Устройство измерения параметров пористости материалов


 


Владельцы патента RU 2560751:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ковровская государственная технологическая академия имени В.А. Дегтярева" (RU)

Изобретение относится к измерительной технике и может быть использовано при оценке качества пористых материалов, например керамики, металлокерамики. Задачей, решаемой изобретением, является повышение точности измерения. Устройство содержит измерительные камеры 1, насос 6, соединенный через клапаны 7, 9 с измерительной камерой 1, ЭВМ 12, соединенную с измерительными камерами 1 с одной стороны и насосом 6 с другой, рабочую камеру 2, соединенную с атмосферой, систему управления измерением 11, соединенную с насосом 6 с одной стороны и ЭВМ 12 с другой, датчики давления 10, установленные на измерительных камерах 1, и датчик температуры 13, установленный на рабочей камере 2. Датчик температуры 13 связан с ЭВМ 12. В измерительных камерах 1 выполнено несколько изолированных друг от друга полостей 3. В рабочей камере 2 выполнена одна полость 4. Датчик времени встроен в ЭВМ 12. Датчики давления 10 связаны с системой управления измерением 11, а их число соответствует числу полостей в камерах. Техническим результатом является повышение точности. 1 ил.

 

Изобретение относится к измерительной технике и может быть использовано при оценке качества пористых материалов, например керамики, металлокерамики.

Известен прибор определения коэффициента фильтрации (А.С. №1775643, кл. G01N 15/08, 1992 г.), который включает в себя цилиндрический корпус с острозаточенным верхним концом, верхний и нижний фильтры, регулятор подачи воды сверху вниз с постоянным уровнем и приспособление для измерения гидравлического градиента от 1 до 0 и замачивания образца снизу вверх. Внутренняя поверхность корпуса снабжена слоем эластичной резины. Верхний и нижний фильтры имеют диаметр, равный внутреннему диаметру корпуса.

Недостатком данного прибора являются ограниченные технологические и функциональные возможности, так как он позволяет осуществлять контроль только образцов определенного размера, ограниченного размерами прибора, и не контролирует такие параметры пористости, как проницаемость, диффузия, растворимость газов.

Наиболее близким по технической сущности к предлагаемому решению является устройство для определения коэффициентов пористости, фильтрации, диффузии, проницаемости и растворимости газа в способе определения параметров пористости материалов (Патент РФ №2305828, кл. G01N 15/08, 2007 г.), которое содержит измерительную камеру, выполненную в виде стакана с расположенным в нем штоком, на одном конце которого закреплен поршень, а другой конец соединен с пневмоцилиндром. В стенках стакана установлены датчики давления, времени и температуры. Выходы датчиков давления и времени соединены с электронным согласующим устройством, а температуры - с выходом ЭВМ. Шток пневмоцилиндра связан с ЭВМ.

Недостатком данного устройства является невысокая точность контроля (погрешность измерений составляет 12-18%), вызванная наличием погрешности измерений ввиду ограниченной областью стакана поверхности материала, что не позволяет исключить грубые ошибки измерений из-за наличия трещин в поверхностном слое материала. Кроме того, наличие задержки по времени между запуском программного обеспечения и временем перемещения штока в крайнее положение приводит к возникновению дополнительной погрешности измерений.

Задачей, решаемой изобретением, является повышение точности измерения.

Это достигается тем, что устройство измерения параметров пористости материалов, содержащее измерительную камеру, насос, соединенный через клапан с измерительной камерой, ЭВМ, соединенную с измерительной камерой с одной стороны и насосом с другой, датчик температуры, связанный с ЭВМ, датчик давления, установленный на измерительной камере, и датчик времени, снабжено дополнительными измерительными камерами, рабочей камерой, соединенной с атмосферой, системой управления измерением, соединенной с насосом с одной стороны и ЭВМ с другой, дополнительными датчиками давления, установленными на измерительных и рабочей камерах. В измерительных камерах выполнено несколько изолированных друг от друга полостей. В рабочей камере выполнена одна полость. Датчик времени встроен в ЭВМ. Датчик температуры установлен на рабочей камере. Датчики давления связаны с системой управления измерением, а их число соответствует числу полостей в камерах.

Выполнение измерительной камеры, состоящей из нескольких изолированных полостей, обеспечивает возможность выборочного контроля поверхности и структуры материала, а наличие дополнительных камер позволяет провести выборочный контроль структуры материала во всех направлениях, что значительно снижает погрешность измерений.

