Устройство экономичного и энергосберегающего обеззараживания кормов и продуктов животноводства и птицеводства



Устройство экономичного и энергосберегающего обеззараживания кормов и продуктов животноводства и птицеводства
Устройство экономичного и энергосберегающего обеззараживания кормов и продуктов животноводства и птицеводства
Устройство экономичного и энергосберегающего обеззараживания кормов и продуктов животноводства и птицеводства

 


Владельцы патента RU 2533585:

Российская академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) (RU)

Изобретение относится к области сельского хозяйства, к технологиям обеззараживания комбикормов для животных и птицы и продукции животноводства и птицеводства. Устройство содержит последовательное соединение задатчика наибольшего срока хранения обеззараживаемых кормов и продуктов 1, задатчика максимальной дозы облучения 2 и задатчика максимальной облученности 3, датчик скорости движения рабочего органа магистрального транспортера 4, датчик массы обеззараживаемых кормов и продуктов 5, датчик облученности 6, последовательное соединение регулятора облученности 7, блока регулирования напряжения электропитания ускоряющей системы ускорителя электронов и ускорителя электронов с выходным рупором 9. Выход датчика облученности 6 подключен к инвертирующему входу регулятора облученности 7. В устройство введены задатчик значений искусственного сигнала облученности 10 в технологическом диапазоне изменения облученности от нуля до ее предельного значения при каждом конкретном значении скорости движения рабочего органа магистрального транспортера 4, блок задатчиков констант и коэффициентов 11 математических моделей управления режимом облученности обеззараживаемых кормов и продуктов, блок вычисления целевой функции суммарных затрат 12, блок определения наименьшего значения целевой функции суммарных затрат 13. Выходы задатчика максимальной облученности 3, датчика скорости движения рабочего органа магистрального транспортера 4, датчика массы обеззараживаемых кормов и продуктов 5, задатчика значений искусственного сигнала облученности 10 и блока задатчиков констант и коэффициентов 11 соединены с соответствующими входами блока вычисления целевой функции суммарных затрат 12. Выход блока вычисления целевой функции суммарных затрат 12 через блок определения наименьшего значения целевой функции суммарных затрат 13 подключен к неинвертирующему входу регулятора облученности 7. Обеспечивается повышение точности обеззараживания кормов и продуктов животноводства и птицеводства. 3 ил.

 

Изобретение относится к области сельского хозяйства, к технологиям обеззараживания комбикормов для животных и птицы и продукции животноводства и птицеводства и может быть использовано в отраслях промышленного животноводства и птицеводства, при переработке готовой продукции и кормов, а также в птицеперерабатывающей отрасли сельского хозяйства.

Известно, что с помощью электронно-лучевой (ЭЛ) стерилизации можно обработать кусок мяса толщиной до 7,5 см. Главное различие между ЭЛ и гамма-стерилизацией: ЭЛ-стерилизация использует разогнанный с помощью линейного ускорителя пучок электронов, а гамма-стерилизация - гамма-частицы. Стерилизовать, уничтожать микроорганизмы можно с помощью высоких температур, специальных газов или проникающего излучения. Норма биологического загрязнения после радиационной стерилизации медицинских изделий составляет: один остаточный микроб на одно изделие из миллиона. После обеззараживания радиационным способом медицинские отходы могут быть вторично переработаны. Обрабатывая лекарственные травы в ЭЛ-установках, можно добиться очистки их от микробов. ЭЛ-стерилизация зерна позволяет увеличить сроки хранения за счет уничтожения вредителей и микробов (см.: zap-vk.do.am/index/zadanie_quot_ato…).

Определены оптимальные условия применения облучения ускоренными электронами поверхности скорлупы яиц с целью обеззараживания сальмонелл. Обработка поверхности скорлупы яиц ионизирующим излучением в дозе 5 кГр инактивирует сальмонеллы на поверхности скорлупы. При обработке яичного порошка ионизирующим облучением S.typhimurium погибает при дозе облучения кГр. Обработка яичного порошка на рентгеновском технологическом источнике в дозе 5 кГр уничтожает сальмонеллы (см.: Лищук, Андрей Петрович. Обеззараживание куриных яиц и яйцепродуктов (меланж, яичный порошок) от сальмонелл.

Дисс. … канд. вет. наук. - М.: 2002. - 177 с.; спец. ВАК 16.00.06, 16.00.03). dissercat.com/content/obezzaraz….

В процессе обработки объект облучается пучком электронов. В качестве источников ионизирующих излучений в радиационно-технологических установках могут быть использованы, например, разработанные в НПК ЛУЦ НИИЭФА линейные ускорители электронов моделей: УЭЛР-10-10С, УЭЛВ-10-10С, УЭЛВ-8-5С, УЭЛВ-3-2.5С, УЭЛР-3-1С. Ускорители снабжены устройствами для сканирования пучка электронов в полосу. Размер полосы сканирования определяется размерами облучаемых изделий. Толщина обрабатываемых изделий определяется энергией ускоренных электронов. Скорость и объемы обработки зависят от мощности пучка. Ускоритель УЭЛВ-10-10С - с ускоряющей структурой с бегущей волной, длина структуры 2,05 м. Отличительная особенность ускорителя - возможность плавной регулировки энергии электронов в диапазоне 5…10 МэВ за счет изменения нагрузки пучком при средней мощности в пучке 10…12 кВт. Ускоритель УЭЛР-10-10С - с ускоряющей структурой со стоячей волной. Отличительная особенность - компактность ускоряющей структуры, длина которой составляет 1,1 м. Энергия электронов может регулироваться в пределах 8…10 МэВ при средней мощности в пучке 9…10 кВт. На базе линейного ускорителя УЭЛВ-3-2.5 создана установка с индивидуальной радиационной защитой для стерилизации пучком электронов продуктов питания и почтовой корреспонденции. Стерилизуемые изделия помещаются в специальную кассету, которая устанавливается оператором в устройство перемещения, расположенное в камере облучения. Устройство позволяет осуществлять как одностороннее, так и двустороннее облучение изделия. Основные технические характеристики установки: энергия ускоренных электронов 3 МэВ; мощность пучка ускоренных электронов, выводимых через выходное окно, 2,5 кВт; потребляемая мощность электропитания 40 кВт; максимальная длина полосы сканирования 350 мм; скорость перемещения облучаемого объекта 0,3…1,5 м/мин (см.: corex-spb.ru/fabric.htm). E-mail: corexspb@gmail.com; astit@yandex.ru; http://www.corex-spb.ru).

