Способ радиотехнических доплеровских угломерных измерений космического аппарата и система для осуществления данного способа



Способ радиотехнических доплеровских угломерных измерений космического аппарата и система для осуществления данного способа
Способ радиотехнических доплеровских угломерных измерений космического аппарата и система для осуществления данного способа
Способ радиотехнических доплеровских угломерных измерений космического аппарата и система для осуществления данного способа

 


Владельцы патента RU 2526401:

Открытое акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (ОАО "Российские космические системы") (RU)

Группа изобретений относится к методам и средствам траекторных измерений космических аппаратов (КА) с использованием линий радиосвязи. В способе используются три территориально разнесенные наземные измерительные станции (ИС) и приемоответчик КА. ИС измеряют значения радиальной скорости КА относительно ИС. При этом одна главная ИС (ГИС) работает в запросном режиме измерения данной скорости, а также дальности до КА. Две другие - ведомые ИС (ВИС) - работают в беззапросном режиме. Последние используют для измерения указанной скорости сигнал, сформированный приемоответчиком КА из запросной частоты ГИС. Измеренные доплеровские сдвиги частоты с ГИС и ВИС передаются в баллистический центр. Там вычисляются разности этих доплеровских сдвигов, эквивалентные измерениям радиоинтерферометров с базами, соответствующими расстояниям между ИС. В баллистическом центре по результатам измерений указанных скоростей и дальности рассчитывается траектория движения КА. Технический результат группы изобретений заключается в создании высокоточной и быстродействующей системы траекторных измерений с упрощенными конструкцией и эксплуатацией ее средств. 2 н.п. ф-лы, 3 ил.

 

Область техники

Изобретение относится к области космонавтики, а именно к системам траекторных измерений космических аппаратов.

Уровень техники

Известно, что для определения траектории движения космического аппарата (КА) и прогноза его дальнейшего движения используются результаты траекторных измерений, проводимых наземными измерительными станциями (ИС) и бортовым приемоответчиком КА [1].

В общем случае для определения траектории движения КА необходимо измерять шесть параметров движения КА: наклонную дальность от ИС до КА (R), радиальную составляющую скорости движения КА относительно ИС ( R ˙ ) , угол места КА (β) и скорость изменения этого угла ( β ˙ ) и азимутальный угол положения КА относительно ИС (α) и скорость изменения этого угла ( α ˙ ) . ИС, которая сможет измерять все шесть параметров движения КА, является весьма сложным и дорогостоящим устройством.

На практике при проведении траекторных измерений используют измерение только двух параметров движения КА - R и R ˙ , которые последовательно измеряются несколькими ИС, разнесенными в долготном направлении. При такой схеме измерений погрешности определения траектории движения КА оказываются в пределах, достаточных для решения задач управления КА.

Существуют два основных способа проведения доплеровских измерений радиальной составляющей скорости КА. Первый способ - запросный, при котором ИС излучает стабильный по частоте сигнал, принимаемый бортовым приемоответчиком и переизлучаемый на Землю после когерентного преобразования на другую частоту. Этот сигнал, принимаемый ИС, имеет суммарное доплеровское смещение частоты за счет прохождения сигнала на борт КА и обратно. Измерение этого смещения позволяет определить радиальную составляющую скорости движения КА относительно ИС. При этом радиальная составляющая скорости определяется упрощенным выражением:

R ˙ = Δ f доп . × c f 0 , где

Δfдоп. - измеренное одностороннее доплеровское смещение частоты;

f0 - значение частоты, излучаемой с КА; где с - скорость света.

Второй способ - беззапросный, при котором бортовой передатчик КА, работающий в самоходном режиме, излучает сигнал на ИС. На ИС доплеровское смещение частоты принятого сигнала определяется относительно эталонного сигнала, частота которого равна частоте сигнала, излучаемого с КА.

При беззапросном способе измерения доплеровского смещения частоты погрешности измерений определяются погрешностями значения частот бортового и эталонного генераторов, а также нестабильностью частоты бортового генератора. В общем случае погрешности беззапросного метода измерений значительно выше, чем при использовании запросного метода.

В тех случаях, когда получаемой точности определения траектории движения КА только при измерениях R и R ˙ оказывается недостаточно для решения некоторых задач, например обеспечения посадки на поверхность Луны спускаемого аппарата с высокой точностью, в дополнение к измерениям R и R ˙ используют измерение угловых параметров движения КА (а, α ˙ , β, β ˙ ).

