Низкотемпературное и среднетемпературное охлаждение

Авторы патента:


Низкотемпературное и среднетемпературное охлаждение
Низкотемпературное и среднетемпературное охлаждение
Низкотемпературное и среднетемпературное охлаждение
Низкотемпературное и среднетемпературное охлаждение
Низкотемпературное и среднетемпературное охлаждение
Низкотемпературное и среднетемпературное охлаждение

 


Владельцы патента RU 2539157:

АРКЕМА ФРАНС (FR)

Изобретение относится к использованию двухкомпонентных композиций 2,3,3,3-тетрафторпропена и дифторметана в качестве теплопередающей текучей среды в низкотемпературных и среднетемпературных холодильных системах компрессорного типа с теплообменниками, работающими в противоточном режиме или в режиме разделенного потока с противоточной тенденцией, а также к способу теплопередачи. Изобретение позволяет обеспечить более высокое значение коэффициента полезного компрессоров. 2 н. и 7 з.п. ф-лы, 2 табл.

 

Настоящее изобретение относится к применению двухкомпонентных композиций 2,3,3,3-тетрафторпропена и дифторметана в качестве теплопередающих текучих сред.

Проблемы, которые вызваны веществами, потенциально истощающими озоновый слой (ODP), обсуждались в Монреале, где был подписан протокол с требованием о сокращении производства и применения хлорфторуглеродов (CFC). В данный протокол внесены изменения с требованием о запрещении CFC и распространении его положений на другие продукты, включая хлорфторуглеводороды (HCFC).

Производители холодильников и кондиционеров воздуха произвели значительные капиталовложения для замены данных хладагентов и, соответственно, выпустили на рынок фторуглеводороды (ГФУ).

В автомобильной промышленности производители автомобильных систем кондиционирования воздуха, продаваемых во многих странах, перешли с хлорфторуглеродного хладагента (CFC-12) на фторуглеводородный хладагент 1,1,1,2-тетрафторэтан (ГФУ-134a), который является менее вредным для озонового слоя. Однако в отношении целей, которые поставил Киотский протокол, ГФУ-134a (GWP=1300) считается имеющим более высокий потенциал потепления. Вклад текучей среды в парниковый эффект количественно оценивает критерий GWP (потенциал глобального потепления), который суммирует потенциал потепления по сравнению с диоксидом углерода, потенциал которого принят как единичный.

Поскольку диоксид углерода не является токсичным, не воспламеняется и имеет очень низкий GWP, его предложили в качестве хладагента для систем кондиционирования воздуха вместо ГФУ-134a. Однако использование диоксида углерода имеет несколько недостатков, в особенности связанных с очень высоким давлением для его применения в качестве хладагента в существующих устройствах и технологиях.

Кроме того, смесь R-404A, состоящая из 44 мас.% пентафторэтана, 52 мас.% трифторэтана и 4 мас.% ГФУ-134a, широко применяется в качестве хладагента для больших помещений (универсальных магазинов) и в холодильном транспорте. Однако у данной смеси значение GWP составляет 3900.

Документ JP 4110388 описывает использование фторпропенов формулы C3HmFn, где m и n представляют собой целые числа от 1 до 5 включительно и m+n=6, в частности тетрафторпропена и трифторпропена, в качестве теплопередающих текучих сред.

Документ WO 2004/037913 описывает использование композиций, включающих, по меньшей мере, один фторалкен, содержащий три или четыре атома углерода, в частности, пентафторпропен и тетрафторпропен, у которых значение GWP предпочтительно составляет не более чем 150, в качестве теплопередающих текучих сред.

Документ WO 2006/094303 описывает азеотропную композицию, содержащую 7,4 мас.% 2,3,3,3-тетрафторпропена (ГФО-1234yf) и 92,6 мас.% дифторметана (ГФУ-32). Данный документ также описывает квазиазеотропные композиции, содержащие от 1 до 57 мас.% 2,3,3,3-тетрафторпропена и от 43 до 99 мас.% дифторметана.

Теплообменник представляет собой устройство для передачи тепловой энергии от одной текучей среды к другой, без их перемешивания. Поток тепла проходит через поверхность теплообмена, которая разделяет текучие среды. Главным образом, данный способ используют для охлаждающих или нагревающих жидкостей или газов, которые невозможно охлаждать или нагревать непосредственно.

