Способ получения препарата, содержащего аморфно-кристаллические соли оротовой кислоты

Изобретение относится к области химико-фармацевтической промышленности и представляет собой способ получения препарата, содержащего аморфные или аморфно-кристаллические соли оротовой кислоты, включающий термообработку кристаллических оротата калия и/или оротата магния с последующим измельчением в измельчительном активаторном устройстве, термообработка заключается в термостатировании при температуре 115-125°C в течение 40-60 мин, а в качестве измельчительного активаторного устройства используют шаровую планетарную мельницу, измельчение проводится в течение времени, необходимого для подвода удельной энергии 7-10 кДж/г. Изобретение обеспечивает создание препаратов на основе солей оротовой кислоты, характеризующихся повышенной растворимостью, скоростью растворения и биологической доступностью. 6 ил., 4 табл.

 

Изобретение относится к области химико-фармацевтической промышленности и может использоваться для получения биологически активных веществ, лечебных и профилактических средств.

Магний и калий относятся к основным микроэлементам организма человека. Магний активирует около трехсот ферментов, все ферментные системы, в которых в качестве субстрата принимает участие АТФ, который необходим для самых разных энергетических процессов при углеводном, белковом и липидном обменах, а также при синтезе нуклеиновых кислот.

Основная роль калия в организме - поддержание функционирования клеточных стенок. Кроме того, он способствует сохранению концентрации магния и его физиологических функций.

Преимуществами оротатов калия и магния по сравнению с другими препаратами - простыми солями органических кислот (например, аспаргинатов калия и магния, входящих в состав аспаркама и панангина), заключается в том, что фармакологическое действие препарата определяется не только катионами металла, но и оротат-анионом.

Оротовая кислота не только принимает участие в магниевом обмене, но и обладает самостоятельным метаболическим действием. Оротовая кислота является непосредственным предшественником пиримидиновых оснований - одного из составляющих нуклеиновых кислот (ДНК и РНК). Установлено, что оротовая кислота является кардиопротектором: ускоряет регенерацию миокарда, увеличивает устойчивость к ишемии и выживаемость при инфаркте. Именно оротовая кислота необходима для фиксации магния на АТФ в клетке.

Известно средство, включающее в качестве активного начала эффективное количество калия оротата и целевые добавки в количестве от 45 до 55% от массы действующего вещества (RU 2173998). В качестве целевых добавок использованы сахар молочный, крахмал картофельный или кукурузный, желатин пищевой, кислота стеариновая.

Известен препарат Магнерот в виде таблеток, содержащий магния оротат фирмы Worwag Pharma, Германия (Справочник Видаль, Астра Фарм Сервис, 2006, с. 695).

Недостатками известных препаратов являются недостаточная эффективность и низкая скорость усвоения магния, что приводит к необходимости более длительного приема препаратов и увеличению медикаментозной нагрузки на организм.

Известна фармацевтическая композиция (патент RU 2225713), объединяющая два действующих вещества - оротат калия и магния. Одновременный прием таблетированных препаратов «магнерот» и «оротат калия» приведет к такому же действию на организм человека, что и прием препарата «орокамаг».

Эффективность действия известных препаратов на основе оротатов калия и магния ограничивается плохой растворимостью. В результате для получения эффекта лечения необходимы относительно высокие дозы и длительный курс лечения.

Повышение растворимости может достигаться за счет сокристаллизации с хорошо растворимым компонентом [Душкин А.В., Сунцова Л.П., Халиков С.С. Механохимическая технология для повышения растворимости лекарственных веществ. Фундаментальные исследования №1, 2013, стр. 450]. Сокристаллизация осуществляется путем механохимической реакции. В результате получается фактически новое вещество с новой химической формулой: «за счет перевода ЛВ в их водорастворимые соли (если ЛВ имеет выраженные кислотно-основные свойства), а также за счет включения молекул ЛВ в супрамолекулярные водорастворимые образования (межмолекулярные комплексы, мицеллы) со специально подобранными «вспомогательными» веществами». К числу недостатков данного способа можно отнести необходимость проведения полноценных клинических испытаний, выявление возможных побочных действий полученного нового вещества.