При полете КА к Луне, посадке на Луну, взлете с Луны и стыковке с орбитальным кораблем на орбите вокруг Луны, перелете к Земле и посадке на Землю необходимо проводить целый ряд коррекций траектории. При этом для подготовки (проведения траекторных измерений) и проведения коррекций траектории отводится весьма короткое время, но при этом должна обеспечиваться высокая точность определения орбиты. Для удовлетворения этих требований в составе НКУ советской лунной программы использовалась система измерения разности радиальных скоростей (Δ R ˙ ) сигналов, принимаемых несколькими ИС, которые эквивалентны угловым измерениям радиоинтерферометра с базами, соответствующими расстояниям между ИС.

Принцип измерения разности радиальных скоростей заключался в следующем ([1, раздел 3, 4], фиг.1):

- в измерениях участвуют бортовой приемоответчик (22) и три территориально разнесенных ИС с известными координатами (23, 28, 33);

- одна из ИС - главная (ГИС), две другие ведомые (ВИС1 и ВИС2), - принятый на борту сигнал ГИС (16,4) когерентно преобразует в ответную частоту (5) и переизлучает на землю (1,17);

- сигнал f0 [1, рис.17] принимается одновременно ГИС (6), ВИС1 (24) и ВИС2 (29);

- на ВИС1 и ВИС2 этот сигнал преобразуется в ответную частоту (20, 21) и переизлучается на борт КА (27, 32, 20, 21);

принятые на борту ответные сигналы ВИС1 (20, 2) и ВИС2 (21, 3) преобразуются в ответные частоты (5) и переизлучаются на Землю вместе с ответным сигналом ГИС (1, 17, 18, 19);

- ГИС принимает все три сигнала, передаваемых на разных частотах (17, 18, 19, 6, 7, 8), определяет доплеровское смещение частоты каждого сигнала (9, 10, 11), вычисляет разности доплеровского смещения частоты между сигналами ГИС и сигналами ВИС1 и ВИС2 (12);

- полученные данные передаются в баллистический центр, где они используются для точного определения траектории движения КА.

Описанная система обладает рядом недостатков, основными из которых являются:

- наличие специальной аппаратуры в составе ГИС (6, 7, 9, 10, 11) и ВИС 1, 2 (25, 30), которая обеспечивает измерение разности радиальных скоростей;

- работа ВИС в приемопередающем режиме;

- усложнение бортового приемоответчика КА для приема и ретрансляции одновременно трех сигналов (1, 2, 3).

Описанная система измерения разности радиальных скоростей [1], выбирается в качестве аналога описываемого изобретения.

Раскрытие изобретения

Заявленный способ и система направлены на устранение недостатков аналога.

Технический результат заявленного изобретения заключается в упрощении конструкции и эксплуатации системы траекторных измерений разности радиальных скоростей КА.

Технический результат достигается тем, что способ радиотехнических доплеровских угломерных измерений космического аппарата заключается в том, что формируют запросный сигнал главной наземной измерительной станции, передают сигнал на бортовой приемоответчик космического аппарата, формируют из запросного сигнала в бортовом приемоответчике высокостабильный ответный сигнал, одновременно ретранслируют при помощи бортового приемоответчика космического аппарата высокостабильный ответный сигнал на главную наземную измерительную станцию и первую и вторую ведомые наземные измерительные станции, территориально разнесенные между собой, одновременно измеряют радиальные составляющие скорости космического аппарата путем измерения доплеровского смещения частоты принимаемого высокостабильного сигнала, все измерительные станции в режиме приема используют один и тот же высокостабильный сигнал, сформированный бортовым приемоответчиком космического аппарата из запросного сигнала главной измерительной станции, разности измеренных доплеровских смещений частоты сигналов главной наземной измерительной станции и первой и второй ведомых наземных измерительных станций, эквивалентных угломерным измерениям радиоинтерферометра с базами, соответствующими расстояниями между измерительными станциями, участвующими в измерениях, передают в баллистический центр, где определяют траектории движения космического аппарата.