Наличие рабочей камеры позволяет обеспечить направленный поток газа через контролируемый материал в измерительные камеры, что исключает погрешности измерений параметров пористости за счет течения газа из окружающей среды в боковые поры материала.

Использование в устройстве системы управления измерением позволяет исключить погрешность измерений, вызванную задержкой по времени между запуском программного обеспечения и моментом включения-выключения клапанов, начала процесса течения газа из рабочей камеры в измерительные камеры через контролируемый материал.

Таким образом, все это значительно повышает точность устройства по сравнению с прототипом.

На чертеже представлена схема устройства для измерения параметров пористости.

Устройство содержит измерительные камеры 1 и рабочую камеру 2, образующие с контролируемым изделием под усилием Q герметичные полости 3, 4. Камеры соединены через систему трубопровода 5 с вакуумным насосом 6. Для исключения перетечки газа между полостями 3, 4 каждая из них имеет возможность отключения от общей магистрали посредством клапанов 7. Полость 4 рабочей камеры 2 соединена клапаном 8 с атмосферой. Насос 6 имеет возможность отключения от магистрали посредством клапана 9. Полость 4 и каждая полость 2 имеют выход на датчики давления газа 10, информация с которых автоматически через систему управления 11 передается на ЭВМ 12, снабженную встроенным датчиком времени. Рабочая камера 1 снабжена датчиком температуры 13, который подключен к ЭВМ 12.

Устройство работает следующим образом.

На грани контролируемого изделия устанавливают от 1 до 5 измерительных камер 1. На свободную грань материала (или на грань, противоположную грани с установленной на ней измерительной камерой 1) устанавливают рабочую камеру 2, включают ЭВМ 12, система управления 11 автоматически открывает клапаны 7, 9, закрывает клапан 8, включает насос 6 и происходит откачка воздуха из полостей 3 и 4. Как только датчики давления 10 покажут наличие вакуума в полостях 3 и 4, информация передается в систему управления 11 и ЭВМ 12. Система управления 11 отключает насос 6 и перекрывает клапаны 7, 9, открывает клапан 8, соединяя рабочую камеру 2 с атмосферой. Начинается течение газа через контролируемый материал во всех направлениях из полости 4 в полости 3 измерительных камер 1. На ЭВМ 12 автоматически запускается программное обеспечение построения зависимостей изменения давления газа в полостях 3 с течением времени за счет диффузионного и фильтрационного потоков воздуха из рабочей камеры 2 через контролируемый материал в полости 3. Датчик температуры 13 передает информацию о температуре на ЭВМ 12, которая строит графические зависимости давления от времени для каждого из переданных каналов данных и определяет параметры пористости материалов для каждого из направлений течения газа и общее значение параметров для всего изделия.

Путем последовательного смещения измерительных камер 1 по длине образца обеспечивается детальный контроль участков изделия на требуемое значение пористости, что позволяет выявить явный и скрытый брак.

Вид и размеры измерительных 1 и рабочей 2 камер выбираются в зависимости от конфигурации детали или тех сечений, на которых необходимо определить параметры пористости.

Для более детального исследования структуры и свойств детали целесообразно устанавливать рабочую 2 и измерительные 1 камеры на все грани контролируемого изделия, что позволит проанализировать течение газа не только вдоль контролируемого материала, но и в боковые поры и выявить более точную картину о параметрах пористости изделия и наличии возможных дефектов.

Устройство измерения параметров пористости материалов, содержащее измерительную камеру, насос, соединенный через клапан с измерительной камерой, ЭВМ, соединенную с измерительной камерой с одной стороны и насосом с другой, датчик температуры, связанный с ЭВМ, датчик давления, установленный на измерительной камере, и датчик времени, отличающееся тем, что оно снабжено дополнительными измерительными камерами, рабочей камерой, соединенной с атмосферой, системой управления измерением, соединенной с насосом с одной стороны и ЭВМ с другой, дополнительными датчиками давления, установленными на измерительных и рабочей камерах, при этом в измерительных камерах выполнено несколько изолированных друг от друга полостей, в рабочей камере выполнена одна полость, датчик времени встроен в ЭВМ, датчик температуры установлен на рабочей камере, датчики давления связаны с системой управления измерением, а их число соответствует числу полостей в камерах.



 

Похожие патенты:

Изобретение относится к газовой промышленности и может быть использовано для моделирования, проектирования подземных хранилищ газа (ПХГ) в водоносных структурах пласта коллектора и оценки активного объема ПХГ.