Известно, что биологические свойства лекарственных препаратов зависят от кристаллической структуры (аморфная или кристаллическая), полиморфной модификации кристаллической структуры, а также от изомерной структуры молекул. Поэтому перспективным путем является изменение структуры известных препаратов с целью повышения их терапевтической эффективности.

Скорость растворения зависит от площади поверхности соприкосновения воды с твердым веществом, поэтому повышение дисперсности приводит к увеличению скорости растворении. Аморфизация также, как правило, приводит к повышению скорости растворения. При этом величина растворенного вещества (растворимость) не изменяется.

Известен способ получения фармацевтической композиции (RU 2452480), выбранный в качестве прототипа, который осуществляется совместной механической обработкой глицина, обогащенной гамма-кристаллической модификацией глицина, в количестве 90-98% и добавку нетоксичных органических кислот в количестве 2-10%, в вибрационной мельнице компонентов композиции в течение 6-60 минут. Растворимость композиции повышается за счет изменения pH среды желудка при использовании органических кислот, а скорость растворения - за счет диспергирования порошка и изменения кристаллической модификации глицина в результате механической обработки. Недостатком данного способа является то, что указанные воздействия на выбранные компоненты оказывают слабое влияние на биологическую доступность действующего вещества, которая определяется механизмом взаимодействия молекулы этого вещества с липидным слоем из желудочно-кишечного тракта и механизмом взаимодействия молекулы действующего вещества с мембранами клеток. Диспергирование ускоряет скорость растворения вещества, практически не изменяя его растворимости (количества растворенного вещества), изменение кристаллической модификации влияет на процесс абсорбции из желудочно-кишечного тракта. Однако оба эти фактора не влияют на механизм взаимодействия молекулы растворенного действующего вещества с мембраной клетки. Этот механизм определяется стерическими факторами - доступностью определенных функциональных групп и электронным строением молекулы. При осуществлении способа не контролируют дозу переданной энергии при механоактивации.

В настоящем изобретении предлагается использовать механоактивацию оротатов в смеси с вспомогательными веществами в шаровой планетарной мельнице. Механоактивация приводит к изменению изомерной структуры оротата - таутомерному превращению. Для оротат-аниона известно три таутомера-, оксо-, гидрокси- и дигидрокси-формы. Различие электронного строения таутомерных форм заключается в следующем.

Оксо-форма содержит два пиррольных атома азота (-NH-)e карбонильных группы (>C=O). Гидрокси-форма имеет один пиррольный и один пиридиновый (-N=) атом азота, одни карбонильную и одну гидроксильную (-С-ОН) группу. Диокси-форма имеет два пиридиновых атома азота и две гидроксильных группы.

Пиридиновый атом азота имеет неподеленную пару электронов и проявляет основные свойства. Неподеленная пара электронов пиррольного атома азота является частью ароматической системы и атом азота может служить центром кислотности. Тригональный sp2-гибридизованный атом углерода карбонильной группы образует три σ-связи, лежащие в одной плоскости и п-связь с кислородом за счет негибридизованной р-орбитали. Вследствие различия в электроотрицательности атомов углерода и кислорода п-связь между ними сильно поляризована. В результате на атоме углерода карбонильной группы возникает эффективный положительный заряд, а на атоме кислорода - отрицательный заряд. Электронодефицитный атом углерода становится центром нуклеофильной реакции. Гидроксильная группа, присоединенная к гетероциклу, проявляет мезомерный эффект, в результате чего водород приобретает подвижность и способность диссоциировать в водных растворах. Гидроксильная группа менее гидрофильна, чем карбонильная.

Различие электронного строения оротат-аниона приводит к различной растворимости в воде, водных растворах и липидах. Самым важным является различие механизмов взаимодействия разных таутомеров с белками клеточной мембраны.

Техническим результатом настоящего изобретения является создание препаратов на основе солей оротовой кислоты, характеризующихся повышенной растворимостью, скоростью растворения и усваиваемостью (биологической доступностью).

Техническим результатом настоящего изобретения является создание препаратов на основе солей оротовой кислоты, характеризующихся повышенной растворимостью и скоростью растворения в воде, липофильностью и биологической доступностью.