Сравнение с существующими методами стерилизации (термическим, газовым, химическим) показывает, что только радиационные методы стерилизации и обеззараживания изделий обеспечивают эффективность уничтожения патогенной флоры. Вместе с тем, использование радиационных методов более технологично, экологически безопасно, экономически выгодно. Стоимость стерилизации 1 кг изделий составляет 0,34 цента против 1,2 в термическом, 1,5 в газовом и свыше 5 в химическом вариантах обеззараживания. В мире сейчас работает свыше 30 центров радиационной стерилизации медицинских изделий. Радиационная обработка продуктов питания также распространяется в мире. Использование радиационной обработки с целью удлинения сроков хранения обеспечивает устранение неизбежно больших количественных и качественных потерь при хранении продуктов растениеводства и животноводства. Эти потери обусловлены ферментативными процессами деятельностью микрофлоры и вредоносными насекомыми. Так, при хранении картофеля, обработанного малыми дозами ионизирующего излучения, потери резко снижаются (с 25% до 3…5%). Срок хранения копчено-вареной корейки, грудинки и полукопченой колбасы, облученных малыми дозами и упакованных в полимерную пленку под вакуумом, увеличивается в три раза. Аналогичные результаты получены для рыбных продуктов. Эффективно решаются также вопросы стерилизации продукции птицеводства - надежное уничтожение сальмонеллы в яичном порошке, мясе птицы и субпродуктах. Радиационная обработка семян сельскохозяйственных культур достаточно широко распространена. Предпосевное облучение семян с целью стимулирования всхожести (зерновые и зернобобовые, картофель, морковь, капуста и др.) в целях повышения их урожая и улучшения качества продукции - испытанный на практике процесс. В урожае от стимулированных семян, как правило, увеличивается на 1…13% содержание того компонента, к выработке которого данная культура была эволюционно направлена. Так, при облучении семян моркови в урожае увеличивается содержание каротина в среднем на 10%, в отдельных сортах на 30…32%; у сахарной свеклы содержание сахара (на 3%), у клубней картофеля крахмала (1…2%). Подобные работы широко проводились в Канаде, США, Франции, Аргентине, а также в ряде сельскохозяйственных радиационных технологий и основные направления работ по их модернизации определяются разработчиками. Например, УЭЛР-10-10С является базовым ускорителем третьего поколения для радиационно-технологических процессов и, в первую очередь, для радиационной стерилизации. В соответствии со стандартами, принятыми в Европе и мире, разработана система сканирования и вывода пучка электронов, позволяющая непрерывно в процессе стерилизации продукции контролировать основные параметры пучка: энергию электронов, средний ток пучка, размер поля облучения. Во всех ускорителях фирмы «Корекс» применяется компьютерная система управления, основанная на микроконтроллере Octagon Systems 6020 и панельном компьютере фирмы Advantech. Система управления усовершенствуется по мере модернизации ускорителей и модифицируется в соответствии с пожеланиями заказчиков. В настоящее время ведутся работы по усовершенствованию систем оперативной перестройки энергии электронов. Проектируются ускорители S-диапазона длин волн на мощность в пучке ускоренных электронов до 25…30 кВт. Ведутся работы по увеличению диаметра пучка на выходном окне сканирующего устройства (см.: corex-spb.ru/fabric.htm).

Известны способ и устройство экономичной транспортировки птичьих яиц магистральным транспортером птицефабрики, в результате использования которых устанавливается такое значение скорости движения ленты транспортера, при котором обеспечивается наименьшая на данный момент времени сумма затрат от расчетной потери стоимости поврежденных при транспортировке яиц и на электроэнергию для электропривода транспортера (см. патент РФ 2414396. Способ и устройство экономичной транспортировки птичьих яиц магистральным транспортером птицефабрики / А.В.Дубровин и др. // БИ, 2011, №8).

Недостатками известного технического решения является невозможность его прямого использования при энергосберегающем обеззараживании кормов и продуктов животноводства и птицеводства.

Задачей изобретения является повышение точности при автоматизированном поиске и достижении экономически оптимального и энергетически рационального режима обеззараживания кормов и продуктов животноводства и птицеводства пучками быстрых электронов при транспортировке кормов и продуктов животноводства и птицеводства посредством ленточного или планчатого магистрального транспортера путем определения экономического минимума суммы стоимостей потерь обеззараживаемой продукции и эксплуатационных энергетических затрат на облучение и на транспортировку кормов и продуктов животноводства и птицеводства. Другой задачей изобретения является энергосбережение при обеззараживании кормов и продуктов животноводства и птицеводства. Также задачей изобретения является повышение точности обеззараживания веществ с заранее установленной для них наибольшей дозой облучения, гарантированно обеспечивающей заданное качество обеззараживания.

В результате использования изобретения устанавливается такое значение облученности кормов и продуктов животноводства и птицеводства пучками быстрых электронов, при котором обеспечивается наименьшая на данный момент времени сумма затрат от расчетной потери стоимости обеззараживаемой продукции и эксплуатационных энергетических затрат на облучение и на транспортировку кормов и продуктов животноводства и птицеводства. Также в результате использования изобретения при поступлении в зону обеззараживания объектов сельскохозяйственного производства устанавливаются такие количественные значения доз облучения, которые обеспечивают энергосбережение и повышение точности обеззараживания кормов и продуктов животноводства и птицеводства.

Вышеуказанный технический результат достигается способом экономичного и энергосберегающего обеззараживания кормов и продуктов животноводства и птицеводства, включающим в себя применение ускорителя электронов для обеззараживания кормов и продуктов животноводства и птицеводства, ориентацию выходного направляющего раструба ускорителя на зону облучения в виде участка рабочего органа магистрального транспортера с электроприводом, загрузку магистрального транспортера обеззараживаемыми кормами и продуктами, задание и регулирование скорости движения рабочего органа магистрального транспортера, задание срока хранения и дозы облучения для обеззараживания кормов и продуктов, регулирование режима облучения в соответствии с заданной дозой облучения, при этом формируют сигнал облученности, периодически изменяют сформированный сигнал облученности в диапазоне между технологически допустимыми наименьшим и наибольшим заданными значениями сигнала облученности, причем в зависимости от значения изменяемого сформированного сигнала облученности вычисляют сумму затрат на расчетные потери стоимости обеззараживаемой продукции от ее бактериологической и микробной зараженности, от потери ее качества из-за ее чрезмерного облучения, на электроэнергию для облучения и на электроэнергию для электропривода магистрального транспортера, сравнивают соответствующий наименьшему значению указанной суммы затрат сформированный сигнал облученности с измеренным сигналом облученности и по результату сравнения дополнительно корректируют режим облучения кормов и продуктов животноводства и птицеводства.