Изобретение относится к контрольно-измерительной и экспериментальной технике и может быть использовано для контроля качества фильтрующих материалов. Способ определения максимального размера пор мембраны включает установку мембраны в ячейку и заполнение ячейки жидкостью, создание условий для проникновения льда сквозь мембрану и расчет значения максимального размера пор мембраны.
Изобретение относится к области исследований параметров грунтов. Представлен способ определения коэффициента фильтрации плывунного грунта, по которому через образец грунта пропускают поток воды, на поверхности образца грунта размещают грузик, фиксируют начало погружения грузика, измеряют параметры образца и потока воды, рассчитывают по измеренным показателям коэффициент фильтрации грунта.

Изобретение относится к измерению физических свойств, связанных с прохождением текучей фазы в пористом материале. Способ оценки физических параметров пористого материала, находящегося в потоке текучих сред, содержит этапы, на которых образец (2) материала помещают в герметичную камеру (1) таким образом, чтобы входная сторона (3) образца сообщалась с первым объемом (V0) и чтобы его выходная сторона (4) сообщалась со вторым объемом.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для повышения достоверности оценки запасов углеводородов и математического моделирования пластовых процессов в низкопроницаемых коллекторах нефти и газа.

Изобретение относится к способам описания характеристик двухмерных и трехмерных образцов для определения распределений размеров тела пор и каналов пор, а также кривых зависимости капиллярного давления в пористой среде.

Изобретение относится к контрольно-измерительной технике и может найти применение в почвоведении, мелиорации, гидрологии, грунтоведении, строительном деле и других областях науки и производства, связанных с исследованием свойств пористых материалов.

Изобретение относится к области физико-химического анализа и может быть использовано для определения наличия трещин на поверхности образцов стального проката с полимерным покрытием, преимущественно при испытании полимерного покрытия на прочность при изгибе по ГОСТ Р 52146-2003.

Изобретение относится к сельскохозяйственному машиностроению, в частности к машинам и орудиям для обработки почвы и может найти применение научно-исследовательскими и производственными организациями при проектировании, исследованиях и эксплуатации рабочих органов почвообрабатывающих машин и орудий.

Изобретение относится к области испытания и определения свойств материалов. Способ измерения пористости частиц сыпучих материалов целесообразно применять при производстве гранулированных катализаторов, сорбентов, а также для определения свойств пористых материалов различного назначения.

Настоящее изобретение относится к области техники производства сосудов с покрытием для хранения биологически активных соединений или крови. Способ инспектирования продукта процесса покрытия, где покрытие было нанесено на поверхность подожки с образованием поверхности с покрытием. Причем покрытие представляет собой PECVD-покрытие, выполненное в условиях вакуума. При этом способ включает следующие этапы: a) обеспечения продукта как объекта инспекции; (b) наполнения продукта с покрытием разновидностью летучего вещества после нанесения покрытия; (c) последующего выполнения измерения выделившихся газов посредством измерения высвобождения по меньшей мере одной разновидности летучего вещества из объекта инспекции в газовое пространство вблизи поверхности с покрытием; и (d) сравнения результата этапа (c) с результатом этапа (c) для по меньшей мере одного эталонного объекта, измеренного при таких же тестовых условиях. Техническим результатом является возможность определять присутствие или отсутствие покрытия, и/или физическое и/или химическое свойство покрытия. 3 н. 27 з.п. ф-лы, 19 ил.
Изобретение относится к области исследований параметров грунтов мелиорируемых земель. На верхней поверхности образца грунта размещают грузик. Через образец пропускают поток воды. Фиксируют концентрацию алкилдиметилбензиламмония хлорида в потоке воды, прошедшем через образец грунта. Фиксируют начало погружения грузика, измеряют параметры образца и потока воды, рассчитывают по измеренным показателям коэффициент фильтрации грунта. В потоке воды, пропускаемой через образец грунта, фиксируют величину концентрации алкилдиметилбензиламмония хлорида и при снижении величины концентрации больше 6% от начального значения в поток воды, направляемый в образец грунта, вводят раствор алкилдиметилбензиламмония хлорида, восстанавливая величину концентрации алкилдиметилбензиламмония хлорида в потоке воды, прошедшем через образец грунта, до начального значения. Достигается повышение надежности определения. 1 пр., 1 табл.

