Огнеупорная бетонная смесь и способ изготовления из нее бетона

Изобретение относится к получению цементных смесей и бетона различного назначения, работающих при высоких деформирующих нагрузках, и может быть использовано в металлургической, строительной и других отраслях промышленности. Технический результат изобретения - получение бетона с повышенными прочностными характеристиками на сжатие. Огнеупорная бетонная смесь содержит, мас.%: корунд 13,0-20,0; высокоглиноземистый цемент 5,0-10,0; наночастицы диоксида кремния с удельной поверхностью 180-300 м2/г и/или модифицированного оксида алюминия удельной поверхностью 25-50 м2/г 0,04-0,08; порошковый муллит фракцией 50-100 мкм 1,0-3,0; муллит фракцией 3-7 мм - остальное. Часть компонентов смеси в сухом виде, состоящую из высокоглиноземистого цемента, порошкового муллита фракцией 50-100 мкм, наночастиц диоксида кремния и/или модифицированного оксида алюминия, предварительно обрабатывают вращающимся электромагнитным полем в аппарате с вихревым слоем в герметичной капсуле в течение 100-140 секунд, при соотношении обрабатываемых компонентов смеси и ферромагнитных частиц (2-4):1, затем добавляют остальные компоненты и затворяют смесь водой. Герметичная капсула выполнена из немагнитного твердосплавного материала. Напряженность магнитного поля аппарата с вихревым слоем составляет 0,18-0,22 Тл. 2 н. и 5 з.п. ф-лы, 3 табл., 1 ил.

 

Предлагаемое изобретение относится к получению цементных смесей и бетона различного назначения, работающих при высоких деформирующих нагрузках, требующих высокой степени сопротивления внешним воздействиям с повышенными прочностными характеристиками, и может быть использовано в металлургической, строительной и других отраслях промышленности.

Известна сырьевая смесь для получения пористого, огнеупорного, теплоизоляционного материала (RU 2387623, С04В 38/02, 27.04.2010). Сырьевая смесь содержит алюминий, минеральный наполнитель, в качестве связующего по крайней мере один полиметаллофосфат из группы, включающей алюмоборфосфат, магнийборфосфат, алюмомагнийфосфат, алюмохромфосфат, в жидком агрегатном состоянии с содержанием Р2О5 не менее 36%, при массовом отношении минерального наполнителя к связующему 1,25-1,54, при массовом отношении алюминия к связующему 0,009-0,067, наномодификатор - тугоплавкие оксиды кремния, алюминия, частично стабилизированный диоксид циркония или бинарные или тройные оксидные системы из ряда CaO, Al2O3, SiO2, MgO.

Недостатком сырьевой смеси является невысокое значение прочности на сжатие изготовленного из нее бетона, не обеспечивающее работу в высокотемпературной области под нагрузкой.

Наиболее близким по составу к предлагаемому изобретению является огнеупорная бетонная смесь, содержащая огнеупорный заполнитель на основе оксида алюминия и в качестве связующего - комплекс тонкодисперсных материалов, включающий Al2O3 или смесь Al2O3 и SiO2 фракции 6-0,1 мкм, высокоглиноземистый кальцийалюминатный цемент, дефлокулянт, оксид магния или алюмомагнезиальную шпинель фракции <20 мкм (RU 2140407, С04В 35/66, 27.10.1999).

Недостатком огнеупорной бетонной смеси является недостаточная прочность бетона на сжатие при высоких температурах.

Известны технические решения, где с целью интенсификации процесса гомогенизации различных смесей используют аппараты с вихревым слоем ферромагнитных частиц, который создается путем воздействия на частицы вращающегося электромагнитного поля. Известен, например, способ получения серного цемента, заключающийся в гомогенизации раствора серы и модификатора во вращающемся электромагнитном поле аппарата вихревого слоя В150К-01 при температуре 140-150°C в течение 5-20 с (RU 2154602, С01В 17/00, С04В 28/36, 20.08.2000).

За прототип выбран способ, заключающийся в измельчении и гомогенизации в аппаратах с вихревым слоем (ABC) различных смесей, в том числе глин различного происхождения для получения керамзита общестроительного и специального назначения, с целью понижения объемной массы и повышения прочности («Интенсификация технологических процессов в аппаратах с вихревым слоем» Логвиненко Д.Д., Шеляков О.П. «Техника», 1976, с.127-131).

