Способ определения односторонних логарифмических декрементов колебаний



Способ определения односторонних логарифмических декрементов колебаний
Способ определения односторонних логарифмических декрементов колебаний
Способ определения односторонних логарифмических декрементов колебаний
Способ определения односторонних логарифмических декрементов колебаний
Способ определения односторонних логарифмических декрементов колебаний
Способ определения односторонних логарифмических декрементов колебаний
Способ определения односторонних логарифмических декрементов колебаний

 


Владельцы патента RU 2531843:

ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "ГОСУДАРСТВЕННОЕ МАШИНОСТРОИТЕЛЬНОЕ КОНСТРУКТОРСКОЕ БЮРО "РАДУГА" ИМЕНИ А.Я. БЕРЕЗНЯКА" (RU)

Изобретение относится к области экспериментальных исследований характеристик рассеивания энергии при колебаниях и может быть использовано при исследовании динамических характеристик, прочности и устойчивости конструкций и материалов. В предлагаемом способе возбуждают колебания исследуемого объекта, регистрируют резонансные частоты и кинематический параметр при резонансных частотах, затем путем изменения частоты вынуждающей силы снижают кинематический параметр до выбранной величины, фиксируют ее и соответствующую ей частоту колебаний. По полученным экспериментальным значениям частот и величин кинематического параметра рассчитывают логарифмические декременты колебаний. Технический результат заключается в упрощении проведения процесса исследований. 1 ил., 1 табл.

 

Изобретение относится к области экспериментальных исследований характеристик рассеивания энергии при колебаниях, а именно к способам определения односторонних логарифмических декрементов колебаний при резонансных испытаниях, и может быть использовано при исследовании динамических характеристик, прочности и устойчивости конструкций и материалов.

Известны несколько способов определения декрементов колебаний по резонансным кривым. Наиболее близким к предлагаемому способу является способ, принятый за прототип, патент RU №2086943, С1, МПК G01M 7/02, 1997 г., по которому гармонической силой постоянной амплитуды возбуждают колебания исследуемого объекта, регистрируют резонансные частоты fp и амплитуды перемещений a p=a(fp) при резонансных частотах, затем путем изменения частоты f вынуждающей силы снижают амплитуду перемещений до выбранной величины a(f), фиксируют ее и соответствующую ей частоту колебаний f и по формуле:

δ a = π z a | 1 u 2 | | 1 u 2 z a 2 | , где z a = a ( f ) a ( f p ) - степень спада, u = f f p ,

рассчитывают логарифмический декремент колебаний δa.

Все названные признаки, кроме регистрации амплитуды колебаний и расчета логарифмического декремента по вышеприведенной формуле, присутствуют в предлагаемом способе.

Ограниченностью принятого в качестве прототипа способа является невозможность использования для определения логарифмических декрементов колебаний резонансных кривых, основанных на разложении сигналов откликов на синфазную (действительную) и квадратурную (мнимую) составляющие, наиболее широко применяемые в современных системах частотных испытаний. Способ также ограничен в выборе датчиков первичной информации: для его реализации необходимо измерять амплитуду перемещений или пропорциональный ей параметр, например амплитуду относительных деформаций.

Изобретение направлено на создание способа определения односторонних логарифмических декрементов колебаний, свободного от упомянутых ограничений.

Это достигается благодаря тому, что в предлагаемом способе определения односторонних логарифмических декрементов колебаний гармонической силой постоянной амплитуды возбуждают колебания исследуемого объекта, регистрируют резонансные частоты fp и кинематический параметр qp=q(fp) [амплитуды колебаний перемещений (q=a), скоростей (q=ν) или ускорений (q=n), или квадратурные составляющие частотных характеристик перемещений (q=Ia), ускорений (q=In), или синфазные составляющие частотных характеристик скоростей (q=Rν)] при резонансных частотах, затем путем изменения частоты f вынуждающей силы снижают q(f) до выбранной величины фиксируют ее и соответствующую ей частоту колебаний f, по полученным экспериментальным значениям частот f и fp и величин q(f) и q(fp) рассчитывают логарифмические декременты колебаний по формулам (u=f/fp):

