Анемометр

Предложенное изобретение относится к микромеханическим системам для измерения потоков жидкостей и газов и определения направления данных потоков. Заявленный анемометр, предназначенный для измерения указанных величин, содержит цилиндр, датчики, расположенные на его поверхности, и блок съема и анализа данных. При этом указанный цилиндр выполнен сплошным или полым с не менее чем двумя продольными полостями на цилиндрической поверхности, покрытыми упругими стенками того же радиуса кривизны, на каждой из которых сформирован по крайней мере один тензодатчик, соединенный с блоком съема и анализа данных. Причем его полости могут сообщаться с внешней средой через фильтр, а его продольные полости могут быть заполнены газом или быть герметичными. Данное изобретение позволяет повысить устойчивость к воздействию внешней среды и существенно уменьшить температурную деградацию его основных элементов. 9 з.п. ф-лы, 2 ил.

 

Изобретение относится к области микросенсоров, а именно к микроэлектромеханическим системам (МЭМС) для измерения потоков жидкостей и газов и определения направления этих потоков - МЭМС-анемометрам.

Известно множество конструкций анемометров, которые способны измерять направления и скорости потоков газов и жидкостей, но имеют большие размеры: механические [US 4671108], с трубками Пито [US 3443431], акустические [US 6601447] и др.

Известен более миниатюрный анемометр, имеющий четыре разнонаправленные камеры с датчиками [US 3646811] - он способен определять скорость и направление потока, но недостаточно точен, инерционен так, что не может регистрировать колебания давления, связанные с турбулентностью потока, а также содержит отверстия и полости, подверженные загрязнению

При загрязнении датчиков, определяющих одновременно скорость и направление потока, спадает преимущественно точность определения скорости потока при сохранении на приемлемом уровне точности определения направления потока, и известен анемометр, в котором для преодоления этого недостатка разделены функции по определению скорости потока (использован цилиндр отклоняющийся) и его направления (использованы термоанемометры) [WO 9422022, WO 1992003749 A1]. Недостатком его является наличие подвижных частей, сложность и громоздкость.

Анемометр по патенту US 5299455 позволяет определять скорость и направление потока по анализу показаний термодатчиков, сформированных на поверхностях двух взаимно перпендикулярных цилиндров. При анализе учитывается распределение теплоотвода по отдельным термодатчикам, колебания теплоотвода от отдельных датчиков, связанные с неустойчивостью потока (вихреобразованием, отрывом вихрей и т.п.) - в том числе противофазные в определенных точках цилиндров, частоты колебаний потока, пропорциональные скорости потока, распределение фаз колебаний теплоотвода от отдельных датчиков. Термодатчиками служат нанесенные на поверхность цилиндров пленочные терморезисторы, работающие в режиме постоянного напряжения. Использование цилиндров со встроенными датчиками для определения скорости и направления потока по регистрации колебаний показаний датчиков (сравнение фаз колебаний), вызванных колебанием потока, позволяет принять его в качестве прототипа.

Недостатком прототипа является наличие термодатчиков, необходимость нагрева элементов которых приводит к ускоренной деградации (например, из-за химического взаимодействия, диффузии, механических напряжений). Другим существенным, особенно для военного применения, недостатком устройств с термодатчиками является наличие у них ИК-излучения, демаскирующего объект. Наличие нагретых элементов ограничивает возможности применения подобных (но еще более миниатюрных) анемометров в медицине.

Задачей предлагаемого изобретения является исключение термической деградации анемометра и расширение возможностей применения.

Указанная задача решается тем, что анемометр выполнен в виде сплошного или полого цилиндра с не менее чем двумя продольными полостями на цилиндрической (внешней) поверхности, покрытыми упругими стенками того же радиуса кривизны, что и цилиндр, а на каждой упругой стенке сформирован по крайней мере один тензодатчик, соединенный с блоком съема и анализа данных.