Недостатком способа является унос обрабатываемого материала из рабочей зоны аппарата в процессе обработки.

Техническим результатом предлагаемого изобретения является разработка состава огнеупорной бетонной смеси и технологии изготовления бетона с повышенными прочностными характеристиками на сжатие.

Указанный технический результат достигается тем, что огнеупорная бетонная смесь, содержит огнеупорный заполнитель и связующее - высокоглиноземистый цемент, согласно изобретению смесь дополнительно содержит диоксид кремния или модифицированный оксид алюминия в виде наноразмерных частиц, а в качестве огнеупорного заполнителя используется муллит состава и корунд, при следующем соотношении компонентов, мас.%:

Корунд 13,0-20,0
Высокоглиноземистый цемент 5,0-10,0
Наночастицы диоксида кремния и/или
модифицированного оксида алюминия 0,04-0,08
Порошковый муллит фракцией 50-100 мкм 1,0-3,0
Муллит фракцией 3-7 мм остальное

Технический результат достигается также тем, что удельная поверхность наноразмерных частиц диоксида кремния составляет 180-300 м2/г, удельная поверхность наноразмерных частиц модифицированного оксида алюминия составляет 25-50 м2/г, при этом используют оксид алюминия, поверхностно модифицированный однопроцентным водным раствором 3-аминопропил-3-этоксисилана.

Указанный технический результат достигается тем, что способ изготовления бетона из огнеупорной смеси включает предварительную обработку вращающимся электромагнитным полем в аппарате с вихревым слоем в герметичной капсуле в течение 100-140 секунд, при соотношении обрабатываемых компонентов смеси и ферромагнитных частиц (2-4):1, части компонентов смеси в сухом виде, состоящей из высокоглиноземистого цемента, порошкового муллита фракцией 50-100 мкм, наночастиц диоксида кремния и/или модифицированного оксида алюминия, с последующим затворением бетонной смеси водой.

Технический результат достигается также тем, что герметичная капсула выполнена из немагнитного твердосплавного материала, а напряженность магнитного поля аппарата с вихревым слоем составляет 0,18-0,22 Тл.

Одной из важных существующих проблем при прогнозе эксплуатационных параметров огнеупоров является анализ их стойкости в режиме теплосмен, или так называемой термостойкости. Этот эксплуатационный показатель имеет важное значение для многих типов огнеупорных материалов, используемых, в том числе, для агрегатов внепечной обработки стали, таких как вакууматоры и установки печь-ковш.

Состав огнеупорной бетонной смеси подобран экспериментальным путем, исходя из требования получения бетонов с повышенной прочностью на сжатие.

Введение в смесь нанопорошков модифицированного оксида алюминия или оксида кремния со средними размерами частиц не более 100 нм, которые характеризуются высокой степенью дисперсности (удельная поверхность наноразмерных частиц диоксида кремния составляет 180-300 м2/г, а удельная поверхность наноразмерных частиц модифицированного оксида алюминия составляет 25-50 м2/г), а также дальнейшая обработка части компонентов смеси в сухом виде, состоящей из высокоглиноземистого цемента, порошкового муллита фракцией 50-100 мкм и наночастиц диоксида кремния и/или модифицированного оксида алюминия, в рабочей зоне аппарата с вихревым слоем (ABC) способствует повышению прочности огнеупорных бетонных изделий на сжатие, кроме того, повышается текучесть материала и, как следствие, лучшее заполнение форм при получении изделий из бетона.

ABC представляет собой магнитный циклотрон, заключенный в водоохлаждаемый корпус, в рабочую зону которого помещена герметичная капсула из немагнитного твердосплавного материала с ферромагнитными частицами. Под действием бегущего электромагнитного поля высокой мощности ферромагнитные рабочие тела приводятся в интенсивное движение. В результате в рабочем пространстве генерируется ряд эффектов, возникающих при ударах частиц друг о друга, о вещество и о стенки рабочей зоны. Суммарное воздействие всех факторов создает очень высокий уровень активации всех компонентов вещества, участвующих в процессе. Наиболее эффективными рабочими телами в рабочем пространстве являются ферромагнитные частицы в форме цилиндров (иголки).