Технический результат достигается в способе получения препарата, содержащего аморфные или аморфно-кристаллические соли оротовой кислоты с повышенным содержанием гидрокси-формы (лактимного изомера) оротатов, включающем термообработку кристаллических оротата калия и/или оротата магния, с последующим измельчением в измельчительном активаторном устройстве. Термообработка заключается в термостатировании при температуре 115-125°C в течение 40-60 мин для удаления кристаллогидратной воды. В качестве измельчительного активаторного устройства используют шаровую планетарную мельницу, измельчение проводится в течение времени, необходимого для подвода удельной энергии 7-10 кДж/г.

Обработка в измельчительном активаторном устройстве приводит к изменению структурного состояния оротат-анионов - таутомерного превращения оксо- в гидрокси- и дигидрокси-форму. Гидрокси-форма имеет наиболее высокую биологическую активность благодаря повышенной липофильности, обуславливающей абсорбцию из желудочно-кишечного тракта, наличию двух двойных связей C=C и механизму взаимодействия оротат-аниона с карбонильной и гидрофильной группами с белками мембраны клетки. Диспергирование, частичная или полная аморфизация смеси в результате механообработки приводит к повышению скорости растворения смеси.

О полученных веществах судят по данным эмиссионной спектроскопии, рентгеновской дифракции, ИК-, РФЭС спектроскопии.

Согласно данным анализа методом эмиссионной спектроскопии с индуктивно связанной (аргоновой) плазмой (спектрометр Spectroflame) в составе механоактивированных оротатов калия и магния отсутствуют какие-либо неорганические примеси, источником которых могут быть шары и стенки сосудов для измельчения.

Методы рентгеновской дифракции, рентгеноэлектронной спепктроскопии и ИК-спектроскопии свидетельствуют, что в результате механоактивации не наблюдается изменения химического состава смесей, деструкции или образования новых веществ.

Изобретение поясняется чертежами.

фиг. 1-2 - Рентгеновские дифрактограммы исходных (1) и механоактивированных (2-7 кДж/г; 3-42 кДж/г) оротатов магния и калия соответственно;

фиг. 3 - Рентгеноэлектронные C1s- и N1s-спектры оротата калия: 1 - исходный; 2 - механоактивированный (7 кДж/г);

фиг. 4 - Рентгеноэлектронные C1s- и N1s-спектры оротата магния: 1 - исходный; 2 - механоактивированный (7 кДж/г);

фиг. 5-6 ИК-спектры оротатов калия и магния соответственно: 1 - исходный; 2 - механоактивированный (7 кДж/г).

Способ получения препарата, содержащего аморфные или аморфно-кристаллические соли оротовой кислоты, включает термообработку кристаллических оротата калия и/или оротата магния с последующим измельчением в измельчительном активаторном устройстве.

Термообработка заключается в термостатировании при температуре 115-125°C в течение 40-60 мин для удаления кристаллогидратной воды. Удаление кристаллогидратной воды необходимо, поскольку таутомерное превращение оксо-формы в гидрокси- или дигидрокси-форму в зависимости от количества гидратной воды оказывается или невозможным, или проходит в малой степени: кристаллогидратная вода связана с гидрофильными карбонильными (>С=O) группами оротат-аниона, и препятствует переходу атома водорода от - NH- группы к кислороду карбонильной группы. Кроме того, термообработка позволяет ускорить процесс таутомерного превращения. Без предварительной термообработки результат достигается не через 1 ч, а через несколько часов (примерно 3.5 ч).

В качестве измельчительного активаторного устройства используют шаровую планетарную мельницу, измельчение проводится в течение времени, необходимого для подвода удельной энергии 7-10 кДж/г. Подведенная энергия может быть определана как энергонапряженность мельницы (Вт/г) × масса вещества (г) × время обработки (с), например, методом тест-объектов, когда обрабатывают вещество или несколько веществ до формирования определенной структуры или нового вещества. Из термодинамики определяют, сколько необходимо потратить энергии на такой процесс. В нашем эксперименте скорость вращения мельницы составляла 890 об/мин, время обработки - 2-2.5 ч.