Технический результат достигается также тем, что устройство содержит последовательное соединение задатчика наибольшего срока хранения обеззараживаемых кормов и продуктов, задатчика максимальной дозы облучения и задатчика максимальной облученности, датчик скорости движения рабочего органа магистрального транспортера, датчик массы обеззараживаемых кормов и продуктов, датчик облученности, выход которого подключен к инвертирующему входу регулятора облученности, последовательное соединение регулятора облученности, блока регулирования напряжения электропитания ускоряющей системы ускорителя электронов и ускорителя электронов с выходным рупором, направленным на зону облучения, при этом в устройство введены задатчик значений искусственного сигнала облученности в технологическом диапазоне изменения облученности от нуля до ее предельного значения при каждом конкретном значении скорости движения рабочего органа магистрального транспортера, блок задатчиков констант и коэффициентов математических моделей управления режимом облученности обеззараживаемых кормов и продуктов, блок вычисления целевой функции суммарных затрат, блок определения наименьшего значения целевой функции суммарных затрат, причем выходы задатчика максимальной облученности, датчика скорости движения рабочего органа магистрального транспортера, датчика массы обеззараживаемых кормов и продуктов, задатчика значений искусственного сигнала облученности и блока задатчиков констант и коэффициентов соединены с соответствующими входами блока вычисления целевой функции суммарных затрат, выход которого через блок определения наименьшего значения целевой функции суммарных затрат подключен к неинвертирующему входу регулятора облученности.

Способ осуществляется следующим образом. Задают срок хранения и соответствующую требуемую для данного обеззараживаемого продукта дозу облучения, значение которой было установлено заранее при испытаниях по обеззараживанию опытных партий продуктов.

Д з а д = ( Э з а д / М п р о д ) = ( а Э з а д / ( Р я щ Р т а р ы ) ) ,                                               ( 1 )

где Дзад - заданная доза облучения продукта, Грей или (м22); Эзад - поглощенная продуктом энергия излучения и электронов, Дж; Мпрод=((Рящтары)/а, кг; а - ускорение свободного падения; а=9,8 м/с2; Рящ - вес ящика (тары) вместе с продуктом, кгс; Ртары - вес только тары (ящика) без продукта, кгс.

Заданная энергия поглощенного излучения пропорциональна массе продукта:

Э з а д п о г л = ( Д з а д М п р о д ) .                                                                                     ( 2 )

Энергия поглощенного излучения всегда пропорциональна массе продукта:

Э п о г л = ( Д М п р о д ) .                                                                                         ( 3 )

Энергия излучения ускорителя, Вт×с:

Э и з л = Р и з л Т о б л у ч ,                                                                                        ( 4 )

где Ризл - мощность излучения, Вт, Тоблуч - время облучения продукта в активной зоне части транспортера, Тоблуч=(L/Vтр), с; L - длина зоны облучения, м; Утр - скорость движения рабочего органа транспортера, м/с.

Удельная энергия излучения ускорителя по площади облученного участка рабочего органа транспортера, Вт×с/м2:

Э и з л у д = Р и з л у д Т о б л у ч .                                                                                         ( 5 )

Для любой конкретной конструкции установки для обеззараживания, ускорителя, в т.ч. и его выходного рупора, существует численная связь между Э и з л у д и Эпогл для каждого продукта: чем больше Э и з л у д , тем больше Эпогл. Численный коэффициент (или в общем случае функция) этой пропорциональной (линейной или нелинейной) зависимости для каждой конструкции ускорителя известен, причем для каждого вида, размеров, формы и объема обеззараживаемого продукта и расстояния от выхода рупора до продукта, т.е.

Э п о г л = К 1 ( к о н с т р у к ц и я  ускорителя; расстояние от излучателя до продукта; вид , размеры , форма , объем продукта ) × Э и з л у д ( В т × с / м 2 ) . ( 5 )

Величина Э и з л у д от массы продукта не зависит, а зависит только от конструкционных и электрических характеристик и параметров установки для обеззараживания. Но для обеспечения возрастающего заданного значения Э з а д п о г л и значение Э и з л  зад у д должно возрастать в определенной линейной или нелинейной зависимости, т.е.

Э и з л  зад у д = ( Э п о г л / К 1 ) = К 2 Э п о г л .                                                                        ( 6 )

Понятно, что размерность коэффициента K1 есть м2, а для K2 это (1/м2).

А вот заданное значение удельной энергии излучения ускорителя по площади облучения участка рабочего органа транспортера при задании дозы облучения конкретного материала от массы материала уже зависит:

Э и з л  зад у д = ( Э п о г л / К 1 ) = К 2 Э п о г л = К 2 Д з а д М п р о д .                                              ( 7 )

Если имеется продукт с известной массой Мпрод, который надо подвергнуть облучению для обеззараживания, и если известно значение дозы облучения Дзад для этого, то для конкретной установки обеззараживания с известным ее конструкционно-энергетическим коэффициентом К2 легко вычислить требуемое значение облученности Э и з л  зад у д .

Известно, что «в большинстве современных ускорителей применяется принцип высоковольтного ускорения, т.е. энергия электронов соответствует напряжению, создаваемому выпрямителем [источника питания ускорителя электронов]» (см. «Ускорители электронов серии ИЛУ [импульсные линейные ускорители]». Новосибирск: Институт ядерной физики СО РАН, 1998. Сайт: inp.nsk.su> ~ tararysh/accel/ilu_r.html). Пропорциональную зависимость между энергией пучка ускоренных электронов и напряжением питания подтверждает, в числе многих, следующая информация. «Источник высокого напряжения (ИВН), собранный по схеме с тиристорным инвертором, преобразует напряжение трехфазной сети 380В в постоянное напряжение до 25 кВ. Для контроля электрических измерений было выполнено измерение эффективной энергии электронов Ее по дозиметрической методике и получено хорошее совпадение Ее=486 кэВ с измеренным напряжением на вакуумном диоде U=452 кВ в этом режиме. Отметим, что параметры ускорителя в одном из режимов измерялись в компании «Chiyoda Technol Corporation» (Токио, Япония), с использованием фирменных детекторов и методики, основанной на построении кривой ослабления в материале детектора фирмы «GEX Corporation». По данным измерений, эффективная энергия спектра составляла 441 кэВ, в то время как по результатам электрических измерений ускоряющее напряжение составляло 430 кВ в этом же режиме (см.: «Частотный наносекундный ускоритель электронов для инициирования …». Сайт: main.isuct.ru>files/kona/ISTAPC2005/proc/6-7.