В компрессорных системах теплообмен между хладагентом и источниками тепла происходит через теплопередающие текучие среды. Эти теплопередающие текучие среды существуют в газообразном состоянии (воздух в системах кондиционирования воздуха и охлаждения непосредственным испарением хладагента), в виде жидкости (вода в бытовых тепловых насосах, раствор гликоля) или двухфазной системы.

Существуют разнообразные режимы теплопередачи:

две текучие среды идут параллельно в одном направлении: прямоточный режим (антиметодический);

две текучие среды идут параллельно, но в противоположных направлениях: противоточный режим (методический);

две текучие среды идут в перпендикулярных направлениях: перекрестный режим (перекрестное течение может иметь прямоточную или противоточную тенденцию);

одна из двух текучих сред делает поворот на 180 градусов в более широком трубопроводе, через который проходит вторая текучая среда; такая конфигурация сопоставима с прямоточным теплообменником на одной половине своей длины и с противоточным теплообменником на другой половине: режим булавочной головки.

Заявитель обнаружил в настоящее время, что двухкомпонентные композиции 2,3,3,3-тетрафторпропена и дифторметана являются особенно полезными в качестве теплопередающей текучей среды в компрессорных системах для низкотемпературного и среднетемпературного охлаждения с теплообменниками, работающими в противоточном режиме или в перекрестном режиме с противоточной тенденцией.

Таким образом, данные композиции можно использовать в качестве теплопередающей текучей среды для охлаждения холодильного транспорта, хранения продуктов питания и в промышленности (химическая промышленность, пищевая промышленность и т. д.) с теплообменниками в противоточном режиме или в перекрестном режиме с противоточной тенденцией.

Первая цель настоящего изобретения относится к использованию двухкомпонентных композиций 2,3,3,3-тетрафторпропена и дифторметана в качестве теплопередающей текучей среды в компрессорных системах для низкотемпературного и среднетемпературного охлаждения с теплообменниками, работающими в противоточном режиме или в перекрестном режиме с противоточной тенденцией.

Низкотемпературное и среднетемпературное охлаждение означает интервал от -45°C до -10°C в испарителе.

Предпочтительно двухкомпонентные композиции 2,3,3,3-тетрафторпропена и дифторметана содержат, как правило, от 61 до 85 мас.% 2,3,3,3-тетрафторпропена и от 15 до 39 мас.% дифторметана.

Преимущественно двухкомпонентные композиции содержат, как правило, от 70 до 79 мас.% 2,3,3,3-тетрафторпропена и от 21 до 30 мас.% дифторметана.

Двухкомпонентные композиции, используемые в настоящем изобретении, одновременно имеют нулевой ODP и низкий GWP. Коэффициент полезного действия (КПД), который представляет собой соотношение производимого холодильником холода и потребляемой им электроэнергии, для данных двухкомпонентных композиций в теплообменниках в противоточном режиме превосходит КПД для композиций, которые в настоящее время используют в системах низкотемпературного и среднетемпературного охлаждения. Принимая во внимание уровень давления в конденсаторе, необязательно разрабатывать новые компрессоры; могут оказаться подходящими компрессоры, которые в настоящее время уже имеются на рынке.

Двухкомпонентные композиции, используемые в настоящем изобретении, могут заменить R-404A и R-407C (трехкомпонентная смесь, содержащая 52 мас.% ГФУ-134a, 25 мас.% пентафторэтана и 23 мас.% дифторметана) в теплопередающих системах компрессорного типа, которые работают в противоточном режиме или в перекрестном режиме с противоточной тенденцией.

Двухкомпонентные композиции, используемые согласно настоящему изобретению, можно стабилизировать. Количество стабилизатора предпочтительно составляет не более чем 5 мас.% по отношению к массе двухкомпонентной композиции.

В качестве стабилизаторов можно отметить, в частности, нитрометан, аскорбиновую кислоту, терефталевую кислоту, азолы, в том числе толилтриазол или бензотриазол, фенольные соединения, в том числе токоферол, гидрохинон, трет-бутил гидрохинон, 2,6-ди-трет-бутил-4-метилфенол, эпоксиды (алкильные, необязательно фторированные или перфторированные, или алкенильные или ароматические), в том числе н-бутилглицидиловый простой эфир, гександиолдиглицидиловый простой эфир, аллилглицидиловый простой эфир, бутилфенилглицидиловый простой эфир, фосфиты, фосфаты, фосфонаты, тиолы и лактоны.