Система радиотехнических доплеровских угломерных измерений космического аппарата включает в себя бортовой приемоответчик, главную измерительную станцию (ГИС), первую ведомую измерительную станцию (ВИС1), вторую ведомую измерительную станцию (ВИС2), баллистический центр, ГИС оснащена второй приемопередающей антенной, передатчиком, первым когерентным синтезатором сдвига частот, первым генератором точных частот, первый выход которого соединен с первыми входами передатчика и первого когерентного синтезатора сдвига частот, выход передатчика соединен с входом второй приемопередающей антенны, также в состав ГИС входят первый приемник ответного сигнала fотв. ГИС, первый блок измерения доплеровского смещения частоты fдоп. ГИС, вход которого соединен с выходом первого приемника ответного сигнала fотв. ГИС, вход которого соединен с выходом второй приемопередающей антенны, первый выход первого блока измерения доплеровского смещения частоты fдоп. ГИС соединен со вторым входом первого когерентного синтезатора сдвига частот, выход которого соединен со вторым входом передатчика, третий вход первого когерентного синтезатора сдвига частот соединен со вторым выходом первого генератора точных частот, второй выход первого блока измерения доплеровского смещения частоты fдоп. ГИС соединен с баллистическим центром, в состав ВИС 1 входят первая приемная антенна, выход которой соединен с первым входом второго приемника ответного сигнала fотв. ГИС, второй блок измерения доплеровского смещения частоты fдоп. ГИС, первый вход которого соединен с выходом второго приемника ответного сигнала fотв. ГИС, а выход соединен с баллистическим центром, второй генератор точных частот, выход которого соединен со вторыми входами второго приемника ответного сигнала fотв. ГИС и второго блока измерения доплеровского смещения частоты fдоп. ГИС соответственно, в состав ВИС2 входят вторая приемная антенна, выход которой соединен с первым входом третьего приемника ответного сигнала fотв. ГИС, третий блок измерения доплеровской частоты fдоп. ГИС, первый вход которого соединен с выходом третьего приемника ответного сигнала fотв. ГИС, а выход соединен с баллистическим центром, третий генератор точных частот, выход которого соединен со вторыми входами третьего приемника ответного сигнала fотв. ГИС и третьего блока измерения доплеровского смещения частоты fдоп. ГИС соответственно, в состав бортового приемоответчика входят первая приемопередающая антенна, последовательно соединенные приемник запросного сигнала fзап. ГИС, преобразователь частот, бортовой передатчик, выход которого соединен с входом первой приемопередающей антенны, вход приемника запросного сигнала fзап. ГИС соединен с выходом приемопередающей антенны, приемопередающая антенна соединена по каналам радиосвязи с ГИС через вторую приемопередающую антенну, а также с ВИС1 и ВИС2 через первую и вторую приемные антенны соответственно.

Аналог заявленного способа и системы представлен на фиг.1, где:

1. Бортовой трехканальный передатчик;

2. Приемник запросного сигнала fзап. ВИС1;

3. Приемник запросного сигнала fзап. ВИС2;

4. Приемник запросного сигнала fзап. ГИС;

5. Преобразователь частот;

6. Первый приемник ответного сигнала fотв. ГИС;

7. Приемник ответного сигнала fотв. ВИС1;

8. Приемник ответного сигнала fотв. ВИС2;

9. Измеритель доплеровского смещения частоты fдоп. ГИС;

10. Измеритель доплеровского смещения частоты fдоп. ВИС1;

11. Измеритель доплеровского смещения частоты fдоп. ВИС2;

12. Измеритель разности доплеровских смещений частот Δ f д о п . Г И С = f д о п . В И С 1 = Δ R ˙ 1 ,

13. Первый генератор точных частот;

14. Первый когерентный синтезатор сдвига частот;

15. Передатчик

16. Запросный сигнал fзап. ГИС;

17. Ответный сигнал fотв. ГИС;

18. Ответный сигнал fотв. ВИС1;

19. Ответный сигнал fотв. ВИС2;

20. Запросный сигнал fзап. ВИС1;

21. Запросный сигнал fзап. ВИС2;

22. Бортовой приемоответчик;

23. Первая ведомая измерительная станция (ВИС1);

24. Второй приемник ответного сигнала fотв. ГИС;

25. Второй генератор точных частот;

26. Второй когерентный синтезатор сдвига частот;

27. Второй передатчик;

28. Вторая ведомая измерительная станция (ВИС2);

29. Третий приемник ответного сигнала fотв. ГИС;

30. Третий генератор точных частот;

31. Третий когерентный синтезатор сдвига частот;

32. Третий передатчик;

33. Главная измерительная станция (ГИС);

34. Первая приемопередающая антенна;