Поскольку любой облучатель имеет свою сквозную характеристику зависимости формируемой им величины удельной по облучаемой площади энергии излучения, Вт×с/м2, и облученности, Вт/м2, от электрического напряжения питания Uпит разгонного участка ускорителя (электрического поля в разгонном участке для электронов), т.е.

Э и з л у д = К 3 U п и т ,                                                                                              ( 8 )

и наоборот:

U п и г = ( Э и з л у д / К 3 ) = К 4 Э и з л у д = К 4 К 2 Д з а д М п р о д ,                                                   ( 9 )

то так же просто определяется требуемое значение электрического напряжения питания для управления режимом работы ускорителя по величине удельной энергии излучения.

Переход к управлению облученностью площади активной зоны участка транспортера по мощности излучения на единице этой площади позволяет получить:

Р и з л у д = К 5 U п и т ,                                                                                               ( 10 )

и наоборот:

U п и т = Р и з л у д / К 5 = К 6 Р и з л у д = ( К 6 Э и з л у д / Т о б л у ч ) = ( К 6 Э и з л у д V т р / L ) = ( К 6 Д з а д М п р о д V т р / L ) . ( 11 )

т.е. так же просто определяется требуемое значение напряжения питания для управления режимом работы ускорителя по величине удельной мощности излучения.

Следовательно, для обеспечения заданного по дозе Дзад режима обеззараживания продукта с массой Мпрод надо пропорционально значению коэффициента К6 увеличивать напряжение питания ускорителя Uпит с ростом скорости перемещения продукта в активной зоне длиной L. Чем короче активная зона, т.е. чем меньше L, тем больше должно быть напряжение питания разгонного участка ускорителя Uпит. Таким образом, при определенной конструкции ускорителя и установки для обеззараживания в целом, значения К6, Vтр, L неизменны. Меняются только свойства обеззараживаемых материалов, учитываемые посредством задаваемого оператором вручную значения срока хранения и заданной дозы облучения Дзад и автоматически измеряемой с помощью, например, поточного измерителя массы продукта Мпрод.

В этом заключается новый способ экономичного и энергосберегающего обеззараживания кормов и продуктов животноводства и птицеводства. При подаче продуктов на установку для обеззараживания надо не только знать требуемые для них дозы облучения и их массы, определять необходимое напряжение питания ускорителя, в зависимости от массы продукта корректировать режим облучения каждого продукта при поступлении его в зону облучения. В соответствии со способом следует искусственно сформировать по величине аргумента облученности функциональные зависимости затрат от потерь продуктов из-за их зараженности в отсутствие облученности или при ее малых уровнях. Также необходимо знать зависимости затрат от потерь кормов и продуктов из-за чрезмерно сильного облучения их пучками быстрых электронов, которые взаимодействуют с клеточной структурой биомассы кормов и продуктов животноводства и птицеводства.

Первая из этих зависимостей нелинейно убывает с ростом облученности, начинаясь с определенного (заранее известного по результатам измерений санитарно-гигиенических свойств материалов, поступающих на радиационную стерилизационную обработку) уровня зараженности биоматериала. Вторая зависимость нелинейно возрастает, начинаясь с минимального значения порога облученности, достаточного для появления первых необратимых изменений в биологических продуктах растительного и животного происхождения. Допустимый уровень затрат на потери продукции из-за таких изменений ее определяется в конкретных опытных работах.

Следует также сформировать аналогичные зависимости затрат на электроэнергию для транспортировки продуктов и для их облучения от величины облученности. Третья зависимость есть постоянная величина при постоянной скорости движения рабочего органа транспортера и при неизменной массе продуктов, изменяющаяся по значению пропорционально скорости движения рабочего органа транспортера и массе продуктов. Четвертая зависимость линейно возрастает с ростом облученности.

Затем полученные четыре функции затрат сложить в диапазоне изменения искусственно сформированного сигнала облученности. Таким образом, производится точное, экономичное, т.е. точное и экономически оптимальное (точное и экономически наилучшее) и при этом энергосберегающее (с рациональным расходованием энергии) обеззараживание каждого продукта с его массой.

Сущность предлагаемого изобретения поясняется фиг.1, фиг.2 и фиг.3. На фиг.1 приведена иллюстрация осуществления способа экономичного и энергосберегающего обеззараживания кормов и продуктов животноводства и птицеводства: З - затраты при обеззараживании продукта, руб./ед. времени; Vтран - скорость движения рабочего органа магистрального транспортера, м/с; Мпрод1 - масса обеззараживаемого продукта, кг; Зпрод1 - стоимость потерь продукта, руб./ед. времени; Зоблуч1 - затраты на облучение; Зтран1 - затраты на транспортировку продукта в зоне обеззараживания (облучения); Зост1 - стоимость потерь продукта из-за его изменений в результате переоблучения, руб./ед. времени; Р о б л  1 п р е д - предельное значения облученности Робл при конкретном значении скорости движения рабочего органа магистрального транспортера Vтран; Здопуст1 - стоимость допустимых потерь продукта из-за его изменений в результате переоблучения, руб./ед. времени; ЗΣ1прод1облуч1тран1 - целевая функция суммарных затрат, руб./ед. времени; ЗΣмин1 - наименьшее значение целевой функции суммарных затрат ЗΣ1, руб./ед. времени; Р о б л  1 о п т - экономически оптимальное (наилучшее) значение облученности Робл, Вт/м2.

На фиг.2 приведена иллюстрация осуществления способа экономичного обеззараживания кормов и продуктов животноводства и птицеводства для сравнения режимов обеззараживания двух продуктов с различными значениями их массы Мпрод1 и Мпрод2, причем Мпрод1прод2, кг.

На фиг.3 приведена функциональная схема устройства энергосберегающего обеззараживания кормов и продуктов животноводства и птицеводства: 1 - задатчик наибольшего срока хранения обеззараживаемых кормов и продуктов; 2 - задатчик максимальной дозы облучения; 3 - задатчик максимальной облученности; 4 - датчик скорости движения рабочего органа магистрального транспортера Vтран; 5 - датчик массы обеззараживаемых кормов и продуктов Мпрод; 6 - датчик облученности Робл, размещенный в зоне обеззараживания (облучения); 7 - регулятор облученности Робл; 8 - блок регулирования напряжения электропитания ускоряющей системы ускорителя электронов; 9 - ускоритель электронов с выходным рупором, направленным на зону обеззараживания (облучения); 10 - задатчик значений искусственного сигнала облученности Робл в технологическом диапазоне изменения облученности Робл от нуля до ее предельного значения Р о б л п р е д (предельного значения Р о б л п р е д при конкретном значении скорости движения рабочего органа магистрального транспортера Vтран: чем больше скорость, тем больше требуется и допускается предельное значение облученности); 11 - блок задатчиков констант и коэффициентов математических моделей управления режимом облученности обеззараживаемых кормов и продуктов с массой Мпрод; 12 - блок вычисления целевой функции суммарных затрат ЗΣпродоблучтран; 13 - блок определения экстремального (оптимального, наименьшего) значения целевой функции суммарных затрат З Σ м и н .