Принципиальная схема ABC представлена на чертеже, где 1 - водоохлаждаемый кожух, 2 - электромагнитный индуктор, 3 - рабочее пространство, 4 - ферромагнитные частицы, 5 - герметичная капсула.

В процессе обработки под действием сил трения ферромагнитных тел о стенки капсулы повышается температура внутри реакционного пространства, что увеличивает степень активации материала, что облегчает процессы силикатообразования и дегидратации в смеси. В то же время герметичность капсулы позволяет уменьшить процесс испарения влаги, содержащейся изначально в материале, из-за избыточного давления, создаваемого внутри капсулы. Такая обработка позволяет добиться не только высокой гомогенности смеси, но и значительного повышения реакционной способности огнеупорной смеси.

Соотношение обрабатываемых в капсуле компонентов огнеупорной смеси и ферромагнитных стержней (2-4):1 определено экспериментальным путем, исходя из условия получения гомогенного материала.

Капсула, в которой проводится предварительная обработка части компонентов смеси, выполнена из немагнитного твердосплавного материала с целью меньшего загрязнения обрабатываемых сыпучих смесей материалом ферромагнитных цилиндрических частиц. Обработка компонентов смеси проводится в сухом виде для увеличения реакционной способности частиц обрабатываемого материала, чего не достигается при обработке материалов в жидком виде и в виде суспензий, т.к. отсутствуют истирающие нагрузки на материал.

Напряженность магнитного поля (0,18-0,22 Тл) подобрана эмпирически для обеспечения создания устойчивого вращения огнеупорной смеси в рабочей зоне ABC.

Для оценки оптимального уровня содержания нанопорошков диоксида кремния и модифицированного оксида алюминия были проведены серии экспериментов по получению и испытанию на предел прочности на сжатие образцов муллитокорундовых бетонов.

Контроль качества на предел прочности при сжатии огнеупорных бетонов осуществляли в соответствии с ГОСТ 4071.1-94. Результаты испытаний представлены в таблице 1.

Таким образом, установлено, что добавление к компонентам бетонной смеси, содержащим высокоглиноземистый цемент 5,0-10,0 мас.%, (от массы готового изделия), муллит порошковый фракции 50-100 мкм 1,0-3,0 мас.% и наноразмерных частиц оксида кремния и/или модифицированного оксида алюминия в количестве 0,04-0,08 мас.% и обработка этой смеси в ABC, с дальнейшим смешением полученной массы с огнеупорным заполнителем муллитом фракции 3-7 мм и корундом 13,0-20,0%, позволяет повысить предел прочности на сжатие получаемых изделий из бетона на 35-40%, при этом наблюдается повышение плотности изделий до 3%. Большее добавление нанопорошков нерационально ввиду заметно возрастающей себестоимости производимой продукции.

Было проведено сравнение прочностных характеристик образцов бетонов, полученных с использованием различных способов гомогенизации материалов. Во всех случаях использовалась смесь состава: высокоглиноземистый цемент 6%, корунд 17%, муллит порошковый фракции 50-100 мкм 2%, муллит фракции 3-7 мм с добавлением модификатора - наноразмерных частиц SiO2 или Al2O3, взятых в количестве 0,04% массы огнеупорной смеси. Первый способ заключался в сухом механическом перемешивании строительным миксером в течение 5 минут всех без исключения компонентов бетона с последующим затворением смеси водой в количестве 5,5% по массе огнеупорной смеси, второй - в добавлении суспензии наночастиц SiO2 или Al2O3 в воде к готовой механически смешанной традиционным способом бетонной смеси (строительный миксер) в пересчете на 0,04%) наночастиц на массу огнеупора. Третий способ заключался в предварительной обработке части компонентов бетона (высокоглиноземистый цемент, порошковый муллит и нанопорошки SiO2 или Al2O3) вращающимся электромагнитным полем в ABC с последующим затворением водой в количестве 5,5% по массе огнеупорной смеси. Полученные усредненные значения результатов испытаний на сжатие представлены в таблице 2.