Вторая цель настоящего изобретения относится к способу теплопередачи в компрессорных системах для низкотемпературного и среднетемпературного охлаждения, в которых определенные выше двухкомпонентные композиции 2,3,3,3-тетрафторпропена и дифторметана используют в качестве хладагента с теплообменниками, работающими в противоточном режиме или в перекрестном режиме с противоточной тенденцией.

Способ согласно настоящему изобретению можно использовать в присутствии смазочных материалов, включая минеральное масло, алкилбензол, полиалкиленгликоль, сложный эфир полиола и поливиниловый простой эфир.

Экспериментальная часть

Вычислительные средства

Уравнение RKS используют для вычисления значений плотности, энтальпии, энтропии и параметров равновесия жидкости и пара смесей. Чтобы использовать данное уравнение, необходимо знать свойства чистых веществ, которые составляют рассматриваемые смеси, а также коэффициенты взаимодействия для каждой двухкомпонентной смеси.

Для каждого чистого вещества требуются следующие данные: температура кипения, критическая температура и давление, кривая давления как функции температуры от температуры кипения до критической температуры, плотность насыщенной жидкости и плотность насыщенного пара как функция температуры.

ГФУ-32:

Данные для ГФУ-32 опубликованы в главе 20 справочника ASHRAE 2005 г. и также доступны при использовании программного обеспечения REFPROP, разработанного в NIST для вычисления свойства хладагентов.

ГФО-1234yf:

Данные для кривой зависимости давления от температуры ГФО-1234yf измеряли статическим способом. Критическую температуру и давление измеряли с помощью калориметра C80 (поставщик Setaram). Значения плотности при насыщении как функцию температуры измеряли, используя технологию пикнометра с вибротрубкой, разработанную в лабораториях Парижской горной школы (Ecole de Mines).

Коэффициент взаимодействия в двухкомпонентной системе ГФУ-32/ГФО-1234yf.

В уравнении RKS используют коэффициенты взаимодействия в двухкомпонентной системе, чтобы представить поведение веществ в смесях. Коэффициенты вычисляют как функцию экспериментальных данных для равновесия жидкости и пара.

Способ, используемый для измерений равновесия жидкости и пара, представляет собой способ со статической аналитической ячейкой. Равновесная ячейка включает сапфировую трубку и снабжена двумя электромагнитными пробоотборниками ROLSI™. Она погружена в баню криотермостата HUBER HS40. Магнитную мешалку, приводимую в движение полем, вращающимся с переменной скоростью, используют для ускорения достижения равновесия. Образцы анализируют с помощью газового хроматографа HP5890 серии II с катарометром (TCD).

Измерения равновесия жидкости и пара для двухкомпонентной смеси ГФУ-32/ГФО-1234yf проводили для следующих изотерм: -10°C, 30°C и 70°C.

Компрессорная система

Рассмотрим компрессорную систему, снабженную испарителем и противоточным конденсатором, винтовым компрессором и понижающим давление клапаном.

Данная система работает с перегревом на 15°C и переохлаждением на 5°C. Минимальная разность температур между вторичной текучей средой и хладагентом считается составляющей приблизительно 5°C.

Изоэнтропический КПД компрессоров является функцией коэффициента сжатия. Этот КПД вычисляется по следующему уравнению:

Для винтового компрессора константы a, b, c, d и e уравнения (1) изоэнтропического КПД вычисляют на основании стандартных данных, которые содержит опубликованный «Справочник по кондиционированию воздуха и охлаждению», с. 11.52.

Коэффициент полезного действия (КПД) определяют как соотношение полезной энергии, выработанной системой, и энергии, переданной системе или потребленной ею.

