Стенд для исследования систем виброизоляции



Стенд для исследования систем виброизоляции
Стенд для исследования систем виброизоляции
Стенд для исследования систем виброизоляции
Стенд для исследования систем виброизоляции
Стенд для исследования систем виброизоляции

 


Владельцы патента RU 2557332:

Кочетов Олег Савельевич (RU)

Изобретение относится к испытательному оборудованию и может быть использовано для исследования систем виброизоляции. Стенд содержит основание, на котором расположены дополнительные плиты с закрепленными на них виброизолируемыми аппаратами, и регистрирующую аппаратуру. При этом на основании установлена аппаратура летательных аппаратов, в т.ч. два одинаковых бортовых компрессора для получения сжатого воздуха на борту летательного аппарата, при этом один компрессор установлен на штатных резиновых виброизоляторах, а другой компрессор установлен на исследуемой двухмассовой системе виброизоляции. Эта система включает в себя резиновые виброизоляторы и упругодемпфирующую промежуточную плиту с виброизоляторами, например, в виде пластин из полиуретана. Последние, так же как и штатные резиновые виброизоляторы компрессора, установлены на жесткой переборке, которая через вибродемпфирующую прокладку установлена на основании, а на жесткой переборке, между компрессорами, закреплен вибродатчик, сигнал с которого поступает на усилитель и регистрирующую аппаратуру, например октавный спектрометр, работающий в полосе частот. Затем сравнивают полученные амплитудно-частотные характеристики от работы каждого из компрессоров и делают выводы об эффективности виброизоляции каждой системы, на которой они установлены. Технический результат заключается в расширении технологических возможностей испытаний объектов, имеющих несколько упругих связей с корпусными деталями летательного объекта. 1 з.п. ф-лы, 4 ил.

 

Изобретение относится к испытательному оборудованию.

Наиболее близким техническим решением по технической сущности и достигаемому результату является вибростенд по патенту РФ №2335747, G01M 7/08, G01N 3/313, содержащий основания, защищаемый объект, измерительную аппаратуру и генераторы вибрационных и ударных воздействий (прототип).

Недостатком прототипа является сравнительно невысокие возможности и точность для исследования систем, имеющих несколько упругих связей с корпусными деталями летательного объекта.

Технически достижимый результат - расширение технологических возможностей испытаний объектов, имеющих несколько упругих связей с корпусными деталями летательного объекта.

Это достигается тем, что в стенде для исследования систем виброизоляции, содержащем основание, на котором расположены дополнительные плиты с закрепленными на них виброизолируемыми аппаратами, и регистрирующую аппаратуру, на основании установлена аппаратура летательных аппаратов, например два одинаковых бортовых компрессора для получения сжатого воздуха на борту летательного аппарата, при этом один компрессор установлен на штатных резиновых виброизоляторах, а другой компрессор установлен на исследуемой двухмассовой системе виброизоляции, включающей в себя резиновые виброизоляторы и упругодемпфирующую промежуточную плиту с виброизоляторами, например, в виде пластин из полиуретана, которые так же как и штатные резиновые виброизоляторы компрессора установлены на жесткой переборке, которая через вибродемпфирующую прокладку установлена на основании, а на жесткой переборке, между компрессорами, закреплен вибродатчик, сигнал с которого поступает на усилитель и регистрирующую аппаратуру, например октавный спектрометр, работающий в полосе частот (Гц): 2; 4; 8; 16; 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000 Гц, а затем сравнивают полученные амплитудно-частотные характеристики от работы каждого из компрессоров и делают выводы об эффективности виброизоляции каждой системы, на которой они установлены.

На фиг. 1 представлен общий вид вибростенда, на фиг. 2 - его принципиальная схема, на фиг. 3 - математическая модель системы «компрессор 2 на двухмассовой системе виброизоляции», на фиг. 4 - характеристики логарифмического декремента затухания свободных колебаний двухмассовой системы виброизоляции в зависимости от входного ударного импульса.

