Способ получения электролитических порошков металлов


 


Владельцы патента RU 2534181:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) (RU)

Изобретение относится к порошковой металлургии, в частности к получению электролитических металлических порошков. Может использоваться в производстве катализаторов, гальванопластике, электронике. Катодное восстановление ионов металла из водного раствора соли металла осуществляют в электролизере с вращающимся катодом и анодом соответствующего металла или нерастворимым анодом. Катод выполнен в виде стержня с частично (90-99%) изолированной поверхностью. Катодное восстановление проводят при плотности тока от 100 А/дм2 до возникновения электролитной плазмы и концентрации соли металла свыше 100 г/л вплоть до насыщенной. Обеспечивается увеличение производительности процесса при высоком выходе по току и высоком качестве порошка. 3 пр.

 

Изобретение относится к порошковой металлургии, к способам получения электролитических порошков металлов и может найти применение в производстве катализаторов, порошковой металлургии, гальванопластике, электронике.

Известен способ (Патент РФ №2420613, С25С 5/02, 2010), где порошок получают электролизом водного раствора соли металла с концентрацией 30-70 г/л при плотности тока 20-40 А/дм2.

Недостаточную производительность данного способа ограничивают невысокая плотность тока (20-40 А/дм2) и низкая концентрация соли металла (30-70 г/л).

Известен способ (Патент РФ №2469111, С22В 7/00, 2012), взятый за прототип, в котором получение медных порошков проводят электролизом раствора, содержащего 20-30 г/л [Сu(NН3)4]Сl2 и 50 г/л NaC1, при плотности тока 20-50 А/дм2.

Недостатком данного способа является недостаточная производительность, составляющая 0,14 кг/(А·м2·ч), медного порошка. Причина недостаточной производительности - невысокая плотность тока (20-50 А/дм2) и низкая концентрация соли металла (20-30 г/л).

Технической задачей заявляемого способа является повышение производительности процесса получения электролитических порошков металлов за счет увеличения плотности тока от 100 А/дм2 и выше до возникновения электролитной плазмы и повышения концентрации соли металла вплоть до насыщения.

Решение технической задачи достигается тем, что в способе получения электролитических порошков металлов, включающем катодное восстановление ионов металла из водного раствора соли металла в электролизере с вращающимся катодом и с анодом соответствующего металла или с нерастворимым анодом, процесс ведут с использованием катода, выполненного в виде стержня с частично (90-99%) изолированной поверхностью, при плотности тока от 100 А/дм2 и выше до возникновения электролитной плазмы, и концентрации соли металла свыше 100 г/л вплоть до насыщения.

Повышение производительности обеспечивается увеличением скорости электрохимической реакции. При этом катод в целом, выполненный в виде медного стержня, обеспечивает подведение тока и отведение тепла от рабочих участков поверхности, неизбежно выделяющегося при протекании токов значительной величины. Вращение катода обеспечивает отрыв образующегося порошка металла от поверхности катода, то есть предотвращение увеличения поверхности катода и снижения плотности тока.

Применение изобретения иллюстрируется следующими примерами.

Пример №1

В электролизер емкостью 2 литра, заполненный насыщенным раствором медного купороса, помещают анод из листовой меди площадью 1дм2. Катод изготовляют в виде медного стержня диаметром 8 мм и длиной 100 мм, часть поверхности катода (95%) покрывают диэлектрическим гальваностойким лаком, оставляя 30 неизолированных участков по 0,5 мм2 общей площадью 15 мм2. Катод устанавливают на расстоянии 10 мм от анода и вращают со скоростью 500 об/мин. На электролизер подают напряжение 20 В от источника питания постоянного тока. После пропускания тока 6 А (плотность тока 4000 А/дм2) в течение 1 часа полученный медный порошок извлекают из электролизера и промывают в дистиллированной воде, а затем в ацетоне и высушивают. Масса полученного порошка составляет 6,9 г. Выход по току составляет 96%. Таким образом производительность процесса получения порошка меди по предлагаемому способу составляет 76 кг/(А·м2·ч). Полученный порошок просеивают через сито с ячейкой 71 мкм. Насыпная масса порошка составляет 0,9 г/мл. Удельная электропроводность порошка, при незначительном уплотнении его в измерительной ячейке равна 2,5 Ом "см. Свойства полученного порошка свидетельствуют о его высоком качестве.