На фиг. 1-2 приведены дифрактограммы образцов смесей исходных и механоактивированных оротатов. Видно, что в исходном состоянии оротаты имеют кристаллическую структуру (дифрактограммы 1 на фиг. 1-2). После 1 ч (7 кДж/г) механоактивации структура оротата магния становится аморфно-кристаллической: об этом свидетельствует размытие рефлексов рентгеновской дифрактограммы (дифрактограмма 2 на фиг. 2), а через 6 ч (42 кДж/г) механоактивации оротат магния полностью аморфизуется (дифрактограмма 3 на фиг. 2). Структура оротата калия через 1 ч (7 кДж/г) механоактивации становится аморфно-кристаллической и практически не меняется даже через 6 ч (42 кДж/г) механоактивации (дифрактограммы 2 и 3 на фиг. 1).

На фиг. 3 приведены РФЭС спектры оротатов калия и магния до и после механоактивации (7 кДж/г)). Анализ спектров свидетельствует об изменении атомной структуры оротатов - превращении лактамной формы в лактимную, в результате которого в азотсодержащем гетероцикле формируется ароматическая система связей:

в C1s- и N1s-спектрах оротатов после механоактивации не появляется составляющих, свидетельствующих об образовании новых химических соединений;

в C1s- и N1s-спектрах механоактивированного оротата калия возрастает интенсивность составляющих от атомов углерода и азота в составе ароматического гетероцикла (связь C=N); в O1s-спектре увеличилась интенсивность составляющей от ОН-групп;

в C1s-спектрах механоактивированного оротата магния интенсивность составляющей от атомов углерода в составе O=C-N остается относительно высокой, а относительный вклад составляющей от атомов углерода в связи С-ОН ниже, чем в спектрах оротата калия.

В ИК-спектре (фиг. 5-6) механоактивированного образца оротата калия (7 кДж/г) появляется полоса поглощения при ~3390 см-1, отвечающая за валентные колебания ОН-группы. Отмечаются изменения в области спектра 950-1100 см-1, которые могут быть обусловлены «дышащими» колебаниям (N-C) пиримидинового кольца, а также валентными колебаниями группы C-O. Эти эффекты свидетельствуют о таутомерном превращении оротат-аниона с образованием ароматического кольца.

После механоактивации в ИК-спектре образца оротата магния (фиг. 4) исчезает тонкая структура полос поглощения 950-1100, 1500-1800 и 2800-3700 см-1, что может быть следствием уменьшения индуцированного дипольного взаимодействия с увеличением межмолекулярного расстояния в результате аморфизации. Изменения, связанные с образованием ароматического кольца в спектре механоактивированного оротата магия, мало заметны на фоне изменений, связанных с аморфизацией.

Биологический ответ организма на лекарство, прежде всего, зависит от его растворимости, которая обусловливает распределение вещества в этом организме и во многом определяет фармакокинетические свойства лекарственного препарата. Растворимость оказывает существенное влияние на проникновение препарата из кишечника в кровь, то есть на такие процессы, как всасывание, фильтрация, диффузия и др.

В табл. 1 приведены растворимости исходных и механоактивированных оротатов в зависимости от кислотности (pH) среды. Кислотность выбрана в соответствии с кислотностью среды различных отделов желудка и кишечника.

Растворимость механоактивированных оротатов калия и магния выше, чем исходных, и при этом зависит от кислотности среды (pH). Причиной повышения растворимости оротатов является формирование ароматического гетероцикла, что способствует повышению растворимости в полярных растворителях, к которым относится вода.

Скорость растворения в воде (pH 6.5) механоактивированного оротата калия выше, чем исходного: так, в первые 20 минут скорость растворения составляет 4.9 мг/л·мин и 6.6 мг/л·мин для исходного и механоактивированного (3 ч) образцов, соответственно.

Скорость растворения механоактивированного оротата магния в воде (pH 6.5) такая же, как исходного.

Повышение скорости растворения оротатов обусловлено аморфизацией образцов в результате механоактивации.

Таблица 1
Раствормость оротатов калия и магния
Вещество, доза механической энергии, кДж/г Концентрация г/100 г H2O
pH 2 pH 4 pH 6.5 pH 8.6
Оротат калия 0 0,1 0,25 0.04 0,18
7 0,1 0,26 0.06 0,24
21 0,12 0,25 0.08 0,30
42 0,15 0,28 0.08 0,30
Оротат магния 0 0,14 0,23 0.075 0,20
7 0,16 0,23 0.08 0,20
21 0,18 0,26 0.08 0,23
42 0,21 0,29 0.08 0,24

Не наблюдается взаимодействия вспомогательных веществ (крахмал, лактоза, микроцеллюлоза) с оротатами калия и магния при механоактивация. Данные вещества вводятся для облегчения таблетирования механоактивированных препаратов. Введение вспомогательных веществ перед процессом механоактивации обеспечивает равномерное их смешивание с оротатами.