Таблица 2
Результаты сравнительных испытаний на предел прочности на сжатие образцов бетона, полученных с использованием различных методов перемешивания
Образец Прочность, МПа
Механическое смешивание Суспензия Вихревое смешивание
контрольный 47 47 47
0,04% SiO2 42 37 78
0,04% Al2O3 41 41 72

Анализ полученных данных позволяет сделать вывод, что ни один из методов модифицирования данной категории бетона, кроме вихревого смешивания, не приводит к улучшению эксплуатационных характеристик. Бетон не только не упрочняется, а даже показывает прочностные характеристики ниже, чем контрольные образцы. Это вызвано тем, что модификатор не достигает равномерного распределения в объеме смеси, что создает значительные концентрационные неоднородности и, как следствие, разупрочнение бетона.

В таблице 3 приведены значения прочности образцов бетона в зависимости от времени обработки материала в герметичной капсуле аппарата с вихревым слоем ферромагнитных частиц.

Таблица 3
Прочность бетона в зависимости от времени обработки смеси
Время обработки, с Прочность (серия), МПа Прочность, МПа
0 50; 53; 45 49
20 49; 50; 55 51
40 53; 56; 55 55
60 62; 55; 59 59
80 57; 64; 60 60
100 65; 71; 72 69
120 69; 74; 69 71
140 68; 73; 72 71
160 64; 71; 70 68
180 74; 74; 66 71
200 72; 67; 70 70

Как видно из таблицы 3 на образцах, полученных после 100 секунд обработки в ABC, прочность практически не отличается, что говорит о том, что вводимая добавка в виде наноразмерных частиц оксидов кремния или модифицированного оксида алюминия достигла максимально возможного распределения по объему смеси. Таким образом, обрабатывать смесь более чем 100-140 секунд нецелесообразно ввиду излишних энергозатрат.

1. Огнеупорная бетонная смесь, содержащая огнеупорный заполнитель и связующее - высокоглиноземистый цемент, отличающаяся тем, что она дополнительно содержит диоксид кремния или модифицированный оксид алюминия в виде наноразмерных частиц, а в качестве огнеупорного заполнителя используется муллит и корунд, при следующем соотношении компонентов, мас.%:

Корунд 13,0-20,0
Высокоглиноземистый цемент 5,0-10,0
Наночастицы диоксида кремния и/или
модифицированного оксида алюминия 0,04-0,08
Порошковый муллит фракцией 50-100 мкм 1,0-3,0
Муллит фракцией 3-7 мм остальное

2. Бетонная смесь по п.1, отличающаяся тем, что удельная поверхность наноразмерных частиц диоксида кремния составляет 180-300 м2/г.

3. Бетонная смесь по п.1, отличающаяся тем, что используют оксид алюминия, поверхностно модифицированный однопроцентным водным раствором 3-аминопропил-3-этоксисилана.

4. Бетонная смесь по п.1, отличающаяся тем, что удельная поверхность наноразмерных частиц модифицированного оксида алюминия составляет 25-50 м2/г.

5. Способ изготовления бетона из огнеупорной смеси по п.1, включающий предварительную обработку вращающимся электромагнитным полем в аппарате с вихревым слоем в герметичной капсуле в течение 100-140 секунд, при соотношении обрабатываемых компонентов смеси и ферромагнитных частиц (2-4):1, части компонентов смеси в сухом виде, состоящей из высокоглиноземистого цемента, порошкового муллита фракцией 50-100 мкм, наночастиц диоксида кремния и/или модифицированного оксида алюминия, с последующим затворением бетонной смеси по п.1 водой.

6. Способ по п.5, отличающийся тем, что герметичная капсула выполнена из немагнитного твердосплавного материала.

7. Способ по п.5, отличающийся тем, что напряженность магнитного поля аппарата с вихревым слоем составляет 0,18-0,22 Тл.



 

Похожие патенты:
Изобретение относится к металлургии цветных металлов и может быть использовано для изготовления футерованных керамикой тиглей для алюмотермической выплавки лигатур редких тугоплавких металлов.
Изобретение относится к металлургии цветных металлов и может быть использовано для изготовления футерованных керамикой тиглей для выплавки лигатур, содержащих ванадий и/или молибден.
Изобретение относится к огнеупорной промышленности, а именно к огнеупорным пластичным массам, предназначенным для уплотнения зазора между футеровкой сталеразливочного ковша и обортовкой кожуха ковша и в стыках огнеупорной кладки тепловых агрегатов, ремонта и восстановления разрушенных участков огнеупорной кладки.
Огнеупорный материал для монтажа и футеровки тепловых агрегатов может быть использован в качестве огнеупорного неформованного материала для монтажа и ремонта футеровки сталеплавильных конверторов, электродуговых, мартеновских, нагревательных и закалочных печей, ковшей, для монтажа и ремонта футеровки медеплавильных и цинковых конверторов, отражательных и ванных печей, вращающихся вельц-печей, а также для монтажа и ремонта вращающихся печей по обжигу цементного клинкера, и для футеровки вращающихся и туннельных печей.