Коэффициент полезного действия в цикле Лоренца (КПДLorenz) представляет собой эталонный коэффициент полезного действия. Он является функцией температуры и используется для сравнения КПД различных текучих сред. Коэффициент полезного действия в цикле Лоренца определяют следующим образом:

(Температуры T выражены в K)

КПД в цикле Лоренца в случае кондиционирования воздуха и охлаждения:

КПД в цикле Лоренца в случае нагревания:

Для каждой композиции коэффициент полезного действия в цикле Лоренца вычислен как функция соответствующих температур.

Соотношение % КПД/КПДLorenz представляет собой соотношение КПД системы и КПД соответствующего цикла Лоренца.

Результаты работы в режиме низкотемпературного охлаждения

В низкотемпературном режиме компрессорная система работает в интервале между температурой хладагента на впуске в испаритель (-30°C) и температурой хладагента на впуске в конденсатор (40°C). Система производит холод при -25°C.

Параметры композиций согласно настоящему изобретению в низкотемпературных условиях работы представлены в таблице 1. Содержание компонентов (ГФО-1234yf, ГФУ-32) для каждой композиции представлено в виде массовой процентной доли.

Результаты работы в режиме среднетемпературного охлаждения

В среднетемпературном режиме компрессорная система работает в интервале между температурой хладагента на впуске в испаритель (-15°C) и температурой хладагента на впуске в конденсатор (35°C). Система производит холод при -10°C.

Параметры двухкомпонентных композиций в среднетемпературных условиях работы представлены в таблице 2. Содержание компонентов (ГФО-1234yf, ГФУ-32) для каждой композиции представлено в виде массовой процентной доли.

1. Применение двухкомпонентной композиции, содержащей 2,3,3,3-тетрафторпропен и дифторметан, в качестве теплопередающей текучей среды в низкотемпературных и среднетемпературных холодильных системах компрессорного типа с теплообменниками, работающими в противоточном режиме или в перекрестном режиме с противоточной тенденцией.

2. Применение по п.1, отличающееся тем, что композиция содержит, как правило, от 61 до 85 мас.% 2,3,3,3-тетрафторпропена и от 15 до 39 мас.% дифторметана.

3. Применение по п.1, отличающееся тем, что композиция содержит, как правило, от 70 до 79 мас.% 2,3,3,3-тетрафторпропена и от 21 до 30 мас.% дифторметана.

4. Способ теплопередачи, в котором двухкомпонентную композицию, содержащую 2,3,3,3-тетрафторпропен и дифторметан, используют в качестве хладагента в низкотемпературных и среднетемпературных холодильных системах компрессорного типа с теплообменниками, работающими в противоточном режиме или в перекрестном режиме с противоточной тенденцией.

5. Способ по п.4, отличающийся тем, что композиция содержит, как правило, от 61 до 85 мас.% 2,3,3,3-тетрафторпропена и от 15 до 39 мас.% дифторметана.

6. Способ по п.4, отличающийся тем, что композиция содержит, как правило, от 70 до 79 мас.% 2,3,3,3-тетрафторпропена и от 21 до 30 мас.% дифторметана.

7. Способ по любому одному из пп.4-6, отличающийся тем, что двухкомпонентная композиция стабилизирована.

8. Способ по любому одному из пп.4-6, отличающийся тем, что его осуществляют в присутствии смазочного материала.

9. Способ по п.7, отличающийся тем, что его осуществляют в присутствии смазочного материала.



 

Похожие патенты:
Изобретение относится к теплопередающей композиции, содержащей E-1,3,3,3-тетрафторпроп-1-ен (R1234ze(E)), 3,3,3 трифторпропен (R-1243zf) и дифторметан (R32). Описывается использование указанной композиции в теплообменнике, в составе вспениваемой композиции, распыляемой композиции, для охлаждения или нагрева изделия, в способах очистки или экстракции материалов, снижения воздействия на окружающую среду продукта эксплуатации существующего хладагента.

Изобретение относится к вариантам композиции для передачи тепла. Один из вариантов композиции содержит (i) от около 20 до около 90% масс.
Настоящее изобретение относится к композиции рабочей жидкости для холодильной машины, при этом она содержит масло для холодильных машин, содержащее смесь по меньшей мере двух сложных эфиров, выбранных из группы сложных эфиров по меньшей мере одного многоатомного спирта, и жирной кислоты с содержанием C5-C9 жирной кислоты 50-100% мол., фторпропеновый хладагент и/или трифторйодметановый хладагент (варианты).
Изобретение относится к охлаждающей композиции для применения в холодильной установке, обеспеченной мерой противодействия для предотвращения тепловых потерь вследствие температурного скольжения в теплообменнике.