Изменение физико-химических свойств механоактивированных оротатов по сравнению с исходными свидетельствует об увеличении биологической доступности в результате механоактивации. Эта характеристика была исследована методом микроэлектрофореза. Исследуемые эпителиоциты помещали в водные растворы оротатов калия и магния и с помощью устройства, описанного, например, в патенте RU 2168176, создавали многовекторные, симметричные, знакопеременные электрические поля. Под микроскопом определяли реакции клеток на воздействия электрических полей по возвратно-поступательным движениям клеток или их ядер, цитолеммы.

Результаты исследования биологической активности оротатов калия и магния методом микроэлектрофореза исследовано на клетках крови и буккальных эпителиоцитов (табл. 2 и 3).

Таблица 2
Показатели биоэлектрической активности клеток буккального эпителия
Вещество, доза механической энергии, кДж/г Показатели биоэлектрической активности клеток буккального эпителия
Доля активных клеток % Амплитуда колебаний
ядра цитолемма клетки
Оротат калия 0 52±3.2 0 0.25±0.1 2.1±0.3
7 84±2.8 8±0.3 2.5±0.3 3.2±0.4
21 72±2.6 2±0.2 2.0±0.4 2.2±0.3
42 36±3.6 0 1.7±0.3 0
Оротат магния 0 28±3.6 0 1±0.2 1±0.3
7 100±12.0 6±0.4 1.9±0.3 2.7±0.3
21 100±2.0 1±0.2 1.2±0.2 2.1±0.3
42 100±2.1 1±0.2 0.6±0.1 1.5±0.2

Повышение биологической активности оротатов калия и магния после механоактивации обусловлено следующими моментами:

- диспергирование и формирование аморфной (для оротата магния) и аморфно-кристаллической (для оротата калия) структуры, приводящие к увеличению скорости растворения в воде;

- формированием ароматического гетероцикла дигироксоформы оротата калия, которое способствует повышению растворимости в полярных растворителях (воде) и улучшению абсорбции из желудочно-кишечного тракта;

- образованием OH-групп взамен C=O в результате формирования гидроксо-формы оротата магния и дигидроксо-формы оротата калия, которое приводит к увеличению гидрофобности молекул оротатов, т.е. увеличению липофильности способствующей улучшению усвоения механоактивированных оротатов организмом.

Использование механоактивированных оротатов калия и магния влияет на прижизненные свойства клеток: активируется плазмолемма и ядра клеток, наблюдается активация лимфоцитов.

Таблица 3
Показатели биоэлектрической активности клеток крови
Вещество, доза механической энергии, кДж/г Показатели биоэлектрической активности клеток крови
Доля активных эритроцитов, % Амплитуда колебаний Лимфоциты
Оротат калия 0 63±3.1 5.5±1.3 Нет активных лимфоцитов
7 88±2.7 14.5±2.1 Есть активные
лимфоциты
21 88±2.7 11±1.9 Есть активные лимфоциты
42 93±2.5 11.5±2.2 Есть активные лимфоциты
Оротат магния 0 83±2.6 7±1.7 Лимфоциты не активны
7 96±2.5 16±3.2 Есть активные лимфоциты
21 92±2.8 12±3.0 Есть активные лимфоциты
42 83±3.2 10±2.8 Лимфоциты активны

Повышение биологической активности наблюдается для оротатов, механоактивированных при дозе механической энергии в диапазоне 7-10 кДж/г.

Пример

На паре несмешивающихся жидкостей вода-1-октанол была смоделирована мембрана кишечно-желудочного тракта. Из водных растворов гидрокси-формы в октанол перешло почти в 2 раза больше оротата калия и в 1,7 раза больше оротата магния. Это свидетельствует о большем количестве гидрокси-форм оротатов калия и магния, перешедшем из желудочно-кишечного тракта в организм. Вывод подтверждается исследованиями на лабораторных крысах.