Изобретение относится к получению бетонных отливок, которые могут быть использованы для футеровки внутренних стенок сосудов и плавильных печей для получения жидкого металла, стекла и т.п.
Изобретение относится к смеси для горячего ремонта различных печей для рафинирования и сосудов для расплавленного металла. .
Изобретение относится к производству огнеупорных материалов, может быть использовано при производстве фасонных изделий для работы в области средних и высоких температур, в агрессивных средах, в расплавах.
Изобретение относится к огнеупорной промышленности и может быть использовано при производстве огнеупоров для ремонта футеровки металлургических агрегатов, в частности при горячем ремонте конвертера.
Изобретение относится к составу бетонной массы для изготовления безобжиговых и обжиговых огнеупорных изделий, выполнения монолитных футеровок, высокотемпературных агрегатов в металлургии и других отраслях, промышленности.
Изобретение относится к технологии получения композиционного керамического материала технического назначения состава TiN/Al2O3, который является перспективным для получения жаропрочных и износостойких материалов, а также покрытий для режущих и обрабатывающих инструментов.

Изобретение относится к технологии пористых керамических материалов конструкционного назначения и может быть использовано для изготовления изделий, сочетающих высокие показатели по пористости и прочности при невысокой теплопроводности (теплоизоляция, фильтры для очистки жидких и газовых сред, элементы комбинированной ударопрочной защиты, матрицы для получения композиционных материалов методом пропитки).

Изобретение относится к производству технической керамики кордиеритового состава, обладающей высокой термостойкостью, прочностью и хорошими диэлектрическими свойствами.
Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления керамических проппантов, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта.
Изобретение относится к области технической керамики на основе диоксида циркония с трансформируемой тетрагональной (t') кристаллической фазой и может быть использовано для изготовления износостойких деталей в соединительных изделиях для волоконно-оптических линий связи, пар трения в насосах для перекачки абразивосодержащих и агрессивных жидкостей, деталей в условиях повышенных механических нагрузок.
Изобретение относится к химической промышленности, в частности к способам получения тонкодисперсных порошков на основе оксида циркония, который может быть использован для производства плотной износостойкой керамики, материалов для имплантологии, твердых электролитов.

Изобретение относится к области получения материалов на основе диоксида циркония, стабилизированного оксидом иттрия, и может быть использовано для изготовления композиционных керамических изделий, применяемых в электротехнике, машиностроении, химической, металлургической и других отраслях промышленности.

Изобретение относится к химической промышленности, а именно к оборудованию для производства твердофазных композиционных материалов на основе сложных оксидов, и может быть использовано, в частности, при получении современных электродных материалов для вторичных литий-ионных источников тока.

Изобретение относится к технологии высокотемпературных керамических материалов конструкционного назначения с повышенными термомеханическими свойствами (футеровка тепловых агрегатов, термостойкий огнеприпас, элементы ударопрочной защиты).

Изобретение относится к способам получения порошков фаз кислородно-октаэдрического типа, у которых подрешетка В представляет собой совокупность октаэдров ЭО6 (Э - катионы р- и d-элементов), соединенных между собой вершинами, а катионы подрешетки А заполняют различные по геометрии пустоты подрешетки В (например, фазы со структурой типа перовскита), и может быть использовано для изготовления функциональных пьезоэлектрических, диэлектрических и ферримагнитных и смешанных материалов, применяемых в полупроводниковой, пьезоэлектрической и радиоэлектронной технике.
Изобретение относится к составу бетонной массы для изготовления безобжиговых и обжиговых огнеупорных изделий, выполнения монолитных футеровок, высокотемпературных агрегатов в металлургии и других отраслях, промышленности.
Наверх