Устройство содержит последовательное соединение задатчика наибольшего срока хранения обеззараживаемых кормов и продуктов 1, задатчика максимальной дозы облучения 2 и задатчика максимальной облученности 3, датчик скорости движения рабочего органа магистрального транспортера 4, датчик массы обеззараживаемых кормов и продуктов 5, датчик облученности 6, выход которого подключен к инвертирующему входу регулятора облученности 7, последовательное соединение регулятора облученности 7, блока регулирования напряжения электропитания 8 ускоряющей системы ускорителя электронов и ускорителя электронов с выходным рупором 9, направленным на зону облучения, при этом в устройство введены задатчик значений искусственного сигнала облученности 10 в технологическом диапазоне изменения облученности от нуля до ее предельного значения при каждом конкретном значении скорости движения рабочего органа магистрального транспортера, блок задатчиков констант и коэффициентов 11 математических моделей управления режимом облученности обеззараживаемых кормов и продуктов, блок вычисления целевой функции суммарных затрат 12, блок определения наименьшего значения целевой функции суммарных затрат 13, причем выходы задатчика максимальной облученности 3, датчика скорости движения рабочего органа магистрального транспортера 4, датчика массы обеззараживаемых кормов и продуктов 5, задатчика значений искусственного сигнала облученности 10 и блока задатчиков констант и коэффициентов 11 соединены с соответствующими входами блока вычисления целевой функции суммарных затрат 12, выход которого через блок определения наименьшего значения целевой функции суммарных затрат 13 подключен к неинвертирующему входу регулятора облученности 7.

Устройство (фиг.3) работает следующим образом. Обеззараживаемый материал в виде, например, упаковок с кормом или с мясом бройлеров загружается на магистральный транспортер, который располагается в помещении, устроенном по нормам радиационной защиты, для радиационного обеззараживания продуктов пучками ускоренных электронов, и частично вне этого помещения. В любом случае, ручная загрузка транспортера продуктами при работающем ускорителе электронов целесообразна в другом помещении (например, в соседнем). Это достигается либо удлинением магистрального транспортера, либо установкой добавочного промежуточного транспортера в линию обеззараживания. Блок вычисления целевой функции суммарных затрат 12 по данным заданий, формирования и измерения соответствующих сигналов рассчитывает целевую функцию суммарных затрат на обеззараживание кормов и продуктов животноводства и птицеводства. Блок определения наименьшего значения целевой функции суммарных затрат 13 по существу является оптимизатором, устанавливающим экономически оптимальное значение облученности, соответствующее минимуму этой функции. Это значение в виде выходного сигнала блока 13 подается на задающий вход регулятора облученности 7, что корректирует (поправляет) установленный ранее режим ускорения электронов в блоке регулирования напряжения электропитания 8 ускоряющей системы ускорителя электронов и ускорителя электронов с выходным рупором 9. Процесс обеззараживания проходит экономично, с экономически наименьшими затратами и с рациональными затратами энергии.

Таким образом, обеспечивается экономически оптимальное и энергосберегающее автоматизированное управление обеззараживанием кормов и продуктов животноводства и птицеводства. При этом обеспечивается точное обеззараживание продуктов с различной массой, поскольку производится контроль их массы и соответствующее регулирование режима облучения данного продукта. Обеззараживание пучками ускоренных электронов мяса бройлеров, искусственно обсемененного сальмонеллами и листериями, увеличивает срок его хранения с 4…7 суток до 23 суток без изменения органолептических показателей.

Полная автоматизация процесса энергосберегающего обеззараживания полностью исключает необходимость присутствия в помещении с ускорителем электронов обслуживающего персонала при непрерывной многочасовой работе технологической линии по экономичному и энергосберегающему обеззараживанию кормов и продуктов животноводства и птицеводства.

Устройство экономичного и энергосберегающего обеззараживания кормов и продуктов животноводства и птицеводства, содержащее последовательное соединение задатчика наибольшего срока хранения обеззараживаемых кормов и продуктов, задатчика максимальной дозы облучения и задатчика максимальной облученности, датчик скорости движения рабочего органа магистрального транспортера, датчик массы обеззараживаемых кормов и продуктов, датчик облученности, выход которого подключен к инвертирующему входу регулятора облученности, последовательное соединение регулятора облученности, блока регулирования напряжения электропитания ускоряющей системы ускорителя электронов и ускорителя электронов с выходным рупором, направленным на зону облучения, отличающееся тем, что в устройство введены задатчик значений искусственного сигнала облученности в технологическом диапазоне изменения облученности от нуля до ее предельного значения при каждом конкретном значении скорости движения рабочего органа магистрального транспортера, блок задатчиков констант и коэффициентов математических моделей управления режимом облученности обеззараживаемых кормов и продуктов, блок вычисления целевой функции суммарных затрат, блок определения наименьшего значения целевой функции суммарных затрат, причем выходы задатчика максимальной облученности, датчика скорости движения рабочего органа магистрального транспортера, датчика массы обеззараживаемых кормов и продуктов, задатчика значений искусственного сигнала облученности и блока задатчиков констант и коэффициентов соединены с соответствующими входами блока вычисления целевой функции суммарных затрат, выход которого через блок определения наименьшего значения целевой функции суммарных затрат подключен к неинвертирующему входу регулятора облученности.



 

Похожие патенты:

Изобретение относится к сельскохозяйственному производству и, в частности, к способам заполнения бункеров кормораздающих машин. Способ загрузки емкости бункера мобильного раздатчика кормов включает формирование кормового монолита путем подачи кормового потока в переднюю часть бункера с последующим его перемещением относительно продольной оси бункера.

Изобретение относится к системам и устройствам для механизации процесса санитарной обработки кожного покрова животных. Система санитарной обработки кожного покрова крупного рогатого скота включает бак подогрева воды, систему трубопроводов подачи воды, дезинфицирующих растворов и отвода загрязнений, бак-накопитель отработанных загрязнений, подмывочное устройство, тросовую подвеску.