Для исследований на лабораторных крысах на модели гипомагниемии (ГМЕ) на основании данных микроэлектрофореза была выбрана наиболее активная гидрокси-форма и одна из менее активных - оксо-форма оротата магния. Гипомагниемия достигалась введением крысам в течение 14 дней внутрибрюшинно диуретика фуросемида (Furosemidi 1%) в дозе 30 мг/кг. В состоянии ГМЕ содержание магния в крови понижалось почти в 2 раза по сравнению с исходным состоянием крыс. При приеме оксо-формы продолжалось последействие фуресемида и содержание магния продолжало уменьшаться. При приеме гидрокси-формы наблюдалась положительная тенденция - восстановление концентрации магния в сыворотке крови.

Таблица 4
Сравнительный анализ содержания магния в сыворотке крови здоровых лабораторных крыс, после гипомагниемии и после приема оротата магния
Контрольная группа Группа сравнения (ГМЕ) Прием в течение 6 дней
Гидрокси-форма Оксо-форма
Магний 1,75±0,08 0,902±10,18 1,12±0,10 0,855±10,05

Способ получения препарата, содержащего аморфные или аморфно-кристаллические соли оротовой кислоты, включающий термообработку кристаллических оротата калия и/или оротата магния с последующим измельчением в измельчительном активаторном устройстве, термообработка заключается в термостатировании при температуре 115-125°C в течение 40-60 мин, а в качестве измельчительного активаторного устройства используют шаровую планетарную мельницу, измельчение проводится в течение времени, необходимого для подвода удельной энергии 7-10 кДж/г.



 

Похожие патенты:

Изобретение относится к области медицины, а именно к пульмонологии, и может быть использовано для фармакологической коррекции воспаления и фиброза в легочной ткани, развивающихся при назначении цитостатиков.

Изобретение относится к соединению общей формулы (I) или к его фармацевтически приемлемым солям, где Alk представляет собой C1-C6алкильную группу; G представляет собой C=O и Q представляет собой CR51R52 или NR51, где R51 и R52, будучи одинаковыми или разными, независимо один от другого, представляют собой H, C1-C6алкил, необязательно замещенный заместителем, выбранным из группы, включающей карбокси, фенокси, бензилокси, C1-С6алкокси и гидрокси; C3-C6циклоалкилС1-С6алкил; фенилС1-С6алкил, необязательно замещенный галогеном; фениламидоС1-С6алкил; фенилС1-С6алкиламидоС1-С6алкил, необязательно замещенный С1-С6алкоксигруппой; или R51 и R52, совместно с углеродным атомом, к которому они присоединены, образуют группу C=O или С2-С6алкенильную группу, необязательно замещенную фенилом; M1 представляет собой CR49, где R49 представляет собой H; M2 представляет собой CR50, где R50 представляет собой H; R38 представляет собой Н, C1-C6алкил, замещенный феноксигруппой; С3-С6циклоалкилС1-С6алкил; арилС1-С6алкил, необязательно замещенный 1 или 2 заместителями, выбранными из группы, включающей С1-С6алкил, С1-С6алкокси, С1-С6алкоксикарбонил, карбоксил, N-метиламидо, гидрокси, С1-С6алкоксиС1-С6алкокси, С1-С6алкилтио, С1-С6алкилсульфинил, циано, галоген, перфторС1-С6алкил, нитро, формил, гидроксиС1-С6алкил и амино, причем арильный фрагмент представляет собой фенил или нафтил; и гетероарилС1-С6алкил, где гетероарильный фрагмент представляет собой пиридинил, необязательно замещенный 1 или 2 группами, выбранными из С1-С6алкокси или гидроксиС1-С6алкила, пиразолил или изоксазолил, замещенные 1 или 2 С1-С6алкильными группами; R47 и R48 представляют собой С1-С6алкил.

Изобретение относится к области фармацевтики и косметологии и касается ингибитора гепараназной активности, включающего в качестве активного ингредиента циклическое карбоксамидное производное, представленное формулой (I) или его соли, который может использоваться в качестве средства против морщин или для отбеливания кожи.