При обтекании цилиндра потоком газа или жидкости возникает турбулентный поток (в частности, вихри, перемещающиеся вдоль поверхности и отрывающиеся), вызывающий колебания скоростей потока в разных точках у поверхности цилиндра [Pat. US 5299455], по характеру которых можно сделать однозначный вывод о скорости и направлении потока. Аналогичный характер носят, в соответствии с законом Бернулли, и колебания давления в разных точках поверхности цилиндра. Поэтому анализ колебаний давления (вместо теплоотвода) в разных точках поверхности обтекаемого потоком цилиндра также дает информацию о скорости и направлении потока. Этот анализ проводят так же, как в устройстве по патенту US 5299455 - с помощью блока съема и анализа данных, который содержит измерители показаний тензодатчиков, анализаторы фазы и частоты сигналов с каждого тензодатчика, вычислительное устройство, выполняющее обработку информации по заданной программе и средства передачи и/или хранения результатов анализа.

Упругая стенка с тензодатчиком (или тензодатчиками), меняющая форму под воздействием разности локального внешнего давления и давления внутри полости, приводит к изменению состояния тензодатчика, что позволяет определять локальное давление на поверхность цилиндра. Упругость стенки зависит от ее материала и толщины, и их выбирают в зависимости от ширины продольных полостей в цилиндре, от требуемых пределов измерений и условий эксплуатации. Необходимая упругость может рассчитываться теоретически (по характеристикам тензодатчиков, геометрическим параметрам анемометра и свойствам используемого материала), экспериментальным путем или сочетанием обоих подходов. Например, для измерения высоких скоростей потоков упругость должна быть выше, чем для измерения низких скоростей. Аналогично, для измерения скоростей потоков высокой плотности упругость должна быть выше, чем в случае потоков низкой плотности. Это не исключает возможности изготовления анемометра с широким диапазоном измерения скоростей потоков, в том числе имеющих различную плотность.

Для измерения скоростей и направлений потоков газов предложен вариант изобретения, в котором давление в полостях поддерживают равным давлению (среднему) во внешней среде, например давлению в ламинарной части потока. Для исключения загрязнения полостей они сообщаются с внешней средой через фильтр. Такой вариант может быть реализован путем использования не сплошного, а полого цилиндра, внутренняя полость которого сообщается с внешними продольными полостями и в которой установлен фильтр, например, внутренняя полость может быть заполнена фильтрующим материалом. При этом вероятность его критического загрязнения существенно меньше, чем если бы каждая продольная полость была снабжена отдельным фильтром малого размера. Кроме того, внутренняя полость демпфирует колебания на входе в нее, если такие колебания имеют место, и в под упругими стенками поддерживается одинаковое давление.

Для измерения скоростей и направлений потоков жидкостей предложен вариант изобретения, в котором продольные полости выполнены герметичными и газонаполненными.

На упругой стенке каждой продольной полости формируется по меньшей мере один тензодатчик. Тензодатчик может располагаться на внутренней или внешней поверхности упругой стенки. Тензодатчики могут быть сформированы и на обеих поверхностях упругой стенки. Кроме этого, с любой стороны каждой упругой стенки могут быть сформированы дополнительные тензодатчики, в том числе и отличающиеся по используемому физическому эффекту, например, в виде тензорезисторов или пьезоэлементов.

При использовании в качестве тензодатчиков пьезоэлементов отпадает необходимость подачи питания на датчики.

При деформации упругой стенки под действием разности давлений ее кривизна в поперечном сечении имеет области с разным знаком (как у нагруженной балки с защемленными концами): в центре - один знак, по краям - противоположный. Тензодатчики, сформированные в этих областях, будут давать противоположные сигналы, что является благоприятным обстоятельством для регистрации. Тензодатчики, сформированные с двух сторон упругой стенки в пределах области с одним знаком кривизны, будут также давать противоположные сигналы.

Тензодатчики могут быть выполнены тонкопленочными с заданной, наиболее выгодной топологией, например, в виде меандра, эффект от деформации поперечных частей которого при деформации складывается.

На Фиг.1 схематично изображен общий вид анемометра в варианте со сплошным цилиндром и тензодатчиками, сформированными в средней части внутренней поверхности упругой стенки, а на Фиг.2 изображено сечение того же анемометра.