35. Вторая приемопередающая антенна;

36. Третья приемопередающая антенна;

37. Четвертая приемопередающая антенна;

Заявляемая радиотехническая система доплеровских угломерных измерений представлена на фиг.2, где:

38. Бортовой приемоответчик;

39. Бортовой передатчик;

40. Приемник запросного сигнала fзап. ГИС;

41. Преобразователь частот;

42. Запросный сигнал fзап. ГИС;

43. Ответный сигнал fотв. ГИС;

44. Главная измерительная станция (ГИС);

45. Первый приемник ответного сигнала fотв. ГИС;

46. Первый блок измерения доплеровского смещения частоты fдоп. ГИС;

47. Первый генератор точных частот;

48. Когерентный синтезатор сдвига частот;

49. Передатчик;

50. Первая ведомая измерительная станция (ВИС1);

51. Второй приемник ответного сигнала fотв. ГИС;

52. Второй блок измерения доплеровского смещения частоты fдоп. ГИС;

53. Второй генератор точных частот;

54. Вторая ведомая измерительная станция (ВИС2);

55. Третий приемник ответного сигнала fотв. ГИС;

56. Третий блок измерения доплеровского смещения частоты fдоп. ГИС;

57. Третий генератор точных частот;

58. Первая приемопередающая антенна;

59. Вторая приемопередающая антенна;

60. Первая приемная антенна;

61. Вторая приемная я антенна.

Алгоритм вычислений в баллистическом центре представлен на фиг.3.

Заявляемая радиотехническая система доплеровских угломерных измерений имеет в своем составе бортовой приемоответчик 22, три наземные разнесенные измерительные станции (44, 50, 54) с известными координатами, но отличается от прототипа [1] следующим (см. Фиг.2):

- из трех ИС, только одна - ГИС (44) работает в запросном режиме измерения доплеровского смещения частоты, а две другие ВИС1 (50) и ВИС2 (54) работают в беззапросном режиме.

Формируют запросный сигнал fзап. ГИС (42) первым генератором опорных частот (47), далее передают этот сигнал с передатчика (49) на бортовой приемоответчик (38).

Бортовой приемоответчик ретранслирует на Землю высокостабильный по частоте сигнал fотв. ГИС (43) с бортового передатчика (38), сформированный из запросного сигнала ГИС (42), поступающего на приемник сигнала fзап. ГИС (40), затем на преобразователь частот (41) и затем на бортовой передатчик (39).

- ретранслированный сигнал fотв. ГИС (43) одновременно принимают первым приемником сигнала fотв. ГИС (45), входящим в состав ГИС, вторым приемником сигнала fотв. ВИС1 (51) и третьим приемником сигнала fотв. ВИС2 (55), входящими в состав ВИС 1 и ВИС 2, далее эти сигналы поступают на первый, второй и третий блоки измерения доплеровского смещения частоты fдоп. ГИС (46, 52, 56), входящие в состав ГИС, ВИС1 и ВИС2 соответственно, также на второй и третий блоки измерения fдоп. ГИС по ступают сигналы точной частоты со второго и третьего генераторов точных частот (53, 57), входящих в состав ВИС 1 и ВИС 2. Полученные значения доплеровского смещения частоты принимаемого сигнала с выходов первого, второго и третьего блоков измерения доплеровского смещения частоты fдоп. ГИС (46, 52, 56), а также расстояние от ГИС до КA (R1) передают в баллистический центр.

Хотя ВИС1 и ВИС2 измеряют доплеровское смещение частоты в беззапросном режиме, однако погрешности измерений у ВИС1, ВИС2 и ГИС одинаковы, так как стабильность частоты сигнала fотв. ГИС (43), формируемого бортовым приемоответчиком 38, определяется стабильностью частоты запросного сигнала ГИС (42), которая определяется высокой стабильностью частоты первого генератора опорных частот ГИС (47).

Такую же высокую стабильность имеет эталон частоты второго и третьего генераторов опорных частот (53, 57), используемых в ВИС1 и ВИС2 при измерении доплеровского сдвига частоты в беззапросном режиме.

Результаты измерений доплеровского смещения частоты с ГИС ( R ˙ 1 ) , ВИС1 ( R ˙ 2 ) , ВИС2 ( R ˙ 3 ) передают в баллистический центр, где определяют разность смещений частоты измеренных в ГИС и ВИС:

Δ R ˙ 1 = R ˙ 1 R ˙ 2 = f д о п . Г И С f д о п . В И С 1 ;

Δ R ˙ 2 = R ˙ 1 R ˙ 3 = f д о п . Г И С f д о п . В И С 2 .

