i) подачу этилена, растворителя и катализатора в реактор олигомеризации, (ii) олигомеризацию этилена в реакторе, (iii) удаление выходящего потока реактора, содержащего растворитель, линейные альфа-олефины, необязательно непрореагировавший этилен и катализатор, из реактора через систему отводных труб реактора, (iv) добавление по крайней мере одной добавки из полиаминов, аминов или аминоспиртов, (v) подачу выходящего потока реактора, содержащего добавку, в зону дезактивации и удаления катализатора, (vi) дезактивациию катализатора щелочью и удаление дезактивированного катализатора из потока продукта реактора.

Изобретение относится к способу получения олигомеров высших линейных -олефинов. .
Изобретение относится к технологии получения основ синтетических базовых масел и может быть использовано в нефтехимической промышленности. .

Изобретение относится к способу превращения потока С4 олефинов, содержащего изобутен, бут-1-ен и бутадиен в пропилен и октены. .

Изобретение относится к катализатору олигомеризации альфа-олефинов и способу олигомеризации альфа-олефинов. .

Изобретение относится к использованию гетерополикислотных катализаторов для превращения оксигенатов в алкены. .

Изобретение относится к способу получения высокоразветвленных тримеров пропилена (2,6-диметилгептена-3, 2,6-диметилгептена-2, 4,6-диметилгептена-3, 2-метилоктена-2, 7-метилоктена-3) в гетерогенной каталитической системе, включающей оксиды кремния, характеризующемуся тем, что в качестве катализатора используют бис-аллил никель Ni(С3Н5)2, нанесенный на кремнистые створки диатомовых водорослей с удельной поверхностью от 20 до 165 м2/г, каталитическую тримеризацию пропилена осуществляют в среде толуола при активном перемешивании суспензии катализатора в толуоле в атмосфере пропилена, при этом содержание никеля в катализаторе составляет 0.4-10.5% по массе, реакцию ведут при температуре 20-25°С и атмосферном давлении.
Изобретение относится к катализатору, пригодному для применения в реакциях конверсии оксидов углерода, в форме гранул, сформованных прессованием порошка восстановленного и пассивированного катализатора, причем указанный порошок содержит медь в интервале 10-80 мас.%, оксид цинка в интервале 20-90 мас.%, оксид алюминия в интервале 5-60 мас.% и, необязательно, одно или несколько оксидных промотирующих соединений, выбранных из соединений Mg, Cr, Mn, V, Ti, Zr, Ta, Mo, W, Si и редкоземельных элементов, в количестве в интервале 0,01-10 мас.%.

Изобретение относится к производству металл-углерод содержащих тел. Описан способ производства металл-углерод содержащих тел, включающих ферромагнитные металлические частицы, капсулированные слоями графитового углерода, который включает пропитывание целлюлозных, целлюлозоподобных или углеводных тел или тел, полученных из них путем гидротермальной обработки, водным раствором по меньшей мере одного соединения металла, где металл или металлы выбраны из ферромагнитных металлов или сплавов, и последующую термическую карбонизацию пропитанных тел путем нагревания в инертной и практически лишенной кислорода атмосфере при температуре выше примерно 700°С с восстановлением по меньшей мере части по меньшей мере одного соединения металла до соответствующего металла или металлического сплава.

Изобретение относится к области катализа. Описаны способы приготовления предшественника катализатора, включающие на первой стадии приготовления пропитку частиц носителя для катализатора органическим соединением кобальта в пропиточной жидкости с образованием пропитанного промежуточного продукта, прокаливание пропитанного промежуточного продукта при температуре прокаливания не выше 400°C с получением прокаленного промежуточного продукта; и затем на второй стадии приготовления пропитку прокаленного промежуточного продукта первой стадии неорганической солью кобальта в пропиточной жидкости с образованием пропитанного носителя и прокаливание пропитанного носителя с получением предшественника катализатора, причем ни одну из неорганических солей кобальта, использованных на второй стадии приготовления, не используют на первой стадии приготовления.

Изобретение относится к области катализа. Описан способ получения оксида металла на подложке и восстановленного оксида металла на подложке, пригодного для использования в качестве предшественника для катализатора или сорбента, включающий стадии: (i) импрегнирования материала подложки раствором нитрата металла в растворителе, (ii) выдерживания импрегнированного материала в газовой смеси, содержащей оксид азота, при температуре в пределах 0-150°C для удаления растворителя из импрегнированного материала с одновременным высушиванием и стабилизацией нитрата металла на подложке, с получением диспергированного на подложке нитрата металла и (iii) кальцинирования диспергированного на подложке нитрата металла для осуществления его разложения и образования оксида металла на подложке, где кальцинирование осуществляют в газовой смеси, которая состоит из одного или нескольких инертных газов и оксида азота и концентрация оксида азота в газовой смеси находится в пределах 0,001-15% об.
Изобретение относится к области катализа. Описан катализатор избирательного окисления монооксида углерода в смеси с аммиаком, содержащий золото - 0,7-1,2 мас.%, Fe3+ - 0,8-5,0 мас.% и кристаллическую тэта-модификацию оксида алюминия (θ-Al2O3) - остальное.
Изобретение относится к области катализа. Описан катализатор избирательного окисления монооксида углерода в смеси с аммиаком, содержащий золото - 0,5-1,0 мас.%, рутений - 1,0-5,0 мас.% и оксид алюминия остальное.

Настоящее изобретение относится к способу получения SCR-активного цеолитного катализатора и к катализатору, полученному этим способом. Описан способ получения указанного катализатора, характеризующийся тем, что на Fe-ионообменный цеолит сначала воздействуют восстановительной углеводородной атмосферой для первой термической обработки (3) в диапазоне от 300 до 600°С, которая снижает степень окисления ионов Fe и/или повышает дисперсность ионов Fe в цеолите, затем на восстановленный цеолит воздействуют окислительной атмосферой для второй термической обработки (4) в диапазоне от 300 до 600°С, которая окислительно удаляет углеводородные остатки и/или остатки углерода, и цеолит обжигают (2) в ходе первой и второй термических обработок (3 и 4) с получением катализатора.

Изобретение относится к способам получения блочных катализаторов, катализаторам очистки отработавших газов (ОГ) двигателей внутреннего сгорания (ДВС). Описан способ приготовления катализатора для очистки ОГ ДВС, в котором для нанесения промежуточного покрытия и активной фазы используют водную суспензию, включающую гидроксид алюминия - бемит (АlOOН), восстанавливающий дисахарид и растворимые соли Се, Zr, Y, La в виде солей азотной кислоты в пропорции, необходимой для образования в покрытии тетрагоналыюй фазы Zr0,5Ce0,5O2, стабильной в области температур 500-1000°C и соотношения в покрытии (Ме2O3+ZrO2+СеO2):γ-Аl2O3-1:1, где Me - Y, La, а также одну или несколько неорганических солей металлов платиновой группы, причем термообработку покрытия проводят одновременно с восстановлением при температуре 550-1000°C.
Изобретение относится к области разработки способа приготовления катализатора гидрооблагораживания кислородорганических продуктов переработки растительной биомассы.

Изобретение относится к катализаторам. Описаны способы получения кобальтового катализатора синтеза Фишера-Тропша, включающие приготовление гранулированного носителя из исходного сырья - оксидов металлов III и IV групп Периодической таблицы Д.И.

Изобретение относится к каталитическим процессам переработки метансодержащих газов, в частности к способам повышения каталитической активности молибден-цеолитного катализатора для получения ароматических углеводородов.
Наверх