Цифрами обозначены:

1 - цилиндр (твердый);

2 - продольная полость;

3 - упругая стенка, являющаяся в данном примере частью упругого цилиндра, приклеенного к твердому цилиндру в области вне продольных полостей;

4 - тензодатчик.

Примером конкретного исполнения предлагаемого изобретения может быть анемометр, у которого твердый цилиндр длиной 3 см и диаметром 5 мм выполнен из алюминия с 10-ю продольными не доходящими до торцов канавками прямоугольного сечения длиной 2 см размерами в сечении 1×1 мм, закрытыми упругими стенками из полиимида толщиной 0,5 мм, являющимися частью наклеенной (вне канавок) на твердый цилиндр полиимидной пленки, на которой в рассчитанных местах заранее нанесены тензорезисторы из нихрома в виде пленки толщиной 2 мкм с топологией меандра с шагом 0,2 мм, шириной 0,3 мм и шириной шины 0,1 мм, так чтобы после наклейки тензодатчики оказались внутри полостей. (Коммутация и устройство блоков съема и анализа общеизвестны.) Другим примером конкретного исполнения может быть анемометр, в котором продольные полости закрыты упругими стенками из установленных заподлицо с внешней поверхностью цилиндра кремниевыми мембранами толщиной 100 мкм со сформированных на них тензодатчиках. В этом случае собранный анемометр подвергают дополнительной полировке для обеспечения цилиндричности.

Предлагаемый анемометр устойчив к воздействию внешней среды, не содержит подвижных и нагреваемых частей, не подвержен деградации, связанной с нагревом, не является источником паразитных излучений (ИК, например) и полей (тепловых, например), что позволяет использовать его в военных целях без опасений демаскировать себя и в медицинских (например, для определения скорости воздуха в бронхах, при котором нагрев зондов недопустим). При этом анемометр сохраняет все полезные качества прототипа: в частности, измеряемой величиной является частота, зависящая от скорости потока.

1. Анемометр, содержащий цилиндр, датчики, расположенные на его поверхности, и блок съема и анализа данных, отличающийся тем, что цилиндр выполнен сплошным или полым с не менее чем двумя продольными полостями на цилиндрической поверхности, покрытыми упругими стенками того же радиуса кривизны, на каждой из которых сформирован по крайней мере один тензодатчик, соединенный с блоком съема и анализа данных.

2. Анемометр по п.1, отличающийся тем, что полости сообщаются с внешней средой.

3. Анемометр по п.2, отличающийся тем, что полости сообщаются с внешней средой через фильтр.

4. Анемометр по п.3, отличающийся тем, что фильтр установлен в полости полого цилиндра, сообщающейся с продольными полостями, расположенными на его внешней поверхности.

5. Анемометр по п.1, отличающийся тем, что полости заполнены газом и герметичны.

6. Анемометр по п.1, отличающийся тем, что по крайней мере один тензодатчик сформирован на внутренней либо на внешней, либо на той и на другой поверхности упругой стенки каждой продольной полости.

7. Анемометр по п.6, отличающийся тем, что на внутренней, либо на внешней, либо на той и на другой поверхности упругой стенки каждой продольной полости сформированы тензодатчики, расположенные в областях разных знаков потенциальной деформации.

8. Анемометр по п.1, отличающийся тем, что тензодатчики выполнены в виде тензорезисторов.

9. Анемометр по п.1, отличающийся тем, что тензодатчики выполнены в виде пьезоэлементов.

10. Анемометр по п.1, отличающийся тем, что на каждой упругой стенке выполнены тензодатчики в виде тензорезисторов и в виде пьезоэлементов.



 

Похожие патенты:

Изобретение относится к устройствам, предназначенным для измерения параметров потока флюида (нефть, вода, газ и их смеси), таких как температура, скорость и фазовый состав, и может быть использовано при проведении геофизических исследований скважин, а также при контроле за транспортировкой жидких углеводородов по трубопроводной системе.

Изобретение относится к нефтегазодобывающей промышленности и предназначено для измерения скорости движения жидкости или газа по стволу действующей скважины. .