Изобретение относится к теплопередающим составам, используемым в системах охлаждения и теплопередающих устройствах. Теплопередающий состав содержит транс-1,3,3,3-тетрафторпропен (R-1234ze(E)), дифторметан (R-32) и 1,1-дифторэтан (R-152a) в качестве хладагентов.

Изобретение относится к холодильному маслу и к композиции рабочего вещества для холодильной установки. .

Изобретение относится к композициям хладагента, которые применяются в качестве теплопередающих композиций, используемых в холодильном оборудовании. .

Изобретение относится к индустрии охлаждения и кондиционирования воздуха. .

Изобретение относится к способу замены существующего жидкого теплоносителя, содержащегося в системе теплопередачи, имеющей температуру испарителя от 35.5°F до 50°F и температуру конденсатора от 80°F до 120°F, включающему удаление по крайней мере части существующего жидкого теплоносителя из системы, при этом существующий жидкий теплоноситель выбран из группы, состоящей из HFC, HCFC, CFC и их комбинации; и ввод в систему замещающей композиции теплоносителя, содержащей 1,1,1-трифтор-3-хлорпропен (HFCO-1233zd).

Настоящее изобретение относится к применению трехкомпонентной композиции, в содержащей 2,3,3,3-тетрафторпропен, 1,1,12-тетрафторэтан (ГФУ-134а) и дифторметан (ГФУ-32), в качестве жидкого теплоносителя в компрессионных холодильных установках, содержащих теплообменники, работающие в противоточном режиме или в поперечном режиме с уклоном в противоточный режим. Изобретение также относится к способу теплопередачи, в котором в качестве хладагента используют указанную трехкомпонентную композицию. Изобретение демонстрирует неожиданные преимущества относительно объемной производительности (% САР) и холодильного коэффициента (%СОР), что позволяет эксплуатировать их в устройствах с меньшим диаметром труб, и следовательно с большей эффективностью функционирования оборудования. 2н. и 7 з.п. ф-лы, 3 табл.

Изобретение может быть использовано в холодильных системах компрессорного типа. Способ теплопередачи с использованием трехкомпонентных композиций, содержащих 2,3,3,3-тетрафторпропен, 1,1-дифторэтан и дифторметан, в качестве теплопередающей текучей среды в холодильных системах, включающих теплообменники, работающие в противоточном режиме или в перекрестном режиме с противоточной тенденцией. Изобретение позволяет повысить КПД установок. 2 н. и 2 з.п. ф-лы, 2 табл.

Изобретение относится к составу хладагента, состоящему по существу из гидрофторуглеродного компонента, состоящего из: ГФУ 134а 15-45%, ГФУ 125 20-40%, ГФУ 32 25-45%, ГФУ 227еа 2-12%, ГФУ 152а 2-10% вместе с необязательным углеводородным компонентом; где количество приведено по весу и в сумме составляет 100%. Также изобретение относится к составу указанного хладагента, дополнительно содержащему смазочный материал компрессора, и к двум вариантам холодильного контура, использующим указанные хладагенты. Предлагаемая композиция является невоспламеняющейся, энергоэффективной и низкотоксичной. 4 н. и 17 з.п. ф-лы, 4 табл., 4 пр.

Изобретение относится к применению в качестве теплопередающей текучей среды в компрессорных системах с теплообменниками, работающими в противоточном режиме или в режиме разделенного потока с противоточной тенденцией, двухкомпонентной композиции 2,3,3,3-тетрафторпропена и дифторметана. Изобретение также относится к способу теплопередачи, в котором указанную композицию используют в качестве хладагента в компрессорных системах с теплообменниками в противоточном режиме или в перекрестном режиме с противоточной тенденцией. 2 н. и 9 з.п. ф-лы, 2 табл.