Пример №2

В электролизер, заполненный 2-мя литрами электролита, содержащего 350 г/л сульфата никеля и 50 г/л хлорида аммония, помещают анод из никелевой фольги площадью 2 дм2. Катод изготавливают из стержня диаметром 10 мм с нарезанной резьбой с шагом 1 мм. Стержень покрывают эпоксидной смолой. После отверждения эпоксидной смолы поверхность катода шлифуется до появления гребня резьбы. В результате получают на поверхности катода неизолированную спиральную линию шириной 0,2 мм. Площадь рабочей поверхности при этом составляет 300 мм2. Катод опускают в электролизер на расстоянии 20 мм от анода на глубину 50 мм и вращают со скоростью 750 об/мин. Через электролизер пропускают ток 3 А в течение одного часа. Получают 3,1 г порошка никеля с выходом по току 94%. Плотность тока в этом случае составляет 100 А/дм2.

Пример №3

Катод изготавливают по примеру 2 и дополнительно вдоль оси стержня на поверхности делают канавки с шагом 1 мм. На поверхности стержня образуются выступы пирамидальной формы. Далее, как в примере 2, изолируют и шлифуют поверхность до получения неизолированных вершин выступов. Общая площадь рабочей неизолированной части катода составляет 10 мм2. Катод вращают в электролизере, заполненном раствором медного купороса с концентрацией 100 г/л, со скоростью 1000 об/мин. Через электролизер пропускают ток 10 А в течение 1 часа. Плотность тока составляет 10000 А/дм2. Полученный порошок меди массой 10,5 г, с выходом по току 87%, просеивают через сито с размером ячейки 50 мкм. Насыпная плотность порошка составляет 0,65 г/мл, удельное электрическое сопротивление - 2,5 Ом·см. Производительность процесса составляет 91,4 кг/(А·м2·ч).

Как следует из примеров, предлагаемый способ получения электролитических порошков металлов позволяет значительно (в 500-600 раз) увеличить производительность процесса при высоком выходе по току и высоком качестве порошка.

Кроме того, изобретение позволяет снизить расходы на производство порошков металлов за счет снижения расхода электроэнергии, снижения металлоемкости оборудования и упрощения технологии. Появляются дополнительные возможности регулирования процесса и свойств получаемых порошков за счет расширения технологических режимов.

Способ получения электролитического порошка металла, включающий катодное восстановление ионов металла из водного раствора соли металла в электролизере с вращающимся катодом, выполненным в виде стержня с частично (90-99%) изолированной поверхностью, и анодом из соответствующего металла или нерастворимым анодом при плотности тока от 100 А/дм2 и выше до возникновения электролитической плазмы и концентрации соли металла свыше 100 г/л вплоть до насыщения.



 

Похожие патенты:

Изобретение относится к электролитическому получению мелкодисперсных металлических порошков. Проводят электроосаждение металла на подложку из электропроводного материала, индиферентного по отношению к осаждаемому материалу и обладающего низкой теплопроводностью.
Изобретение относится к области гидрометаллургии редких элементов, а именно к способам глубокой очистки висмута от Ag, Te, Po при использовании солянокислых растворов.
Изобретение относится к способу получения ультрамикродисперсного порошка оксида никеля. Способ получения ультрамикродисперсного порошка оксида никеля включает электролиз в 17 М растворе гидроксида натрия на переменном синусоидальном токе частотой 20 Гц с никелевыми электродами.

Изобретение относится к порошковой металлургии, к устройствам для получения металлических порошков электролизом, а именно к катоду электролизера, который может быть использован в производстве композиционных материалов, например паст, лаков, красок, клеев, компаундов с электро- и теплопроводящими свойствами.
Изобретение относится к способу получения ультрамикродисперсного порошка оксида никеля из никелевых электродов. .