Настоящее изобретение относится к области органической химии, а именно к новым производным имидазолидин-2,4-диона общей формулы (I) в форме рацематов, энантиомеров или любых комбинаций этих форм, или к их фармацевтически приемлемым солям, где R1 и R2 независимо представляют собой алкилы, галогеналкилы, циано-, нитро-, амино-, -NR8-CO-R5, -NR8-SO2-R5, -NR8-CO-(CH2)n-NR6R7, -NR8-SO2-(CH2)n-NR6R7 или -CO-NH2; n выбран из 0 и 1; R5 представляет собой алкил; R6 и R7 независимо представляют собой атомы водорода, алкилы или алкилоксикарбонилы; R8 представляет собой атом водорода или алкил; R3 представляет собой алкил, или два радикала R3 совместно с атомом углерода, с которым они связаны, образуют циклоалкил, содержащий 4 члена; R4 представляет собой галогеналкил, содержащий от 4 до 6 атомов углерода; Y представляет собой цепь линейного или разветвленного алкилена, содержащего от 5 до 11 атомов углерода, причем этот алкилен может быть насыщенным и может содержать два дополнительных члена -О-; Х представляет собой -S-, -SO-, -SO2-, -S=N(R9)- или -S(O)=N(R9)-; R9 представляет собой атом водорода или галогеналкилкарбонил.

Изобретение относится к области органической химии, а именно к новым производным 2,5-диоксо-имидазолидина общей формулы Ib, или к его фармацевтически приемлемым солям и сольватам, или сольватам фармацевтически приемлемых солей, где X означает O; R1 представляет собой H; или R1 выбран из C1-C6 алкила и C3-C6 алкинила, где алкил необязательно может быть замещен цианогруппой; R2a выбран из H, P(O)(OH)2 и C(O)(CH 2)n1C(O)OH; или R2a выбран из -С(О)-C 1-C6 алкила, который замещен амино; n1 равно 1 или 2; каждый R2b и R2c независимо выбран из H и C1-C6 алкила; R3a представляет собой H, атом галогена или циано; каждый R3b независимо представляет собой атом галогена или циано; или каждый R 3b независимо представляет собой C1-C6 алкил, необязательно замещенный тремя атомами галогена; каждый R4a и R4b независимо представляет собой H или атом галогена; или каждый R4a и R4b выбран из C1-C6 алкила и C1 -C6 алкокси, где алкил замещен тремя атомами галогена; R4c означает атом галогена или циано; и m1 равно 0 или 1.

Изобретение относится к медицине и может быть использовано для повышения адаптационных возможностей и коррекция психофункционального состояния у больных с вредными условиями труда.
Изобретение относится к рыбоводству и ветеринарии. .

Группа изобретений относится к фармацевтической композиции на основе соединения формулы (I) или его фармацевтически приемлемой соли или сольвата, где X является S или O, и если X является S, R1 является OH или NH2; и если X является O, R1 является OH, NH2 или NHMe. Также изобретение относится к соединению формулы (I) и набору на его основе. Технический результат: получены новые производные имидазолидина, полезные при лечении рака простаты. 5 н. и 23 з.п. ф-лы, 14 табл., 14 пр.

Изобретение относится к области органической химии, а именно к новым гетероциклическим соединениям общей формулы (I) или к его фармацевтически приемлемым солям, где R1 обозначает циано, нитро, амино, -NHCOOR4 или -NHCOR4; R2 обозначает галоген, C1-алкил, галогенС1-алкил или C1-алкокси; R3 обозначает C1-алкил; или оба радикала R3 образуют вместе с атомом углерода, с которым они связаны, циклоалкил, содержащий 3 члена; X обозначает либо алкиленовую цепочку из 4-7 атомов углерода, линейную или разветвленную, причем эта цепочка может содержать один или несколько одинаковых или разных дополнительных звеньев, выбранных из -O-, -N(R5)-; либо группу где n1 и p1 обозначают два целых числа, сумма которых n1+p1 является целым числом, выбранным из 2; R6 и R7 вместе образуют ковалентную связь или R6 и R7 образуют вместе с атомами углерода, с которыми они связаны, цикл или циклоалкил, содержащий 3 члена; R4 обозначает C1-алкил; R5 обозначает C1-алкил. Также изобретение относится к конкретным соединениям, фармацевтической композиции на основе соединения формулы (I), применению соединения формулы (I). Технический результат: получены новые гетероциклические соединения, полезные при лечении рака. 5 н. и 18 з.п. ф-лы, 10 ил., 23 пр.