Группа изобретений относится к сельскому хозяйству. Способ включает отделение и направление животных в имеющие подгрудный брус фиксирующие станки зооветеринарной линии с анатомо-физиологическими обоснованными оптимальными параметрами конструкции.

Группа изобретений относится к области сельского хозяйства, в частности к технологиям обеззараживания комбикормов. Способ включает в себя применение ускорителя электронов для обеззараживания материалов, ориентацию выходного направляющего раструба ускорителя на зону облучения в виде участка рабочего органа магистрального транспортера с электроприводом, загрузку магистрального транспортера обеззараживаемым материалом, задание скорости движения рабочего органа магистрального транспортера, задание постоянной дозы облучения для обеззараживания материала и регулирование режима облучения в соответствии с заданной постоянной дозой облучения.

Изобретение относится к наполнителям для туалета животных, в частности к наполнителям для туалета, обладающими улучшенными функциональными и другими свойствами. Наполнитель (100) содержит множество частиц абсорбента (102), включающих ненабухающую частицу (104), комкующийся материал (106) и множество частиц одного или более наполнителей (108, 110, 112, 114 и/или 108/116).

Изобретение относится к сельскохозяйственному производству. Способ включает биотехнологическую и термохимическую переработку навоза и помета.

Настоящее изобретение относится к жевательным игрушкам и лакомствам для домашних животных и к способам изготовления и применения жевательных игрушек для домашних животных.

Изобретение относится к сельскому хозяйству и предназначается к использованию преимущественно на фермах крупного рогатого скота для доставки, смешивания и раздачи кормов.

Изобретение относится к области сельского хозяйства, к технологиям составления кормовых рационов и кормления животных и птицы и может быть использовано в отраслях промышленного животноводства и птицеводства.

Изобретение относится к области сельского хозяйства. Устройство содержит датчик расхода корма, датчик живой массы животных и птицы, делитель, блок управления, схему сравнения, дифференцирующую цепь, выпрямитель, ждущий мультивибратор, управляемый ключ, блок сигнализации, элемент памяти, блок индикации, генератор пилообразного напряжения, блок питания устройства и блок синхронизации устройства. Блок управления содержит первый дифференцирующий усилитель. Выход датчика прироста подключен ко второму входу делителя. Вход первого усилителя является входом блока управления. Второй вход схемы сравнения соединен с общей шиной устройства. Выход схемы сравнения подключен к первому входу управляемого ключа и ко входу блока сигнализации. Выход ключа соединен с выходом блока управления и со входом блока индикации. Выход генератора соединен со вторым входом управляемого ключа. В устройство введены задатчик управляемой временной задержки, схема управляемой временной задержки и второй элемент дифференцирования. Выход задатчика подключен к первому входу схемы управляемой временной задержки. Выход датчика расхода корма соединен со вторым входом схемы управляемой временной задержки и подключен к первому входу делителя. Выход делителя соединен со входом первого дифференцирующего усилителя. Выход усилителя подключен к первому входу схемы сравнения. Обеспечивается автоматизированное определение технологически оптимального начального момента времени экономичной коррекции технологии кормления животных и птицы. 5 ил., 1 табл.

Изобретение относится к сельскому хозяйству и переработке отходов. Предложенный биокомплекс содержит животноводческий комплекс 1, пиролизную печь 4 с патрубками отвода полукокса 5, неочищенного пиролизного газа 6, избыточного тепла 7 и дымовых газов 8, блок подготовки печного топлива 12, блок выращивания микроводорослей, комплекс производства зерна 34, комплекс производства удобрений, блок очистки пиролизного газа 9 с патрубками отвода пиролизного дистиллята 10 и очищенного пиролизного газа 11, комплекс глубокой переработки зерна 37, газгольдер 16, когенерационную установку 18, установку производства диоксида углерода 22. Животноводческий комплекс 1 сообщен с накопителем органических отходов 2. Блок подготовки печного топлива 12 снабжен патрубками 13-15 отвода печного топлива в блок подготовки сырья 3, в пиролизную печь 4 и потребителю. Когенерационная устновка 18 оборудована системой отвода дымовых газов в установку производства диоксида углерода 22 и сообщена по теплу и электричеству со всеми объектами биокомплекса. Блок выращивания микроводорослей состоит из блока культуральной жидкости 26 и фотореактора 27, блока переработки микроводорослей 29, сообщенного с кормоприготовительным цехом 39. Комплекс производства зерна 34 связан с комплексом производства удобрений транспортером подачи удобрений, с кормоприготовительным устройством и накопителем органических отходов соответственно линиями транспортировки зерна и соломы, а также линиями транспортировки зерна 36 с комплексом глубокой переработки зерна 37, включающим микробиологический цех 38, и сообщенным трубопроводами подачи продуктов переработки зерна в кормоприготовительное устройство. Установка производства диоксида углерода 22 состоит из абсорбера 23 и десорбера 24, снабженная патрубком отвода диоксида углерода 25 в блок выращивания микроводорослей. Установка сжижения диоксида углерода 28 связана патрубком отвода сжиженной углекислоты в блок переработки микроводорослей 29. Комплекс производства удобрений 30 включает патрубки подвода полукокса 31 и микроводорослей 32 и патрубки отвода удобрений 33. Изобретение обеспечивает повышение эффективности работы комплекса, снижение загрязненности окружающей среды, исключение образования канцерогенных и загрязняющих веществ. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области животноводства, в частности к поводковым устройствам для животных. Ручка поводкового устройства с неподвижной рукояточной частью содержит регулируемый ограничитель длины ручки для разной ширины ладони. С рукояточной частью монолитно соединена скоба ручки. Скоба ручки и рукояточная часть образуют отверстие ручки для частичного ввода пальцев. Ограничитель длины ручки расположен внутри отверстия ручки. Ручка встроена в корпус поводкового устройства для наматывания и сматывания поводка. Повышается надежность удерживания рукояточной части в руке. 2 н. и 18 з.п. ф-лы, 9 ил.