Изобретение относится к композициям, содержащим 2,3,3,3-тетрафторпропен, и их применению в качестве жидких теплоносителей, агентов расширения, растворителей и аэрозолей. Композиция содержит от 15 до 50 мас.% 2,3,3,3-тетрафторпропена, от 5 до 40 мас.% HFC-134a и от 45 до 60 мас.%, предпочтительно от 45 до 50 мас.%, HFC-32. Предложенная композиция имеет критическую температуру выше 87оС, температуру на выходе из компрессора, эквивалентную для R-410A, и может заменить R-410A без изменения технологии, используемой в компрессорах. 5 н. и 5 з.п. ф-лы, 2 табл.

Изобретение относится к композициям, содержащим 2,3,3,3-тетрафторпропен, и их применению в качестве жидких теплоносителей. Описывается применение трехкомпонентной композиции 2,3,3,3-тетрафторпропена в качестве теплопередающей текучей среды в холодильных системах вместо смеси R-410A. Указанная композиция содержит от 40 до 58 мас. % 2,3,3,3-тетрафторпропена, от 2 до 10 мас. % 1,1-дифторэтана и от 40 до 50 мас. % дифторметана. Описывается также способ теплопередачи с использованием указанной композиции. Изобретение обеспечивает нулевое значение истощения озонового слоя (ODP) и пониженное по сравнению с R-410A значение потенциала потепления (GWP) при повышенном коэффициенте полезного действия. 2 н. и 7 з.п. ф-лы, 3 табл.

Изобретение относится к композициям, способам и системам, используемым во многих областях, включая в частности системы теплопереноса, например системы охлаждения, пенообразователи, пенные композиции, пены и изделия, включающие пены или изготовленные из пены, способы получения пен, в том числе и однокомпонентных, аэрозоли, пропелленты, очищающие композиции. Композиции, используемые для указанных систем, содержат, по меньшей мере, около 5 мас.% 1-хлор-3,3,3-трифторпропена (HFCO-1233zd) и 1,3,3,3-тетрафторпропен (HFO-1234ze). Предложенные композиции имеют преимущества для широкого спектра применений и свободны от недостатков известных композиций. 16 н. и 70 з.п. ф-лы, 14 табл., 54 пр.

Изобретение относится к теплообменным композициям, используемым в системах охлаждения и теплопередающих устройствах. Теплообменная композиция включает, по меньшей мере, приблизительно 45 мас.% транс-1,3,3,3-тетрафторпропена (R-1234ze(E)), до приблизительно 10 мас.% двуокиси углерода (R-744) и от приблизительно 2 до приблизительно 50 мас.% 1,1,1,2-тетрафторэтана (R-134a). Техическим результатом является сочетание необходимых свойств хорошей холодопроизводительности, низкой горючести, низкого потенциала парникового эффекта WGP при улучшенной смешиваемости со смазочными материалами (любрикантами) по сравнению с существующими хладагентами, такими как R-134a и R-1234yf. 17 н. и 42 з.п. ф-лы, 1 ил., 30 табл.

Изобретение относится к композициям, содержащим 2,3,3,3-тетрафторпропен, применяемым в качестве теплопередающей жидкости. Описывается применение композиции, содержащей от 10 до 90 мас. % 2,3,3,3-тетрафторпропена, от 5 до 80 мас. % HFC-134a и от 5 до 10 мас. % HFC-32, в качестве теплопередающей текучей среды в компрессионных системах охлаждения с теплообменниками, функционирующими в противоточном режиме. Изобретение обеспечивает озонобезопасную теплопередающую композицию, имеющую нулевое значение истощения озонового слоя (ODP) и пониженное по сравнению с HFC-134a значение потенциала глобального потепления (GWP) при повышенном коэффициенте полезного действия. 5 з.п. ф-лы, 2 табл.

Изобретение относится к области теплопередающих композиций. Теплопередающая композиция содержит по существу из от около 60 до около 85 мас.% транс-1,3,3,3-тетрафторпропена (R-1234ze(E)) и от около 15 до около 40 мас.% фторэтана (R-161). Также изобретение касается теплопередающей композиции, включающей R-1234ze(E), R-161 и 1,1,1,2-тетрафторэтан (R-134a). Изобретение обеспечивает понижение токсичности, горючести и GWP теплопередающей композиции при КПД в пределах 10% от величин, достигаемых при использовании существующих холодильных агентов. 21 н. и 32 з.п. ф-лы, 11 табл., 1 ил.
Наверх