δ a = π z a | 1 u 2 | | 1 u 2 z a 2 | , z a = a ( f ) a ( f p ) , если q=a;

δ n = π z n | 1 u 2 | u | u 2 z n 2 | , z n = n ( f ) n ( f p ) , если q=n;

δ ν = π z ν | 1 u 2 | u | 1 z ν 2 | , z ν = ν ( f ) ν ( f p ) , если q=ν;

δ 1 a = π | 1 u 2 | u | u z 1 a u 2 | , z 1 a = I a ( f ) I a ( f p ) , если q=Ian;

δ 1 ν = π z 1 ν 1 z 1 ν | 1 u 2 | u , z 1 ν = R ν ( f ) R ν ( f p ) , если q=Rν;

δ 1 n = π | 1 u 2 | u | 1 u z 1 π | , z 1 n = I n ( f ) I n ( f p ) , если q=In.

Отличительными признаками изобретения являются следующие: помимо перемещений измеряемыми величинами могут быть скорости, ускорения, квадратурные составляющие частотных характеристик перемещений и ускорений, синфазные составляющие частотных характеристик скоростей и логарифмические декременты колебаний рассчитывают (если измеряемыми величинами не являются перемещения) по формулам (u=f/fp):

δ n = π z n | 1 u 2 | u | u 2 z n 2 | , z n = n ( f ) n ( f p ) , если q=n;

δ ν = π z ν | 1 u 2 | u | 1 z ν 2 | , z ν = ν ( f ) ν ( f p ) , если q=ν;

δ 1 a = π | 1 u 2 | u | u z 1 a u 2 | , z 1 a = I a ( f ) I a ( f p ) , если q=Ian;

δ 1 ν = π z 1 ν 1 z 1 ν | 1 u 2 | u , z 1 ν = R ν ( f ) R ν ( f p ) , если q=Rν;

δ 1 n = π | 1 u 2 | u | 1 u z 1 π | , z 1 n = I n ( f ) I n ( f p ) , если q=In.

В результате поиска по источникам патентной и научно-технической информации решений, содержащих такой признак, не обнаружено.

Следовательно, можно сделать заключение о том, что предложенное решение неизвестно из уровня техники и соответствует критерию охраноспособности - «новое».

Способ может быть осуществлен на конструкциях, элементах конструкций, образцах материалов при изгибных, крутильных или продольных колебаниях, возбуждаемых силовым или кинематическим способом, и может найти применение в машиностроении, ветроэнергетике, строительстве и т.д., где требуется определить динамические характеристики (частоты, формы и логарифмические декременты колебаний) механических конструкций, при исследовании механических свойств материалов, что позволяет сделать вывод о соответствии критерию «промышленная применимость».

Рассмотрим, например, реализацию способа при изгибных колебаниях летательного аппарата с плотным спектром частот при силовом его возбуждении.

Испытуемый образец мягко подвешивают на резиновых амортизаторах так, чтобы частота его колебаний на амортизаторах не превышала 10% от низшей собственной частоты. В одном из сечений к испытуемому образцу жестко подсоединяют подвижную часть специального электродинамического вибратора и возбуждают колебания при постоянном значении амплитуды возбуждающей силы. Варьируют частоты вынуждающей силы и по изменению какого-либо кинематического параметра q(f), например квадратурной составляющей In(f) комплексной передаточной функции одного из акселерометров, установленных на испытуемом образце, определяют резонанс. Регистрируют резонансную частоту fp колебаний и резонансное значение выбранного кинематического параметра q(fp). Точка резонансного пика Р с частотой fp и амплитудой qp=q(fp), соответствующая резонансу, представлена на фиг.1. Затем путем изменения частоты f вынуждающей силы снижают q(f) до выбранной величины (точка А), фиксируют ее и соответствующую ей частоту колебаний f.