Стенд для исследования систем виброизоляции (фиг. 1) состоит из основания 12, на котором установлена аппаратура летательных аппаратов, например два одинаковых бортовых компрессора 1 и 2 для получения сжатого воздуха на борту летательного аппарата. При этом один компрессор 1 (фиг. 2) установлен на штатных резиновых виброизоляторах 7, а другой компрессор 2 установлен на исследуемой двухмассовой системе виброизоляции, включающей в себя резиновые виброизоляторы 5 и упругодемпфирующую промежуточную плиту 4 с виброизоляторами 6, например, в виде пластин из полиуретана, которые так же как и штатные резиновые виброизоляторы 7 компрессора 1 установлены на жесткой переборке 8, которая через вибродемпфирующую прокладку 11 установлена на основании 12. На фиг. 3 показана математическая модель двухмассовой системы «компрессор 2 на промежуточной плите 4 с виброизоляторами 5 и 6»,

где c1 и m1 - соответственно жесткость упругих элементов плиты 4 и ее масса,

где c2 и m2 - соответственно жесткость виброизоляторов 5 и масса компрессора 2,

h1 - абсолютная величина вязкого демпфирования в системе, которая связана с логарифмическим коэффициентом затухания δ1 колебательной системы следующей зависимостью (1):

На жесткой переборке 8, между компрессорами 1 и 2, закреплен вибродатчик 3, сигнал с которого поступает на усилитель 10 и затем на регистрирующую колебания аппаратуру 9, например октавный спектрометр, работающий в полосе частот (Гц): 2; 4; 8; 16; 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000 Гц.

Стенд для исследования систем виброизоляции работает следующим образом.

Сначала включают компрессор 1, который установлен на штатных резиновых виброизоляторах 7, и снимают амплитудно-частотные характеристики (АЧХ) с помощью датчика 3, усилителя 10 и спектрометра 9. Затем выключают компрессор 1 и включают компрессор 2, который установлен на исследуемой двухмассовой системе виброизоляции, включающей в себя резиновые виброизоляторы 5 и упругодемпфирующую промежуточную плиту 4 с виброизоляторами 6, и также снимают амплитудно-частотные характеристики с помощью датчика 3, усилителя 10 и спектрометра 9. После чего сравнивают полученные АЧХ от работы каждого из компрессоров 1 и 2, и делают выводы об эффективности виброизоляции каждой системы, на которой они установлены. Для того чтобы определить собственные частоты каждой из исследуемых систем виброизоляции производят имитацию ударных импульсных нагрузок на каждую из систем и записывают осциллограммы свободных колебаний (на чертеже не показано), при расшифровке которых судят о собственных частотах систем (см. фиг. 4 и формула (1)).

1. Стенд для исследования систем виброизоляции, содержащий основание, на котором расположены дополнительные плиты с закрепленными на них виброизолируемыми аппаратами, и регистрирующую аппаратуру, отличающийся тем, что на основании установлена аппаратура летательных аппаратов, например два одинаковых бортовых компрессора для получения сжатого воздуха на борту летательного аппарата, при этом один компрессор установлен на штатных резиновых виброизоляторах, а другой компрессор установлен на исследуемой двухмассовой системе виброизоляции, включающей в себя резиновые виброизоляторы и упругодемпфирующую промежуточную плиту с виброизоляторами, например, в виде пластин из полиуретана, которые так же как и штатные резиновые виброизоляторы компрессора установлены на жесткой переборке, которая через вибродемпфирующую прокладку установлена на основании, а на жесткой переборке, между компрессорами, закреплен вибродатчик, сигнал с которого поступает на усилитель и регистрирующую аппаратуру, например октавный спектрометр, работающий в полосе частот (Гц): 2; 4; 8; 16; 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000 Гц, а затем сравнивают полученные амплитудно-частотные характеристики от работы каждого из компрессоров и делают выводы об эффективности виброизоляции каждой системы, на которой они установлены.

2. Стенд для исследования систем виброизоляции по п.1, отличающийся тем, что для определения собственных частот каждой из исследуемых систем виброизоляции производится имитация ударных импульсных нагрузок на каждую из систем и записываются осциллограммы свободных колебаний, при расшифровке которых судят о собственных частотах системы и логарифмическом декременте затухания колебаний.



 

Похожие патенты:

Изобретение относится к испытательной технике. Способ реализуют следующим образом.

Изобретение относится к испытанию колонн при центральном и внецентренном сжатии, а также элементов решетки ферм промышленных и гражданских сооружений большого габарита.