Изобретение относится к способу получения электролитических порошков металлов электролизом из водного раствора, содержащего соль соответствующего металла и буферные добавки.

Изобретение относится к электролитическому получению мелкодисперсных металлических порошков, которые могут быть использованы в качестве катализаторов или фильтрующих материалов.
Изобретение относится к получению наночастиц меди, которые могут быть использованы в качестве биоцидного компонента в медицине, ветеринарии. .
Изобретение относится к получению наночастиц металлов, которые могут быть использованы в качестве биоцидного компонента в медицине, ветеринарии, биотехнологии, наноэлектронике.
Изобретение относится к порошковой металлургии, в частности получению электролитических порошков. .

Группа изобретений относится к получению нанодисперсного порошка оксида алюминия. Способ включает подачу в предкамеру порошкообразного алюминия и первичного активного газа, их смешивание, воспламенение металлогазовой смеси в предкамере с обеспечением перевода алюминия в газовую фазу за счет самоподдерживающейся экзотермической реакции, подачу образовавшейся смеси в основную камеру сгорания с дожиганием металла в газовой фазе при подаче вторичного активного газа - воздуха и образованием конденсированных продуктов сгорания.

Изобретение относится к порошковой металлургии и может быть использовано для получения исходного сырья для изготовления нитридного ядерного топлива. Способ получения порошка нитрида урана включает нагрев металлического урана, который осуществляют в вакуумируемой реакционной емкости при остаточном давлении 10-1÷10-2 мм рт.ст.
Изобретение относится к производству нитрида галлия и может быть использовано в электронной, аэрокосмической, твердосплавной, химической отраслях промышленности для получения нитрида высокой степени чистоты, применяемого для изготовления изделий, обладающих высокими люминесцентными свойствами, химической и радиационной стойкостью, термостойкостью, стойкостью в агрессивных средах, стабильностью физических свойств в широких температурных диапазонах.

Изобретение относится к получению порошков для микроволновой техники и магнитооптики. Способ получения наноразмерного порошка железо-иттриевого граната включает приготовление водного раствора солей иттрия (III) и водного раствора солей железа (III).
Изобретение относится к области неорганической химии, а именно к получению порошков, которые могут применяться в лазерной технике и оптическом приборостроении. Способ получения порошков фторсульфидов редкоземельных элементов (РЗЭ) включает приготовление шихты и последующую ее термическую обработку.

Изобретение относится к области порошковой металлургии. Нанодисперсные порошки могут быть использованы для изготовления инструментов, близких по твердости и износоустойчивости к инструментам на основе алмаза.

Изобретение относится к химической промышленности и может быть использовано для получения нанопорошков плазмохимическим методом. Композиционный нанопорошок включает частицы, состоящие из ядра, состоящего из слоев карбонитрида титана и нитрида титана, и оболочки, состоящей из слоя никеля, при следующем соотношении слоев ядра и оболочки, мас.%: TiCxNy, где 0,28≤x≤0,70; 0,27≤y≤0,63; - 24-66; TiN0,6 - 30-67; Ni - 4-9.

Изобретение относится к области порошковой металлургии, в частности к технологии получения нанопорошка карбида кремния. Может применяться для изготовления абразивных и режущих материалов, конструкционной керамики и кристаллов для микроэлектроники, катализаторов и защитных покрытий.

Изобретение относится к порошковой металлургии. .

Изобретение относится к гидрометаллургии лантаноидов, а именно к получению кристаллических нанопорошков оксидов лантаноидов. Способ получения порошков индивидуальных оксидов лантаноидов включает осаждение соли лантаноидов из азотнокислых растворов твердой щавелевой кислотой при непрерывном введении полиакриламида, отделение ее, промывку, сушку, термообработку полученного осадка и последующую обработку в слабом переменном магнитном поле с частотой 20÷50 Гц и амплитудой 0,05÷0,1 Тл. Способ позволяет получать порошки оксидов лантаноидов с наноразмерными частицами, однородным гранулометрическим составом и повышенной устойчивостью к взаимодействию с влагой. 1 ил., 1 табл., 1 пр.
Наверх