По полученным экспериментальным данным вычисляют степень спада z=q(f)/q(fp), после чего определяют по соответствующей формуле логарифмический декремент колебаний δ.

Данный способ реализован в лабораторных условиях. В качестве испытуемого образца использовался корпус летательного аппарата. В качестве кинематического параметра q(f) была принята квадратурная составляющая In(f) комплексной передаточной функции одного из акселерометров типа АС 565/1, установленных на корпусе. Возбуждение осуществлялось специальным электродинамическим вибратором 20JE20/C. Управление возбуждением, измерения и выделение синфазной и квадратурной составляющих частотных характеристик осуществлялось управляющей измерительно-вычислительной системой PRIN85, входящей в состав комплекса частотных испытаний PRODERA.

Результаты вычисления логарифмических декрементов по экспериментально полученным значениям f, fp, In(f) и In(fp) приведены в таблице. Там же приведены результаты вычисления логарифмических декрементов по формуле патента (RU №2086943, С1)

δ a = π z a | 1 u 2 | | 1 u 2 z a 2 | , где z a = a ( f ) a ( f p ) .

Сравнение подтвердило близость полученных при осуществлении изобретения результатов.

Таблица
fp, Гц f, Гц δ1n δa
21,4 21,2 0,05 0,06
21,6 0,11 0,12
21,7 0,11 0,13
41,6 38,6 0,54 0,52
39,6 0,59 0,62
41,1 0,53 0,49
74,2 76,4 0,33 0,37

Способ определения односторонних логарифмических декрементов колебаний, по которому гармонической силой постоянной амплитуды возбуждают колебания исследуемого объекта, регистрируют резонансные частоты fp и кинематический параметр qp=q(fp): амплитуды колебаний перемещений (q=a), скоростей (q=ν) или ускорений (q=n), или квадратурные составляющие частотных характеристик перемещений (q=Ia), ускорений (q=In), или синфазные составляющие частотных характеристик скоростей (q=Rν) при резонансных частотах, затем путем изменения частоты f вынуждающей силы снижают q(f) до выбранной величины, фиксируют ее и соответствующую ей частоту колебаний f, по полученным экспериментальным значениям частот f и fp и величин q(f) и q(fp) рассчитывают логарифмические декременты, отличающийся тем, что помимо перемещений измеряемыми величинами могут быть скорости, ускорения, квадратурные составляющие частотных характеристик перемещений и ускорений, синфазные составляющие частотных характеристик скоростей и логарифмические декременты колебаний рассчитывают (если измеряемыми величинами не являются перемещения) по формулам (u=f/fp):
, , если q=n;
, , если q=ν;
, , если q=Ia;
, , если q=Rν;
, , если q=In..



 

Похожие патенты:

Стенд содержит раму (1) с установленным на ней с помощью плоских наклонных рессор (4, 5) желобом (2) с закрепленными на его нижней поверхности ребрами жесткости (3). Желоб связан с установленным на раме кривошипно-шатунным приводом с регулируемой частотой вращения его двигателя.

Изобретение относится к методам неразрушающего контроля, а именно к виброакустическим методам, и может найти применение для физического контроля железобетонных опор со стержневой напрягаемой арматурой.

Изобретение относится к области измерительной техники, в частности к средствам мониторинга технического состояния различных сооружений, и может быть использовано для текущей оценки и прогноза безопасной эксплуатации зданий и/или сооружений при возможных неблагоприятных воздействиях на объект.

Изобретение относится к испытательной технике, в частности к испытательным устройствам, и предназначено для проведения испытаний плоских конструкций. Устройство включает силовой пол, надувную камеру, по контуру которой установлены ограничительные элементы, опорные элементы, прикрепленные к силовому полу и компрессор.

Изобретение относится к области испытательной техники, в частности к резонансным испытаниям механических конструкций, и может быть использовано в машиностроении для определения характеристик собственных колебаний испытываемого объекта.