Изобретение относится к испытательной технике, применяемой при прочностных испытаниях (в частности, к испытаниям на прочность электронных плат (ЭП) при изготовлении).

Изобретения относятся к контрольно-измерительной технике и могут быть использованы в инженерных сооружениях, оснащаемых системами непрерывного сейсмометрического мониторинга.

Изобретение относится к области строительства, а именно к автоматизированным системам мониторинга технического состояния конструкций здания или сооружения в процессе его эксплуатации.

Изобретение относится к вибрационной технике, в частности к средствам генерирования вибраций. Устройство содержит вал, основной торцевой ротор, дебалансный ротор, основание, обоймы направляющих, подпружиненную платформу, упругие элементы и привод ротора.

Изобретение относится к области экспериментальных исследований характеристик рассеивания энергии при колебаниях и может быть использовано при исследованиях динамических характеристик, прочности и устойчивости конструкций и материалов.

Изобретение относится к исследованию характеристик рассеивания энергии при колебаниях и может быть использовано при исследованиях технических свойств материалов, динамических характеристик конструкций и их устойчивости при переменных нагрузках.

Изобретение относится к области экспериментальных исследований характеристик рассеивания энергии при колебаниях и может быть использовано при исследовании динамических характеристик, прочности и устойчивости конструкций и материалов.

Стенд содержит раму (1) с установленным на ней с помощью плоских наклонных рессор (4, 5) желобом (2) с закрепленными на его нижней поверхности ребрами жесткости (3). Желоб связан с установленным на раме кривошипно-шатунным приводом с регулируемой частотой вращения его двигателя.

Изобретение относится к испытательной технике, в частности к области испытаний конструкций или сооружений на вибрацию и ударные нагрузки, а именно к методам и средствам диагностики технического состояния строительных объектов. При реализации способа строят математическую модель сооружения, устанавливают адекватность колебаний реального сооружения и его модели, определяют энергетический параметр для каждого из элементов сооружения в выбранных точках и определяют изменение энергетического параметра сооружения. При текущих значениях изменений энергетического параметра, отличающихся от единичного значения в пределах заданного порогового значения, выносится суждение об отсутствии в соответствующих точках регистрации напряженно-деформированных состояний, при превышении значением изменения энергетического параметра заданного порога с последующим непрерывным ростом значения делается вывод о наличии напряженно-деформированных состояний контролируемого объекта в такой точке. Технический результат заключается в повышении быстродействия и точности определения деформационно-напряженного состояния контролируемого объекта, возможности использования способа при построении автоматизированных систем мониторинга строительных конструкций зданий, расширении функциональных возможностей, а также в расширении области применения. 4 з.п. ф-лы, 9 ил., 1 табл.

Изобретение относится к области измерительной техники, в частности к способам вибрационной диагностики, и может быть использовано для мониторинга технического состояния агрегатов гидравлических систем в автоматических системах контроля. При реализации способа до начала анализа тестируемых объектов гидропривода определяют характер вибрационных сигналов, снимаемых с исправных агрегатов, в качестве которых брались новые и прошедшие ремонт, и составляется база данных по типам и маркам агрегатов (N новых и М прошедших ремонт). Для этого с помощью датчиков, закрепляемых на корпусе диагностируемого объекта, регистрируется и обрабатывается амплитудно-частотный спектр объекта при его работе в номинальном режиме. Амплитуда сигнала вибрации частотного спектра идеального агрегата будет вычисляться с учетом амплитуд новых и отремонтированных агрегатов на малом участке частоты и их числа соответственно. Таким образом, в базе данных по спектрам исправных машин формируется амплитудно-частотный спектр идеального агрегата определенной марки, а также определяются зоны вибрационного контроля, соответствующие различным состояниям агрегатов. При тестировании производят сравнение измеренного спектра обследуемого объекта и идеального агрегата и делают вывод о наличии или отсутствии дефектов. Технический результат заключается в расширении области диагностирования, возможности диагностики агрегатов в закрытом корпусе без доступа к отдельным механизмам, повышении точности при определении вида неисправности. 3 ил.