Полученные данные, характеризующие угловые параметры движения КА, используют для точного определения орбиты движения КА (см. Фиг.3)

В связи с тем что при заявляемом способе измерения угловых координат отпадает необходимость использования специальной аппаратуры измерения разности радиальных смещений частоты в составе бортового приемопередатчика и в ГИС, ВИС1 и ВИС2, а также ввиду того, что ВИС1 и ВИС2 работают только в приемном режиме, стоимость создания и эксплуатации заявляемой системы на много ниже, чем системы-прототипа.

Описанный способ и система измерения разности радиальных скоростей наиболее эффективно может использоваться для траекторных измерений лунных КА. Но также целесообразно использование при траекторных измерениях межпланетных космических аппаратов (МКА).

Наилучшие результаты по определению угломерных параметров движения КА новый способ и система будут давать на начальном этапе полета МКА (до 1-2 мин), где соотношение баз и дальности до КА, высота орбиты (траектории) которых позволяют «видеть» одновременно три территориально разнесенных ИС, участвующих в измерениях.

Таким образом, заявленные способ и система обеспечивают упрощение конструкции и эксплуатации системы траекторных измерений разности радиальных скоростей КА.

Литература

1. Молотов Е.П. Наземные радиотехнические системы управления космическими аппаратами. М.: ФИЗМАТЛИТ, 2004.

1. Способ радиотехнических доплеровских угломерных измерений космического аппарата, заключающийся в том, что формируют запросный сигнал главной наземной измерительной станции, передают сигнал на бортовой приемоответчик космического аппарата, формируют из запросного сигнала в бортовом приемоответчике высокостабильный ответный сигнал, одновременно ретранслируют при помощи бортового приемоответчика космического аппарата высокостабильный ответный сигнал на главную наземную измерительную станцию и первую и вторую ведомые наземные измерительные станции, территориально разнесенные между собой, одновременно измеряют радиальные составляющие скорости космического аппарата путем измерения доплеровских смещений частоты принимаемого высокостабильного сигнала, причем все измерительные станции в режиме приема используют один и тот же высокостабильный сигнал, сформированный бортовым приемоответчиком космического аппарата из запросного сигнала главной измерительной станции, разности измеренных доплеровских смещений частоты сигналов главной наземной измерительной станции и первой и второй ведомых наземных измерительных станций, эквивалентных угломерным измерениям радиоинтерферометра с базами, соответствующими расстояниям между измерительными станциями, участвующими в измерениях, передают в баллистический центр, где определяют траекторию движения космического аппарата.

2. Система радиотехнических доплеровских угломерных измерений космического аппарата, включающая в себя бортовой приемоответчик, главную измерительную станцию (ГИС), первую ведомую измерительную станцию (ВИС1), вторую ведомую измерительную станцию (ВИС2) и баллистический центр, причем ГИС оснащена второй приемопередающей антенной, передатчиком, первым когерентным синтезатором сдвига частот, первым генератором точных частот, первый выход которого соединен с первыми входами передатчика и первого когерентного синтезатора сдвига частот, выход передатчика соединен с входом второй приемопередающей антенны, при этом в состав ГИС входят первый приемник ответного сигнала fотв. ГИС, первый блок измерения доплеровского смещения частоты fдоп. ГИС, вход которого соединен с выходом первого приемника ответного сигнала fотв. ГИС, вход которого соединен с выходом второй приемопередающей антенны, первый выход первого блока измерения доплеровского смещения частоты fдоп. ГИС соединен со вторым входом первого когерентного синтезатора сдвига частот, выход которого соединен со вторым входом передатчика, третий вход первого когерентного синтезатора сдвига частот соединен со вторым выходом первого генератора точных частот, второй выход первого блока измерения доплеровского смещения частоты fдоп. ГИС соединен с баллистическим центром, в состав ВИС1 входят первая приемная антенна, выход которой соединен с первым входом второго приемника ответного сигнала fотв. ГИС, второй блок измерения доплеровского смещения частоты fдоп. ГИС, первый вход которого соединен с выходом второго приемника ответного сигнала fотв. ГИС, а выход соединен с баллистическим центром, второй генератор точных частот, выход которого соединен со вторыми входами второго приемника ответного сигнала fотв. ГИС и второго блока измерения доплеровского смещения частоты fдоп. ГИС соответственно, в состав ВИС2 входят вторая приемная антенна, выход которой соединен с первым входом третьего приемника ответного сигнала fотв. ГИС, третий блок измерения доплеровской частоты fдоп. ГИС, первый вход которого соединен с выходом третьего приемника ответного сигнала fотв. ГИС, а выход соединен с баллистическим центром, третий генератор точных частот, выход которого соединен со вторыми входами третьего приемника ответного сигнала fотв. ГИС и третьего блока измерения доплеровского смещения частоты fдоп. ГИС соответственно, причем в состав бортового приемоответчика входят первая приемопередающая антенна, последовательно соединенные приемник запросного сигнала fзап. ГИС, преобразователь частот и бортовой передатчик, выход которого соединен с входом первой приемопередающей антенны, а вход приемника запросного сигнала fзап. ГИС соединен с выходом приемопередающей антенны, приемопередающая антенна соединена по каналам радиосвязи с ГИС через вторую приемопередающую антенну, а также с ВИС1 и ВИС2 через первую и вторую приемные антенны соответственно.