Изобретение относится к области метеорологии и может быть использовано для указания параметров ветра при посадке летательного аппарата. Сущность: устройство развертывается вдоль воздушной траектории по направлению к поверхности земли, например, после сброса с летательного аппарата в полете. Устройство включает в себя анемометр, высотомер, компас, процессор и передатчик. Анемометр получает измерения локальной скорости ветра и локального направления ветра вдоль траектории. Высотомер получает измерения высоты вдоль траектории. Компас получает измерения направления вдоль траектории. Процессор определяет значения скорости и направления ветра, ассоциированные с предопределенной высотой устройства. Передатчик передает определенное значение скорости ветра и значение направления ветра к удаленно расположенному приемнику. Технический результат: измерение параметров ветра. 3 н. и 24 з.п. ф-лы, 5 ил.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при проведении геофизических исследований в горизонтальных и наклонно-направленных действующих нефтяных скважинах. Техническим результатом является повышение точности измерений. Способ измерения скорости потока флюида в скважине заключается в импульсном нагреве потока флюида, измерении температуры флюида по меньшей мере двумя датчиками температуры, разнесенными вдоль оси скважины, и сравнении сигналов двух датчиков температуры. Нагрев осуществляют с помощью автономного скважинного термоанемометра. Термоанемометр содержит блок питания, герметичный цилиндрический корпус, в верхней части которого расположен герметичный отсек, содержащий вычислительную систему. В нижней части термоанемометра по оси корпуса расположено сквозное окно овального сечения, образующее цилиндрический канал с расположенными внутри него двумя датчиками температуры, которые находятся у противоположных стенок канала по оси корпуса. В вычислительную систему в процессе измерения производят запись температуры с первого датчика, измеряющего исходную температуру в потоке скважинного флюида, и со второго датчика, измеряющего температуру с нагретого при помощи широтно-импульсной модуляции флюида, который находится в канале термоанемометра выше другого датчика температуры. Скорость движения потока флюида в скважине находят путем определения разности измеренных температур с первого и второго датчиков, на основе которой, с учетом исходной температуры потока скважинного флюида, производят расчет по математическому выражению, с учётом коэффициентов, рассчитанных при проведении калибровки прибора в рабочем диапазоне температур. 2 н. и 12 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике и касается способа измерения скорости течения жидкости с рассеивающими свет частицами. Способ включает в себя освещение потока жидкости одновременно двумя пучками лазерного излучения и определение спектра мощности P12(f) отраженного сигнала. Затем поток жидкости освещают каждым пучком лазерного излучения в отдельности и определяют спектр мощности P1(f) и P2(f) отраженных сигналов при освещении соответственно первым и вторым пучком излучения. Выделяют из спектра мощности частотные компоненты P'12(f), соответствующие рассеянию света на частицах, освещенных одновременно двумя пучками лазерного излучения: P'12(f)=P12(f)-P1(f)-P2(f). Из выделенных частотных компонент определяют частоту fd максимума спектра мощности. Скорость течения жидкости вычисляют по формуле u=λ0/(2n sin(α/2)cosβ)fd, где λ0 – длина волны лазерного излучения, n – показатель преломления среды, в которой измерен угол α между лазерными пучками, β – угол между направлениями скорости крови u и разностного волнового вектора K, где K=ki1-ki2, где ki1 и ki2 – волновой вектор соответственно первого и второго пучков лазерного излучения. Технический результат заключается в обеспечении высокого соотношения сигнал/шум при измерении скорости течения сильно рассеивающих жидкостей и точности измерений. 1 з.п. ф-лы, 12 ил.