Изобретение относится к измерительной технике и может использоваться для проведения испытаний на надежность электронных плат (ЭП) и их компонентов к комбинированным механическим и тепловым воздействиям. Целью изобретения является разработка комбинированного способа испытаний на механические и тепловые воздействия ЭП при задаваемой нагрузке. Указанная цель достигается тем, что испытания проводят в два этапа. На первом этапе точки приложения нагрузки и точку с максимальным перемещением (прогиб) определяют расчетным путем по огибающим максимальных значений перемещений из результатов испытаний предварительно разработанной конечно-элементной модели прибора с ЭП на всех этапах штатной эксплуатации, а величину нагрузки в каждой из выбранных точек определяют по формуле: где δj(xi, yi) - перемещение в j точке, под влиянием нагрузки, приложенной в i точке; Pi(xj, yj) - нагрузка, приложенная в точке i; G - коэффициент пропорциональности, связывающий перемещение с нагрузкой и цилиндрической жесткостью платы; - цилиндрическая жесткость платы (E - модуль упругости материала ЭП, h - толщина ЭП, ν - коэффициент Пуассона материала ЭП), а также нагружение выбранных точек проводят последовательно, контролируя перемещения в остальных точках, и при необходимости увеличивают перемещение в последующих точках, определяя максимальное перемещение по формуле где δmax(xj, yj) - максимальное перемещение в точке j; ∑ i = 1 N δ j ( x i , y i ) - суммарное перемещение в j точке; N - количество точек приложения нагрузки (N≥1); j - номер точки с максимальным перемещением; i - номер текущей точки с перемещением; Δ - погрешность задания перемещения, при этом в оснастке для установки ЭП обеспечивают граничные условия, аналогичные условиям крепления ЭП в составе прибора и напряжения, возникающие в ЭП, не превышают допустимых значений для материала ЭП и установленных на ЭП комплектующих элементов, а при проведении приемных испытаний максимальное перемещение определяют по формуле где η - коэффициент запаса прочности материала по перемещению. При этом с использованием метода акустической эмиссии (АЭ) в процессе деформирования контролируют возникновение повреждений в конструкции ЭП. При отсутствии повреждений в конструкции ЭП переходят ко второму этапу. Оснастку с ЭП устанавливают в термокамеру и проводят испытания на термоциклирование, причем количество термоциклов и диапазон изменения температур, действующих на ЭП, соответствует требованиям приемных испытаний ЭП, при этом с использованием метода АЭ в процессе термоциклирования ЭП контролируют возникновение повреждений на ЭП, а по окончании испытаний на термоциклирование выполняют проверку работоспособности ЭП. Дополнительный эффект получают за счет того, что по окончании первого этапа проводят термоциклирование с половиной числа термоциклов, соответствующих требованиям приемных испытаний ЭП, затем извлекают оснастку с ЭП из термокамеры и переустанавливают ЭП в оснастке, поворачивая ее к инденторам обратной стороной, вновь создают прогиб ЭП и проводят повторное термоциклирование с половиной числа термоциклов, соответствующих требованиям приемных испытаний ЭП. 2 з.п. ф-лы, 4 ил.

Изобретение относится к области охранной сигнализации и касается способа установления воздействия на конструкцию с использованием датчика движения. Технический результат заключается в повышении достоверности определения разрушения конструкции. Результат достигается тем, что в качестве датчика движения в устройстве для установления воздействия на конструкцию используют акселерометр, соединенный с амплитудным детектором, запускающим при превышении заданного значения амплитуды схему контроля частоты колебаний конструкции, и при отклонении значений частоты собственных колебаний конструкции от значений частоты собственных колебаний целой конструкции или при отсутствии частоты собственных колебаний конструкции формируется сигнал, свидетельствующий о разрушении конструкции. Согласно способу определения целостности конструкции при помощи генератора импульсов генератор импульсов настраивают таким образом, чтобы после его запуска момент импульсов совпадал со значениями напряжения, соответствующими пику каждого колебания конструкции в целом состоянии, при этом генератор импульсов запускается автоматически при воздействии на конструкцию и при несовпадении с указанными значениями напряжения полученных значений напряжения, соответствующих пикам колебаний конструкции, или при отсутствии колебаний конструкции устанавливают разрушение конструкции. 2 н. и 9 з.п. ф-лы, 3 ил.