 

Похожие патенты:

Группа изобретений относится к методам и средствам траекторных измерений космических аппаратов (КА) с использованием линий радиосвязи. В способе используют три территориально разнесенные измерительные станции (ИС).

Изобретение относится к способам траекторией обработки радиолокационной информации. Достигаемым техническим результатом изобретения является повышение вероятности обнаружения маневра баллистической цели за счет исключения измерений угла места и азимута из обрабатываемых выборок.

Изобретения относятся к радиолокационной технике. Техническим результатом является сокращение времени измерения изменения скорости движения цели по дальности.
Группа изобретений относится к высокоскоростной радиолокационной технике и может использоваться при создании измерителей скорости объектов. Достигаемый технический результат - повышение надежности измерения скорости сближения объектов за счет более надежного обнаружения локатором сверхскоростных целей.

Изобретения относятся к радиолокационной технике. Достигаемый технический результат - расширение ассортимента устройств измерения длинны объектов. Измеренная длина перемещающегося объекта определяется выражением L=4Доt1/t2, где t2 - интервал времени между моментами возникновения и обнаружения на радиолокационной станции (РЛС) сигналов частотой NFдо=N2Vofн/C и (N+4)Fдо, за который объект пролетает интервал расстояния S2 от (1-δ)(Дo/Vo)(Vi+NVo) до (1+δ)(Дo/Vo)[Vi+(N+4)Vo], где fн - средняя частота излучаемого РЛС непрерывного сигнала с частотной модуляцией по одностороннему пилообразному линейно спадающему закону (НЛЧМ сигнал), выбираемая из условия До/Vo=fн/Fмfд; fд и Fм - соответственно девиация частоты и частота модуляции НЛЧМ сигнала; Vo - минимально возможная величина радиальной скорости цели; До - выбираемое базовое расстояние; С и Vi - соответственно скорость света и скорость цели; δ - коэффициент, определяющий длину известного интервала S1 расстояния, на котором происходит обнаружение объекта; N - положительное число, определяющее расстояние между РЛС и началом обнаружения цели на интервале расстояния S2; t1 - интервал времени, в течение которого объект пролетает интервал расстояния S1 от (1-δ)(До/Vo)(Vi+NVo) до (1+δ)(Дo/Vo)(Vi+NVo), во время обнаружения на РЛС сигнала частотой NFдо±ΔFдо, где ±ΔFДo - диапазон узкополосного спектра частот сигналов, обнаруживаемых на РЛС.

Изобретение относится к дистанционному зондированию пространства для определения дальности и скорости рассеивателей. Достигаемый технический результат - повышение разрешения по дальности и скорости рассеивателей.

Группа изобретений относится к средствам радиолокационного наблюдения траекторий баллистических объектов. Достигаемый технический результат - повышение информативности измерений.

Изобретение относится к дистанционному зондированию пространства для определения дальности и скорости рассеивателей. Достигаемый технический результат - снятие неоднозначности при измерении дальности и скорости.

Изобретение относится к устройствам траекторной обработки радиолокационной информации. Достигаемый технический результат изобретения - повышение чувствительности устройств определения времени окончания активного участка (АУТ) баллистической траектории за счет исключения измерений угла места из обрабатываемых выборок.