Изобретение относится к области физико-химического анализа, а именно к измерению удельной поверхности (УП) дисперсных, пористых и компактных материалов. Предварительно перед сорбцией камеру с источником, соединенную с камерой с исследуемым материалом, продувают инертным газом и вакуумируют. Далее для обеспечения сорбции температуру камеры с источником поддерживают на уровне 500÷550°C, температуру камеры с исследуемым материалом поддерживают на 20÷30°C выше температуры камеры с источником. Затем обе камеры повторно продувают инертным газом и вакуумируют. А далее проводят десорбцию серебра селективным растворителем при комнатной температуре с дальнейшим анализом количества серебра в растворе спектральным методом. При этом, например, в качестве селективного растворителя можно использовать одномолярную азотную кислоту. А в качестве спектрального метода используют метод индуктивно-связанной плазмы. Процесс сорбции проводят в течение 15-30 минут. Задача и достигаемый при использовании изобретения технический результат - повышение точности измерения УП дисперсных, пористых и компактных материалов с одновременным расширением диапазона измерения УП от 10-3 м2/г до 103 м2/г. 3 з.п. ф-лы, 3 ил.

Изобретение относится к строительству и может быть использовано для изучения водопроницаемости геомембраны и стыков ее полотнищ. Устройство для испытания стыков полотнищ геомембраны на водопроницаемость включает емкость с герметично закрывающейся крышкой (2) и эластичной диафрагмой (4). Емкость снабжена герметично закрывающимся днищем (3) сферической формы, заполненным сыпучим водопроницаемым материалом (9), обладающим известной деформативностью, определяющей значения растягивающих напряжений в стыке элементов геомембраны (11, 12). Применение изобретения повышает достоверность результатов испытаний на водопроницаемость стыков геомембраны. 2 ил.

Изобретение относится к газовой промышленности и предназначено для исследования газоконденсатных смесей в пористой среде, а именно для определения давления начала конденсации в пористой среде. Техническим результатом является повышение точности, а также снижение трудоёмкости измерения давления начала конденсации газоконденсатных смесей в пористой среде. Способ определения давления начала конденсации в пористой среде включает подачу исходной газоконденсатной смеси в пористую среду, подготовку пористой среды, размещение подготовленной пористой среды в рентгенопрозрачном кернодержателе, создание горного давления в пористой среде, подачу метана под давлением, равным пластовому давлению, создание и поддержание постоянного пластового давления в рекомбинаторе и в пористой среде, подачу исходной газоконденсатной смеси в пористую среду при давлении, равном пластовому, путем прокачки 2-3 поровых объемов исходной газоконденсатной смеси, моделирование процесса истощения пористой среды при выбранном шаге снижения давления, прогрев рентгеновской трубки и сканирование пористой среды на каждом шаге снижения давления, регистрацию значения интенсивности рентгеновского излучения при выбранном давлении после каждого сканирования пористой среды, построение графика изменения интенсивности рентгеновского сигнала, проходящего через пористую среду, от давления следующим образом: по оси абсцисс откладывают значения давления Р (МПа) в процессе истощения пористой среды, по оси ординат - значения интенсивности рентгеновского излучения I (отн. ед.). Процесс истощения пористой среды производят до получения экстремума на графике, по которому определяют значение давления начала конденсации Pн.к. (МПа). 1 ил., 1 табл.

Изобретение относится к медицине, в частности к лабораторным методам оценки способности микрофильтрующих устройств удерживать микроагрегаты, присутствующие в переливаемой крови или ее компонентах. Способ заключается в том, что берут по крайней мере одну порцию исходной крови или ее компонента, разбавляют, взвешивают, рассчитывают ее среднюю массу. Пропускают исходную кровь или исходный компонент крови через фильтрующее устройство, обеспечивающее полное удаление клинически значимых микроагрегатов с размерами от 30 мкм, берут по крайней мере одну порцию профильтрованной крови или профильтрованного компонента крови, разбавляют, взвешивают и рассчитывают среднюю массу порции профильтрованной крови или компонента. Пропускают исходную кровь или компонент через исследуемый фильтр, берут по крайней мере одну порцию пропущенной через исследуемый фильтр крови или пропущенного компонента, разбавляют, взвешивают и рассчитывают среднюю массу порции пропущенной через исследуемый фильтр крови или пропущенного через исследуемый фильтр компонента крови. На основании полученных данных рассчитывают коэффициент эффективности испытуемого фильтрующего устройства. Достигается повышение точности и ускорение оценки. 3 з.п. ф-лы, 1 табл.