Изобретение относится к испытательной технике, в частности к устройствам для испытания линейным ускорением электромагнитных реле с самовозвратом, и может быть использовано для испытания на центрифуге одновременно более двух реле.

Изобретение относится к испытательной технике, в частности к способам испытания электромагнитных реле с самовозвратом на центрифуге. Согласно способу на центрифугу устанавливают одновременно все испытываемые реле, измерение и контроль параметров реле совмещают и проводят одновременно у всех реле без коммутации проводов за одно увеличение напряжения только одного источника тока Е1 питания катушек одновременно всех реле до напряжения срабатывания всех реле и за одно уменьшение до напряжения возврата всех реле.

Изобретение относится к области строительства и эксплуатации дорожных конструкций, а именно к оценке жесткости и прочности мостовых сооружений как автодорожных, так и железнодорожных.

Изобретение относится к области строительства и эксплуатации автомобильных дорог, а именно к методам и средствам диагностики состояния конструкций. При реализации способа на поверхности дорожной конструкции производится ударное воздействие, измерение реакции дорожной конструкции производится датчиками - пьезокерамическими виброакселерометрами, установленными на полосе наката в контрольных точках на различных расстояниях от центра области контакта на поверхности покрытия параллельно оси автомобильной дороги.

Изобретение относится к испытательной технике и может быть использовано для вибрационных испытаний различных изделий. .

Изобретение относится к исследованию характеристик рассеивания энергии при колебаниях и может быть использовано при исследованиях технических свойств материалов, динамических характеристик конструкций и их устойчивости при переменных нагрузках. В ходе реализации способа возбуждают вынужденные колебания испытуемого объекта, измеряют и регистрируют резонансную частоту fr и амплитуду qr=q(fr) одного из кинематических параметров колебаний испытуемого объекта на резонансных частотах. Затем путем изменения частоты вынуждающей силы производят расстройку резонанса по частоте на величину Δf и регистрируют амплитуду q1=q(fr-Δf) выбранного кинематического параметра на частоте f1=fr-Δf. Далее возбуждают вынужденные колебания испытуемого объекта на второй частоте f2=fr+Δf, регистрируют амплитуду q2=q(fr+Δf) и вычисляют логарифмический декремент колебаний δ(Δf). Технический результат заключается в упрощении проведения процесса исследований. 1 табл.

Изобретение относится к области экспериментальных исследований характеристик рассеивания энергии при колебаниях и может быть использовано при исследованиях динамических характеристик, прочности и устойчивости конструкций и материалов. При реализации способа ширину резонансных пиков определяют как разность двух характерных частот, полученных при пересечении резонансных кривых на произвольной высоте прямой, параллельной оси частот. Далее логарифмические декременты колебаний рассчитывают по соответствующим формулам. Технический результат заключается в упрощении процесса исследований. 2 ил.

Изобретение относится к вибрационной технике, в частности к средствам генерирования вибраций. Устройство содержит вал, основной торцевой ротор, дебалансный ротор, основание, обоймы направляющих, подпружиненную платформу, упругие элементы и привод ротора. При этом привод ротора выполнен в виде торцевого статора. Технический результат заключается в расширении динамического диапазона вибраций в область малых частот. 5 ил.

Изобретение относится к области строительства, а именно к автоматизированным системам мониторинга технического состояния конструкций здания или сооружения в процессе его эксплуатации. Контроль изменений напряженно-деформированного состояния здания и сооружения осуществляется путем вычисления коэффициентов корреляции в матрицах групп тесно связанных сенсоров (ассоциативных групп) над выборками в скользящем временном окне. При этом снижение величины среднего значения коэффициента детерминации сенсора относительно коэффициентов детерминации остальных сенсоров группы свидетельствует о дефекте соответствующего сенсора («дрейф», «запинание», «фиксация»), а снижение величин средних значений коэффициентов детерминации нескольких сенсоров относительно коэффициентов детерминации остальных сенсоров ассоциативной группы является признаком изменения напряженно-деформированного состояния соответствующих элементов конструкции объекта и инициирует процедуру детальных обследований. Анализ показаний сенсоров ведется в пространстве корреляционных характеристик (коэффициентов детерминации), которые нивелируют (игнорируют) такие массовые изъяны в настройках сенсоров, как разброс начальных значений и масштабных коэффициентов. Технический результат заключается в повышении точности системы, ее надежности, расширении межповерочного интервала сенсоров. 8 ил.