Изобретение относится к животноводству. Предложенный раздатчик рулонированного корма содержит установленный на раме ходовой части 1 бункер 2, на дне которого установлен подающий транспортер 3, барабанный измельчитель 4, питатель сыпучего корма, устройство для выгрузки кормовой смеси. Устройство для выгрузки кормовой смеси выполнено в виде установленного в зоне выброса корма барабанным измельчителем 4 и охваченного кожухом 7 с выгрузным патрубком диска 6 с радиальными лопастями 8. Питатель сыпучего корма закреплен на выгрузном патрубке 9 и выполнен в виде емкости 10, в днище которой вырезано окно 11. Окно 11 перекрыто консольно-закрепленной на кромке выреза и расположенной ближе к началу выгрузного патрубка 9 пластиной 12. Свободный конец пластины 12 погружен в глубину выгрузного патрубка 9 под острым углом к направлению потока выгружаемого корма. Изобретение обеспечивает упрощение конструкции, снижение материалоемкости и энергозатрат. 3 ил.

Группа изобретений относится к сельскому хозяйству, в частности к способу для контроля продуктивности мясной птицы и устройству для его реализации. Способ включает ежесуточное определение средней живой массы птицы по стаду, прироста массы, однородности стада и количества взвешиваний путем многократных взвешиваний бройлеров с помощью электронных весов. Весы устанавливают в птичнике. Взвешивают поступающий на платформу электронных весов очередной бройлер. Оценивают текущее значение погрешности определения средней живой массы птицы по стаду. Постепенно шаг за шагом по одному бройлеру увеличивают количество взвешиваемых бройлеров. После каждого шага взвешивания очередного бройлера сравнивают полученное текущее значение погрешности определения средней живой массы птицы по стаду с заданной величиной допустимой погрешности и в случае достижения требуемой точности определения средней живой массы птицы по стаду прекращают процедуру взвешивания бройлеров. Вместе с другими параметрами продуктивности осуществляют индикацию окончательной величины погрешности определения средней живой массы птицы по стаду. Устройство включает весовую платформу для взвешивания птицы и блок управления вычислительных операций. Блок управления вычислительных операций осуществляет ежесуточное определение средней живой массы птицы по стаду, прироста массы, однородности стада и количества взвешиваний, производимых с помощью электронных весов. Дополнительно включает блок оценки погрешности определения средней живой массы птицы по стаду, задатчик погрешности определения средней живой массы птицы по стаду, задатчик количества взвешиваний и соответствующие им два блока сравнения. Два блока сравнения осуществляют операции оценки величины погрешности определения средней живой массы птицы по стаду и путем увеличения количества взвешиваемых бройлеров достигается снижение величины этой погрешности до заданного уровня. Обеспечивается повышение эффективности управления технологическим процессом выращивания бройлеров и точности контроля их продуктивности. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области сельского хозяйства, к автоматизированным технологиям и техническим средствам приготовления кормовых смесей для животных и птицы. Устройство содержит задатчик сигнала реального возраста поголовья 1, блок задатчиков промежуточных управляющих сигналов 2, блок задатчиков сигналов экономически оптимальных доз кормов 3. Выходы блока 3 подключены к первым неинвертирующим входам блока схем сравнения сигналов доз кормов 4. Ко вторым инвертирующим входам блока 4 подключены выходы блока задатчиков сигналов реальных доз кормов 5. Выходы блока 4 соединены с входами блока дозаторов кормов 6. Выходы блока 6 соединены с входами смесителя 7, на выходе которого формируется экономически оптимальная кормосмесь 8. В устройство введены задатчик имитируемого сигнала возраста поголовья 9, задатчик имитируемого сигнала дозы кормосмеси при максимальном приросте живой массы поголовья 10, задатчик имитируемого сигнала дозы кормосмеси при минимальном приросте живой массы поголовья 11, вычислитель сигнала живой массы поголовья в начальной стадии выращивания 12, вычислитель сигналов экономически оптимального рациона в начальной стадии выращивания 13, вычислитель сигнала живой массы поголовья в конечной стадии выращивания 14, вычислитель сигналов экономически оптимального рациона в конечной стадии выращивания 15, схема сравнения сигналов живой массы поголовья в начальной и в конечной стадии выращивания 16, формирователь сигнала отключения режима вычисления максимального прироста живой массы и перехода в режим вычисления минимального прироста живой массы 17, блок управляемых ключей 18, схема совпадения сигналов 19, блок формирователей управляющих сигналов или интерфейс Лица, Принимающего решение 20, задатчик сигнала вида критерия оптимизации 21, задатчик сигнала значения допустимого уменьшения критерия 22. Выход задатчика сигнала 9 подключен к входам задатчиков сигналов 10 и 11 и к первому входу схемы совпадения сигналов 19. Выход задатчика сигнала 10 соединен с соединением первых входов вычислителей сигналов 12 и 13. Выход задатчика сигнала 11 соединен с соединением первых входов вычислителей сигналов 14 и 15. Выходы вычислителей сигналов 12 и 14 подключены к первому и второму входам схемы сравнения сигналов 16. Выход схемы сравнения сигналов 16 через формирователь сигнала 17 подключен ко второму входу схемы совпадения сигналов 19, к третьему входу которой подключен выход задатчика сигнала 1. Выход схемы совпадения сигналов 19 соединен с управляющим входом блока управляемых ключей 18. Первый, второй входы и соответствующие выходы блока 18 подключены к выходу вычислителей сигналов 13 и 15, к соответствующим входам блока 3. Выход блока 2 соединен с соединением вторых входов вычислителей сигналов 13 и 15. Выход задатчика сигнала 22 подключен к соединению третьих входов вычислителей сигналов 13 и 15. Выход блока 20 через задатчик сигнала 21 подключен к соединению четвертых входов вычислителей сигналов 13 и 15. Обеспечивается возможность управления технологическим процессом составления рациона кормовой смеси и ее приготовления для животных и птицы. 10 ил.

Изобретение относится к области сельского хозяйства. Устройство содержит задатчик сигнала вида птицы (1) и задатчик сигнала возраста птицы (2). Выходы задатчиков подключены соответственно к первому и второму входам задатчика сигнала нормативной дозы кормосмеси на следующие сутки выращивания (3), выход которого соединен с первым входом вычислительного блока оптимизации рациона на следующие сутки (4), второй вход которого подключен к выходу блока задатчиков сигналов (5). Выходы вычислительного блока оптимизации рациона на следующие сутки (4) подключены к соответствующим входам блока задатчиков сигналов экономически оптимальных доз кормов (6), выходы которого соединены с соответствующими первыми неинвертирующими входами блока схем сравнения (8), к соответствующим вторым инвертирующим входам которого подключены выходы блока задатчиков сигналов ресурсов наборов кормов (7). Выходы блока схем сравнения (8) соединены с входами блока дозаторов кормов (9), выход которого подключен ко входу смесителя (10), на выходе которого формируется экономически оптимальная кормосмесь на следующие сутки (11). В устройство введены задатчик сигнала вида критерия оптимизации (12) и блок формирователей управляющих сигналов или интерфейс лица, принимающего решение (13), выход которого через задатчик сигнала вида критерия оптимизации (12) соединен с третьим входом вычислительного блока оптимизации рациона на следующие сутки (4). Обеспечивается расширение функциональных возможностей, повышение точности задания и точности регулирования доз кормов. 1 ил.