Изобретение относится к области экспериментальной аэромеханики и может быть использовано при исследованиях динамических характеристик основных элементов конструкции летательного аппарата во время эксплуатации. При реализации способа сначала на образцах-свидетелях определяют зависимости от различных факторов характеристик демпфирующей способности материалов конструкции, затем на натурной конструкции планера ЛА в наземных условиях определяют динамические характеристики, в том числе зависимости от различных факторов параметров затухания колебаний для нескольких собственных тонов колебаний планера. Затем с помощью расчетов устанавливают перечень консервативных собственных тонов колебаний конструкции планера ЛА в диапазоне крейсерских скоростей полета, далее в полете при одинаковых режимах с помощью симметричного или антисимметричного отклонения штатных органов управления ЛА возбуждают гармонические или полигармонические колебания, и по измеренным данным датчиков вибрации, размещенных на диагностируемых элементах конструкции, и по значениям возбуждающей силы вынужденных колебаний органов управления ЛА в начале плановой эксплуатации и в назначенный срок определяют значения динамических характеристик основных гармонических, а также нелинейных колебаний для консервативных тонов, наличие негативного для исследуемой конструкции планера ЛА изменения в процессе эксплуатации параметров затухания указанных выше колебаний является признаком деградации прочностных характеристик элементов конструкции. Технический результат заключается в увеличении точности определения динамических характеристик элементов конструкции ЛА в полете. 3 ил.

Изобретение относится к области динамических испытаний конструкций и может быть использовано при испытаниях механических конструкций и электронных систем на динамические механические или электронные воздействия. Предлагаемый способ динамических испытаний конструкций и систем предназначен для обнаружения в процессе испытаний опасных отклонений параметров. В предлагаемом способе с помощью предварительного ударного возбуждения колебаний производят нагружение объекта и получают путем обработки этого возбуждения испытательного сигнала, распределение мощности и фазовая структура спектра которого полностью согласованы с характеристиками объекта испытаний. Все частотные составляющие испытательного сигнала обеспечивают максимально возможный отклик объекта испытаний, как результат синфазного взаимного сложения всех частотных составляющих отклика в момент окончания каждого испытательного импульса. Технический результат заключается в получении испытательного сигнала, согласованного с характеристиками объекта испытаний, и возможности обнаружения опасной непредсказуемой реакции системы на испытательный сигнал. 2 ил.

Изобретение относится к области обеспечения надежности и безопасности технических устройств производственных объектов повышенной опасности. Способ заключается в осуществлении системы контроля, включающей оценку состояния технических устройств технологических установок, усиленный входной контроль технического состояния технических устройств технологических установок на основе анализа технической документации с учетом условий эксплуатации, вероятности отказов в период эксплуатации, а также комплексный сопровождающий контроль фактического их технического состояния в условиях увеличенного интервала между капитальными ремонтами. Способ предусматривает ранжирование по степени опасности с выделением слабых звеньев, присвоения им ранга опасности на основе экспертно-балльной оценки с использованием матричной формы анализа информации о факторах, определяющих степень возможной безопасной дальнейшей эксплуатации технических устройств и их классификации, и на этой основе определение объема и уровня неразрушающего контроля в зависимости от ранга опасности. Одновременно осуществляют определение зон неразрушающего контроля технических устройств независимо от процедуры установления их ранга. На основании полученных результатов по ранжированию и определению зон контроля устанавливают требования к проведению сопровождающего диагностирования технических устройств с использованием средств неразрушающего контроля. Объем, средства и периодичность неразрушающего контроля устанавливается с учетом данных входного контроля технического состояния, ранга опасности и результатов комплексного технического контроля, проводимого во время капитального ремонта оборудования, предшествующего переводу технологической установки на увеличенный интервал между капитальными ремонтами. Осуществляют электронную архивацию данных по каждой единице оборудования, полученных при аудите и при ранжировании и техническом его диагностировании, т.е. формируют информационную базу данных о фактическом техническом состоянии технических устройств, что позволяет создать их электронный паспорт. Технический результат заключается в повышении надежности эксплуатации в условиях увеличения интервала между капитальными ремонтами. 3 з.п. ф-лы, 2 ил., 9 табл.