Изобретения относятся к контрольно-измерительной технике и могут быть использованы в инженерных сооружениях, оснащаемых системами непрерывного сейсмометрического мониторинга. Способ включает следующие этапы: предварительное обследование инженерного сооружения методом стоячих волн, определение форм собственных колебаний инженерного сооружения, выделение узлов и пучностей форм собственных колебаний инженерного сооружения, установку трехкомпонентных сейсмических датчиков, выполнение непрерывного сейсмометрического мониторинга инженерного сооружения. При этом установку трехкомпонентных сейсмических датчиков осуществляют в местах, соответствующих местам пучностей форм собственных колебаний инженерного сооружения. Устройство включает трехкомпонентные сейсмические датчики, выполняющие непрерывный сейсмический мониторинг инженерного сооружения. При этом установку датчиков осуществляют в местах, соответствующих местам пучностей форм собственных колебаний инженерного сооружения. Технический результат заключается в повышении достоверности определения параметров сейсмических воздействий на инженерное сооружение. 2 н.п. ф-лы, 1 ил.

Изобретение относится к испытательной технике, применяемой при прочностных испытаниях (в частности, к испытаниям на прочность электронных плат (ЭП) при изготовлении). Устройство содержит силовой каркас, включающий крепления для установки ЭП и опорные стойки, на которых фиксируется нажимной механизм, измерительный щуп и индикатор. Силовой каркас выполнен из четырех опорных стоек, соединенных стержнями по периметру, причем к двум противоположным стержням крепятся поперечины с установленными на них креплениями для ЭП, с возможностью перемещения ЭП вдоль параллельных стержней и вдоль поперечен. Над ЭП на опорные стойки размещен кондуктор, выполненный из кольца с верхней и нижней сетками, в ячейки которых установлены инденторы до упора в поверхность платы. Над кондуктором на опорные стойки закреплен нажимной механизм, состоящий из крестовины с плитой, а измерительный щуп и индикатор зафиксированы в подвесной узел на поперечинах под ЭП. Количество точек установки инденторов определяется по формулам. Технический результат: разработка простого нагрузочного устройства для испытаний на механические воздействия ЭП. 1 з.п. ф-лы, 7 ил.

Изобретение относится к испытанию колонн при центральном и внецентренном сжатии, а также элементов решетки ферм промышленных и гражданских сооружений большого габарита. Способ модернизации двухколонной универсальной испытательной машины с гидравлическим и механическим приводами и основанием, неподвижно заанкеренным в фундаменте, на котором жестко закреплена неподвижная П-образная рама, состоящая из пары параллельных друг другу колонн, оголовки которых соединены друг с другом в единое целое траверсой с гидропульсатором, а также имеющей подвижную по вертикали раму, собранную из верхней опорной траверсы и подвешенной к ней на паре винтовых тяг нижней траверсы подвижной рамы, перемещаемой по вертикали червячным приводом. Гидропульсатор демонтируют, освобождают центральное сквозное отверстие в неподвижной траверсе, демонтируют подвижную траверсу подвижной рамы, а винтовые тяги подвижной рамы присоединяют фланцевыми гайками к траверсе неподвижной рамы. Корпус гидропульсатора неподвижно монтируют по центру на фундаменте машины, снабжают его плунжер сферическим шарниром, с пульта управления включают червячный привод, корректируют и фиксируют проектную отметку по высоте верхней опорной траверсы подвижной рамы. Расширяют пределы испытаний колонн по высоте до 5…6 м, оголовок испытываемой колонны снабжают сферическим шарниром, подтягивают колонну вверх, пропускают ее сквозь освободившееся отверстие в траверсе неподвижной рамы, упирают сферический шарнир оголовка по центру в верхнюю опорную траверсу на проектной отметке. Технический результат состоит в снижении трудоемкости испытаний моделей колонн крупного масштаба, повышении точности испытаний в действующих лабораториях университетов и институтов. 3 ил.