Изобретение относится к области сельского хозяйства, к технологиям составления кормовых рационов и кормления сельскохозяйственных животных и птицы. Устройство содержит задатчик сигнала вида животного или птицы 1 и задатчик сигнала возраста животного или птицы 2. Выходы задатчиков сигналов 1 и 2 подключены соответственно к первому и второму входам задатчика сигнала нормативной дозы кормосмеси на следующие сутки выращивания 3. Выход задатчика сигнала 3 соединен с первым входом вычислительного блока оптимизации рациона на следующие сутки 4. Второй вход блока 4 подключен к выходу блока задатчиков сигналов 5. Выходы блока 4 подключены к соответствующим входам блока задатчиков сигналов экономически оптимальных доз кормов 6. Выходы блока 6 соединены с первыми неинвертирующими входами блока схем сравнения 8. Ко вторым инвертирующим входам блока 8 подключены выходы блока задатчиков сигналов ресурсов наборов кормов 7. Выходы блока 8 соединены с входами блока дозаторов кормов 9. Выход блока 9 подключен к входу смесителя 10, на выходе которого формируется экономически оптимальная кормосмесь на следующие сутки 11. В устройство введены задатчик сигнала вида критерия оптимизации 12, блок формирователей управляющих сигналов или интерфейс Лица, Принимающего Решение 13, измеритель сигнала расхода кормосмеси 14, задатчик сигнала расчетной дозы кормосмеси 15, измеритель сигнала живой массы животного или птицы 16 и блок задатчиков сигналов коэффициентов функций потерь расчетной продуктивности животного или птицы 17. Выходы и вход блока 17 подключены к четвертым дополнительным входам блока 4 и ко второму выходу блока 13. Первый выход блока 13 через задатчик сигнала 12 соединен с третьим входом блока 4. Первый вход блока 13 подключен к выходу измерителя сигнала 16. Выход и вход задатчика сигнала 15 подключены к пятому входу блока 4 и к третьему выходу блока 13. Второй вход блока 13 подключен к выходу измерителя сигнала 14. Обеспечивается возможность управления технологическими процессами составления рациона кормовой смеси и кормлением поголовья при наличии информации о живой массе животных и птицы и о потреблении ими кормосмеси, повышение точности задания и регулирования доз кормов кормовой смеси. 4 ил.

Изобретение относится к области сельского хозяйства, к технологиям составления кормовых рационов и кормления сельскохозяйственных животных и птицы. Устройство содержит задатчик сигнала вида птицы 1 и задатчик сигнала возраста птицы 2. Выходы задатчиков сигнала 1 и 2 подключены к первому и второму входам задатчика сигнала нормативной дозы кормосмеси на следующие сутки выращивания 3. Выход задатчика сигнала 3 соединен с первым входом вычислительного блока оптимизации рациона на следующие сутки 4. Второй вход блока 4 подключен к выходу блока задатчиков промежуточных управляющих сигналов 5. Выходы вычислительного блока 4 подключены к входам блока задатчиков сигналов экономически оптимальных доз кормов 6. Выходы блока задатчиков сигналов 6 соединены с первыми неинвертирующими входами блока схем сравнения 8. Ко вторым инвертирующим входам блока схем сравнения 8 подключены выходы блока задатчиков сигналов ресурсов наборов кормов 7. Выходы блока схем сравнения 8 соединены с входами блока дозаторов кормов 9, выход которого подключен к входу смесителя 10. На выходе смесителя формируется экономически оптимальная кормосмесь на следующие сутки 11. В устройство введены задатчик сигнала вида критерия оптимизации 12, блок формирователей управляющих сигналов или интерфейс Лица, Принимающего решение 13, и блок задатчиков сигналов коэффициентов графиков функций потерь 14. Вход блока 14 соединен с первым выходом блока 13. Второй выход блока 13 через задатчик сигнала 12 соединен с третьим входом вычислительного блока 4. Выходы блока задатчиков сигналов 14 подключены к соответствующим дополнительным входам вычислительного блока 4. Обеспечивается автоматизированное управление технологическими процессами составления рациона кормосмеси и повышение точности задания и регулирования доз кормов кормовой смеси для животных и птицы с учетом функций потерь их продуктивности. 4 ил.

Изобретение относится к области сельского хозяйства, к технологиям составления кормовых рационов и кормления сельскохозяйственных животных и птицы. Устройство содержит задатчик сигнала вида птицы 1 и задатчик сигнала возраста птицы 2. Выходы задатчиков сигналов 1 и 2 подключены к первому и второму входам задатчика сигнала нормативной дозы кормосмеси на следующие сутки выращивания 3. Выход задатчика сигнала 3 соединен с первым входом вычислительного блока оптимизации рациона на следующие сутки 4. Второй вход блока 4 подключен к выходу блока задатчиков сигналов 5. Выходы блока 4 подключены к входам блока задатчиков сигналов экономически оптимальных доз кормов 6. Выходы блока 6 соединены с первыми неинвертирующими входами блока схем сравнения 8. К вторым инвертирующим входам блока 8 подключены выходы блока задатчиков сигналов ресурсов наборов кормов 7. Выходы блока 8 соединены с входами блока дозаторов кормов 9. Выход блока 9 подключен к входу смесителя 10, на выходе которого формируется экономически оптимальная кормосмесь на следующие сутки 11. В устройство введены задатчик сигнала вида критерия оптимизации 12, блок формирователей управляющих сигналов или интерфейс Лица, Принимающего Решение 13, измеритель сигнала расхода кормосмеси за текущие сутки выращивания 14 и задатчик сигнала расчетной дозы кормосмеси 15. Выход и вход задатчика сигнала 15 подключены к четвертому входу блока 4 и к второму выходу блока 13. Первый выход блока 13 через задатчик сигнала 12 соединен с третьим входом блока 4. Вход блока 13 подключен к выходу измерителя сигнала 14. Обеспечивается возможность управления технологическими процессами составления рациона кормовой смеси и повышается точность управления процессами приготовления кормовой смеси для животных и птицы при наличии информации о потреблении ими кормосмеси. 1 ил.
Наверх