Предложен способ определения скорости ветра над водной поверхностью, в котором получают более двух пространственно-временных изображений водной поверхности из оптических изображений, полученных с помощью более чем двух оптических систем на основе линеек ПЗС-фотодиодов, синхронизированных между собой единым задающим генератором и установленных с разными направлениями визирования в заданном угловом секторе, определяемом азимутальным углом между крайними линейками ПЗС-фотодиодов, причем каждая линейка ПЗС-фотодиодов регистрирует одномерные оптические изображения с захватом линии горизонта и части неба под малыми углами наблюдения, стыкуют по дальности два полученных с соседних линеек ПЗС-фотодиодов изображения по дальности, определяют направления распространения ветровых порывов (определяют углы между направлениями визирования соседних линеек ПЗС-фотодиодов и направлением движения полос ветровых порывов между соседними линейками ПЗС-фотодиодов) и скорость ветровых порывов для соседних линеек ПЗС-фотодиодов по углам наклона полос ветровых порывов на пространственно-временных изображениях, полученных соседними линейками ПЗС-фотодиодов, и известному углу между направлениями визирования соседних линеек ПЗС-фотодиодов, скорость ветра определяют над каждой точкой водной поверхности в направлении визирования каждой линейки ПЗС-фотодиодов из известной модельной зависимости дисперсии уклонов волн от скорости ветра с учетом направления ветровых порывов, а значение дисперсии уклонов волн в направлении визирования в каждой точке водной поверхности получают решая задачу «обращения» зависимости яркости водной поверхности от дисперсии уклонов волн с учетом углового распределения яркости неба, причем для решения задачи «обращения» используют в каждой точке водной поверхности в направлении визирования каждой линейки ПЗС-фотодиодов сравнение измеренной яркости водной поверхности, нормированной на яркость неба у горизонта, зарегистрированной в оптическом изображении водной поверхности, и модельной (расчетной) нормированной яркости водной поверхности, при этом в формуле для яркости водной поверхности используют либо аналитическое выражение для углового распределения яркости неба в зависимости от условий освещения, либо используют угловое распределение яркости неба и окологоризонтного участка водной поверхности, зарегистрированное в цифровом виде в случае необходимости достижения высокого пространственного разрешения на водной поверхности в направлении визирования линеек ПЗС-фотодиодов либо с помощью двух взаимно откалиброванных видеокамер, на объективы которых установлены поляроиды с вертикально и горизонтально расположенными осями пропускания, либо с помощью одной видеокамеры, на объектив которой, как и на объективы линеек ПЗС-фотодиодов, установлены поляроиды или с вертикально, или с горизонтально расположенной осью пропускания, при этом в линейках ПЗС-фотодиодов используют длиннофокусные узкоугольные объективы, а в случае необходимости достижения широкой полосы обзора - с помощью самих линеек ПЗС-фотодиодов с установленными на них широкоугольными объективами и установленными на объективах поляроидами с вертикально или горизонтально расположенной осью пропускания. 4 ил.

Изобретения относятся к области измерительно-преобразующей техники и могут быть использованы для поверки роторных анемометров. Способ позволяет проводить поверку роторного анемометра непосредственно на месте его эксплуатации. Устройство для осуществления способа содержит образцовый торсиометр с системой отсчета показаний, электродвигатель и контроллер. При этом вращение оси анемометра осуществляется электродвигателем через образцовый торсиометр. Скручивание торсиометра пропорционально крутящему моменту, создаваемому на оси анемометра. Система отсчета расположена вне торсиометра и позволяет измерять частоту вращения анемометра и угол скручивания. Крутящий момент, создаваемый на оси анемометра, имеет две составляющие, обусловленные трением оси анемометра и аэродинамическими характеристиками воздушного винта. Отклонение крутящего момента от номинального для каждой из моделей анемометров в рабочем диапазоне скорости вращения служит критерием годности. Технический результат заключается в упрощении процедуры поверки анемометра. 2 н.п. ф-лы, 1 ил.

Предложенное изобретение относится к микромеханическим системам для измерения потоков жидкостей и газов и определения направления данных потоков. Заявленный анемометр, предназначенный для измерения указанных величин, содержит цилиндр, датчики, расположенные на его поверхности, и блок съема и анализа данных. При этом указанный цилиндр выполнен сплошным или полым с не менее чем двумя продольными полостями на цилиндрической поверхности, покрытыми упругими стенками того же радиуса кривизны, на каждой из которых сформирован по крайней мере один тензодатчик, соединенный с блоком съема и анализа данных. Причем его полости могут сообщаться с внешней средой через фильтр, а его продольные полости могут быть заполнены газом или быть герметичными. Данное изобретение позволяет повысить устойчивость к воздействию внешней среды и существенно уменьшить температурную деградацию его основных элементов. 9 з.п. ф-лы, 2 ил.

Наверх