Изобретение относится к области исследования горных пород. Техническим результатом является получение дополнительной информации о свойствах нефтеводонасыщенных пород-коллекторов нефти с помощью стандартного петрофизического оборудования. Способ заключается в том, что экстрагированный и высушенный образец керна горных пород предварительно насыщают пластовой водой или моделью пластовой воды под вакуумом и определяют начальное количество воды в порах образца, затем образец центрифугируют в стандартной корзине для замещения воды воздухом с разными угловыми скоростями в диапазоне от минимального числа оборотов центрифуги до числа оборотов, обеспечивающих создание остаточной водонасыщенности в образце, фиксируют минимально достигнутую водонасыщенность при каждом значении скорости вращения ротора центрифуги в указанном диапазоне, определяют вес образца с остаточной водонасыщенностью и строят кривую капиллярного давления, по которой определяют вероятностное распределение дренируемых пор по размерам, после чего образец керна с остаточной водой насыщают нефтью или изовискозной моделью нефти под вакуумом, определяют количество углеводородов в порах образца, центрифугируют образец в инвертной корзине для замещения углеводородов жидким вытесняющим агентом с разными угловыми скоростями в диапазоне от минимального числа оборотов центрифуги до числа оборотов, обеспечивающих создание остаточной нефтенасыщенности, фиксируют минимально достигнутую нефтенасыщенность при каждом значении скорости вращения ротора центрифуги в указанном диапазоне и строят капиллярную кривую пропитки, по которой путем дифференцирования площадей распределения дренируемых пор находят распределение размеров пропитанных вытесняющим агентом пор, по которому строят зависимость расчетного значения cos краевого угла смачивания в зависимости от размера пор, на полученной зависимости фиксируют точку перегиба, относительно которой ранжируют области углеводородов на удерживаемые капиллярными силами и силами адсорбции. 4 ил.

Изобретение относится к способам определения гидрофобных свойств минералов и может быть использовано при разработке методов изучения эффективности действия активирующих смесей на гидрофобность минеральных порошков. Для определения смачиваемости активированных минеральных порошков применяют пенную флотацию в лабораторных условиях. Степень смачиваемости минерального порошка рассчитывают согласно выражению: Г=(M1/M)×t×R, где М1 - масса сфлотированного минерального порошка (выход пенного продукта при флотации), в граммах, М - общая масса исследуемого минерального порошка, направляемого во флотокамеру, в граммах, t - время флотации минерального порошка, час; R - расход поверхностно-активного вещества (ПАВ) при флотации, %. Причем расход ПАВ поддерживают в пределах от 1,0 до 1,5% и время флотации от 15 до 30 минут. Техническим результатом является ускорение процесса определения степени смачиваемости минеральных порошков и упрощение аппаратурного оформления процесса определения. 2 табл.

Изобретение относится к определению сорбционной газоемкости углей при прогнозах газоносности угольных пластов. Способ исследования сорбционных свойств углей осуществляют следующим образом. Устанавливают необходимую для исследования температуру, измеренный объем газа закачивают под давлением 1 МПа с последующим увеличением давления с интервалом 1 МПа. После чего определяют объем абсорбированного газа, по измеренным объемам при каждом значении давления рассчитывают газоемкость на тонну и на сухую беззольную массу с учетом влажности и зольности. Затем по полученным данным строят линейную функцию с указанием формулы для обеих кривых. Из формулы определяют коэффициенты для расчета объема Ленгмюра и давления Ленгмюра. Полученные значения используют в уравнении адсорбции для определения сорбционной газоемкости. Строят график зависимости измеренных и рассчитанных значений объема адсорбции от значений давления. Достигается возможность одновременного произведения исследований сорбционных свойств углей, отобранных из скважин с различной пластовой температурой. 3 табл., 4 ил.

Изобретение относится к способу определения водостойкости материалов, таких как текстильные изделия, натуральные и искусственные кожи, ткани, нетканые материалы и покрытия, а также тестирования гидрофильности материалов, водоотталкивающих составов и пропиток, применяемых для придания им водостойкости. Осуществляют определение привеса массы образца материала после экспозиции его поверхности действию статического слоя воды или водно-солевого раствора. Воздействие отмеренным объемом жидкости проводится в пределах участка, ограниченного гидрофобным материалом, в частности тефлоновым кольцом. Обеспечивается упрощение процесса тестирования и получение высокой оценки водостойкости материала. 1 з.п. ф-лы, 3 ил., 3 пр.
Наверх