Изобретение относится к испытательной технике. Способ реализуют следующим образом. На испытуемое изделие воздействует гармоническая вибрация, воспроизводимая на вибростенде и являющаяся эквивалентной ударным воздействиям, возникающим при транспортировании изделия. Предварительно расчетом определяют параметры импульса силы гармонической вибрации Iгв, определение импульса силы проводят во всем диапазоне частот 5-60 Гц. Затем проводят сравнение полученных импульсов Iгв≥Iу, где Iу - импульс силы эквивалентного ударного воздействия, при близости импульсов силы, при этом частота вибрационного воздействия, на которой был получен близкий к среднему значению импульса силы ударного воздействия импульс силы гармонической вибрации Iгв, соответствующий условию Iгв≥Iу, принимается в качестве частоты, на которой проводят испытания на транспортирование. Технический результат заключается в возможности замены испытаний на транспортирование испытаниями на гармоническую вибрацию. 1 ил., 2 табл.

Изобретение относится к испытательному оборудованию и может быть использовано для исследования систем виброизоляции. Стенд содержит основание, на котором расположены дополнительные плиты с закрепленными на них виброизолируемыми аппаратами, и регистрирующую аппаратуру. При этом на основании установлена аппаратура летательных аппаратов, в т.ч. два одинаковых бортовых компрессора для получения сжатого воздуха на борту летательного аппарата, при этом один компрессор установлен на штатных резиновых виброизоляторах, а другой компрессор установлен на исследуемой двухмассовой системе виброизоляции. Эта система включает в себя резиновые виброизоляторы и упругодемпфирующую промежуточную плиту с виброизоляторами, например, в виде пластин из полиуретана. Последние, так же как и штатные резиновые виброизоляторы компрессора, установлены на жесткой переборке, которая через вибродемпфирующую прокладку установлена на основании, а на жесткой переборке, между компрессорами, закреплен вибродатчик, сигнал с которого поступает на усилитель и регистрирующую аппаратуру, например октавный спектрометр, работающий в полосе частот. Затем сравнивают полученные амплитудно-частотные характеристики от работы каждого из компрессоров и делают выводы об эффективности виброизоляции каждой системы, на которой они установлены. Технический результат заключается в расширении технологических возможностей испытаний объектов, имеющих несколько упругих связей с корпусными деталями летательного объекта. 1 з.п. ф-лы, 4 ил.

Изобретение относится к испытательной технике, в частности к области испытаний конструкций или сооружений на вибрацию и ударные нагрузки, а именно к методам и средствам диагностики технического состояния строительных объектов. При реализации способа строят математическую модель сооружения, устанавливают адекватность колебаний реального сооружения и его модели, определяют энергетический параметр для каждого из элементов сооружения в выбранных точках и определяют изменение энергетического параметра сооружения. При текущих значениях изменений энергетического параметра, отличающихся от единичного значения в пределах заданного порогового значения, выносится суждение об отсутствии в соответствующих точках регистрации напряженно-деформированных состояний, при превышении значением изменения энергетического параметра заданного порога с последующим непрерывным ростом значения делается вывод о наличии напряженно-деформированных состояний контролируемого объекта в такой точке. Технический результат заключается в повышении быстродействия и точности определения деформационно-напряженного состояния контролируемого объекта, возможности использования способа при построении автоматизированных систем мониторинга строительных конструкций зданий, расширении функциональных возможностей, а также в расширении области применения. 4 з.п. ф-лы, 9 ил., 1 табл.
Наверх