Изобретения относятся к приборостроению, в частности к контрольно-измерительной технике, а именно к автоматическим средствам непрерывного отслеживания состояния конструкций. Способ заключается в опросе датчиков, установленных на сооружениях, и обработке данных на компьютере, со сравнением с предшествующими показателями. Каждому сооружению присваиваются свои кодовые обозначения, при опросе датчиков, при поступлении по линии связи соответствующего кода, включается аппаратуру только выбранного сооружения, и производится измерение параметров, затем производится опрос следующего сооружения. Опрос датчиков и передача информации производится с разнесением по времени для каждого из сооружений. Устройство, реализующее предлагаемый способ, содержит набор измерительных преобразователей, блок предварительной обработки сигналов, цифровую шину, конвертор, пункт контроля, выполненный в виде компьютера, дисплей и устройство звуковой сигнализации и блок управления. Каждый блок предварительной обработки сигналов содержит аналого-цифровой преобразователь, коммутатор и кодер. Каждый блок управления содержит декодер, первый и второй блоки сравнения кодов, первый и второй блоки памяти, блок временной задержки и логическую схему. Технический результат заключается в повышении эффективности контроля состояния конструкции здания или инженерно-строительного сооружения. 2 н.п. ф-лы, 5 ил.

Изобретение относится к области строительства и может быть использовано при испытании конструкций и отдельных элементов зданий и сооружений, работающих на изгиб с кручением при статическом и кратковременном динамическом воздействии с определением точной деформационной модели конструкции, например балок или плит. Сущность: сначала испытуемый образец устанавливают на жесткие опоры. В заданных местах на испытуемом образце закрепляют оголовники с противоположно направленными вылетами, на вылетах оголовников размещают концы распределительной траверсы. Через распределительную траверсу испытуемый образец нагружают и исследуют его деформированное состояние, вызванное одновременным изгибом и кручением под воздействием нагрузки, фиксируя перемещения в сечениях испытуемого образца. Деформированное состояние испытуемого образца оценивают по абсолютному значению вертикальных прогибов испытуемого образца и абсолютному углу закручивания испытуемого образца, для этого одновременно с двух сторон от продольной оси испытуемого образца вблизи каждого из оголовников и симметрично относительно продольной оси испытуемого образца устанавливают прогибомеры, с помощью которых измеряют вертикальные перемещения противоположных сторон испытуемого образца под воздействием заданной нагрузки, причем каждый прогибомер устанавливают с возможностью обеспечения строго вертикального положения подвижного штока, а абсолютный вертикальный прогиб fпр в рассматриваемом сечении испытуемого образца определяют по формуле. Технический результат: возможность определения абсолютных величин угла закручивания и вертикальных прогибов конструкции, работающей на изгиб с кручением, которые позволяют определить точную схему деформирования элемента, находящегося в условиях сложного НДС. 3 з.п. ф-лы, 1 табл., 9 ил.

Изобретение относится к области испытательного оборудования, предназначенного для испытаний на работоспособность СИ и ВУ при задействовании их импульсами тока различной формы и амплитуды в момент действия ударных нагрузок. Устройство включает испытательную и операционную зоны. В испытательной зоне расположен копер, состоящий из деревянной станины, в которой располагается вал. На валу закреплены сегмент и храповое колесо, к сегменту закреплены груз, подвешенный на ремне, и рукоятка с молотом. На станине параллельно оси вала установлена тумба, в пазу которой расположена наковальня. Копер заключен в защитную стальную камеру, двери которой оснащены системой блокировки цепей электропитания, снаружи которой расположен механический привод для подъема молота. На молоте закреплены приспособление с испытываемым объектом, пьезодатчик для контроля времени работы ЭД и пьезоакселерометр. Также в испытательной зоне размещены схема формирования импульса подрыва, соединенная с испытуемым объектом подрывной магистралью, и ПР, установленный на подрывную магистраль и обеспечивающий измерение тока, протекающего через мостик ЭД в момент его срабатывания. В операционной зоне размещены УЗД, генератор импульсов, формирующий необходимую задержку, ГПИ, соединенный со схемой формирования импульса подрыва электрическим кабелем, и регистрирующая аппаратура, соединенная измерительными кабелями с датчиками и ПР. Технический результат заключается в возможности испытаний быстродействующих СИ и ВУ при задействовании их импульсами тока различной амплитуды и длительности в момент действия ударных нагрузок, упрощении конструкции, обеспечении безопасности персонала. 4 ил.
Наверх