Изобретение относится к устройствам траекторной обработки радиолокационной информации. Достигаемый технический результат изобретения - повышение вероятности определения времени окончания активного участка (АУТ) баллистической траектории за счет исключения измерений угла места и азимута из обрабатываемых выборок.

Группа изобретений относится к методам и средствам траекторных измерений космических аппаратов (КА) с использованием линий радиосвязи. В способе используют три территориально разнесенные измерительные станции (ИС).

Изобретение относится к космической области и может быть использовано для управления полетами космических аппаратов (КА). Интегрируют информационно-вычислительный комплекс центра управления ретрансляцией и связью коммуникационными средствами в структурно выделенный сегмент, организовывают канал связи с комплексом внешних информационных обменов, на едином структурно выделенном сегменте планируют, инициируют и реализуют одновременное выполнение программных процедур, осуществляющих прием и обработку заявок потребителей на предоставление услуг ретрансляции и связи по всем видам информации, осуществляют обмен по локальной вычислительной сети всеми видами полетной информации по управляемым космическим аппаратам, внешними абонентами через комплекс внешних информационных обменов, прогнозируют движения космических аппаратов относительно спутников-ретрасляторов, производят выбор маршрутов ретрансляции информации, осуществляют доведение до потребителей сообщений о предоставлении услуг ретрансляции и связи, формируют программы управления полетами космических аппаратов, реализуют выдачу программ управления на космические аппараты.

Изобретение относится к системам наблюдения за полетом космического аппарата (КА) и может использоваться для определения параметров орбиты наблюдаемого КА. Для этого на орбиту выводят КА, в составе бортовой аппаратуры которого размещают навигационную аппаратуру потребителя глобальной навигационной спутниковой системы и аппаратуру измерения частоты сигнала, передаваемого наблюдаемым КА.

Изобретение относится к системам наблюдения за полетом космических аппаратов (КА) и может использоваться для определения параметров орбиты. Проводят измерения навигационных параметров орбиты КА с помощью наземных измерительных станций.

Изобретение относится к области космонавтики. Система обеспечения безопасности космических аппаратов (КА) состоит из модуля сбора геофизической информации (1) и блока базы данных параметров движения КА (2), которые своими выходами соединены с модулем обработки и анализа (МОА) (4), на вход которого подаются данные из базы данных характеристик бортовой аппаратуры КА (3), который сопоставляет данные о среде и траектории КА.

Изобретение касается обеспечения управления полетами автоматических и пилотируемых космических аппаратов (КА). Оно может быть использовано при создании и развертывании центров управления полетами существующих и перспективных КА.

Изобретение относится к области лазерной локации. Лазерное устройство контроля околоземного космического пространства содержит установленные на первой оптической оси вспомогательный источник лазерного излучения, селектор угловых мод с первым зеркалом резонатора, задающий генератор рабочего лазерного излучения, полупрозрачное зеркало вывода излучения и второе зеркало резонатора.

Изобретение относится к технике определения и прогнозирования торможения космических аппаратов на низких орбитах вследствие вариаций плотности верхней атмосферы.

Изобретение относится к области автоматизированных систем управления подвижными объектами, преимущественно космическими аппаратами научного и социально-экономического назначения (КА НСЭН), в т.ч.

Изобретение относится к авиации, а именно к установке для запуска летательного объекта, к системе для запуска летательного объекта и к способам запуска летательного объекта.

Изобретение относится к радиолокации пассивных космических объектов (КО), например крупных метеоритов и астероидов (размерами более десяти метров), которые могут представлять опасность при столкновении с Землей. Способ включает радиолокационное зондирование КО, вращающегося в процессе полета, периодической последовательностью высокоразрешающих радиосигналов наносекундной длительности. Число этих импульсов соответствует числу ракурсов КО за период его вращения, максимальный из всех периодов вращения КО вокруг его осей. Этот период определяется по повторяемости радиолокационных портретов (РЛП), дающих разрешение по дальности, равное одной десятой минимального размера КО. При этом производят многократное измерение длительности РЛП освещенной части КО. По этой длительности далее производят оценку среднего радиуса КО по половине усредненной пространственной длины сигнала РЛП и линейного размера по удвоенной величине среднего радиуса. Технический результат изобретения состоит в обеспечении достаточной точности оценки размеров пассивных КО для того, чтобы при необходимости активировать орбитальные средства космической защиты. 1 ил.
Наверх