Изобретение относится к новым (R)-стереоизомерам замещенных 2-тиоксо-имидазолидин-4-онов формулы 1 или их спироаналогам, которые обладают свойствами антагониста андрогенового рецептора, к вариантам способа их получения и к промежуточным соединениям 2.1-.2.4 для получения соединений формулы 1. Соединения формулы 1 могут быть использованы для получения лекарственного средства, пригодного для лечения ракового заболевания, такого как рак простаты, рак молочной железы. Изобретение также относится к фармацевтической композиции в форме таблеток, капсул, инъекций. В формуле 1 R1 представляет собой OH, NH2, или OR4 группу; R2 и R3 представляют собой метил, или R2 и R3 представляют собой CH2-CH2 группу; R4 представляет собой C1-C4алкил или циклопропил. Соединения 2.1-2.4 соответствуют структурным формулам: 8 н. и 9 з. п. ф-лы, 1 табл., 10 пр.

Изобретение относится к фармацевтической промышленности и представляет собой применение антибактериальной и антивирусной фармацевтической композиции, обладающей выраженными противоопухолевыми, антибактериальными и антиоксидантными свойствами, содержащей азотнокислое серебро, гексаметилентетрамин, тиосульфат натрия, альфа-аспарагиновую кислоту или аспарагин, никотиновую кислоту и воду, причем компоненты в композиции находятся в определенном соотношении в мас. %, а также представляет собой применение антибактериальной и антивирусной фармацевтической композиции, обладающей выраженными противоопухолевыми, антибактериальными и антиоксидантными свойствами, содержащей азотнокислое серебро, гексаметилентетрамин или имидазол, альфа-аспарагиновую кислоту или аспарагин, никотиновую кислоту, имидазолсодержащие соединения платины цис-[Pt(NH3)2Im2]Cl2 или цис-[Pt(NH2OH)2Im2]Cl2 и воду, причем компоненты в композиции находятся в определенном соотношении в мас. %. Изобретение обеспечивает расширение арсенала средств указанного назначения, при этом заявленную композицию можно использовать как составную часть или же как самостоятельный препарат, обладающий лечебными и профилактическими свойствами, предотвращающий повреждение клеток свободными радикалами, повышающий защитные силы организма и способствующий регенерации тканей. 2 н.п. ф-лы, 2 пр., 1 табл.

Изобретение относится к соединению формулы 1, где R означает водород или C1-4-алкильную группу; R1 означает группу, выбираемую из группы, состоящей из структур, представленных формулами (Iа), где R2 означает водород или C1-4-алкильную группу; R3 означает водород, галоген, CF3, CN или C1-4-алкил и R4 означает водород, галоген или C1-4-алкил; а=0, 1 или 2; b=0, 1, 2 или 3; с=1, 2 или 3 и Ra, Rb, Rc и Rd означают, независимо друг от друга, Н или C1-4-алкил; X означает С2-алифатический углеводородный мостик, необязательно содержащий двойную связь или тройную связь или гетероатом, выбираемый из О и S, или -СН(СН2)СН-; Y означает водород, галоген, C1-4-алкил, C1-4-алкокси или C1-4-гидроксиалкил; Z означает C1-4-алифатический углеводородный мостик, необязательно содержащий одну двойную связь и/или один гетероатом, выбираемый из О, S, N и N(СН3), или означает C2-4-алифатический углеводородный мостик, конденсированный с С3-6-циклоалкилом, необязательно содержащий одну или более двойных связей, или с фенильным кольцом, или означает C1-4-алифатический углеводородный мостик, замещенный спиро-С3-6-циклоалкилом, необязательно содержащий одну или более двойных связей; или его фармацевтически приемлемой соли, или стереоизомеру, или фармацевтически приемлемой соли стереоизомера. Соединения по изобретению получают за счет стадии восстановительного аминирования бензальдегида формулы 4 с помощью первичного амина R1-NH2, введения во взаимодействие полученного вторичного амина формулы 2 с эфиром формил- или оксоциклоалканкарбоновой кислоты формулы 3, где X, Y, Z, R1, R, Ra, Rb, Rc, Rd, b и с имеют значения, как указано для формулы 1, и R' означает -СНО или =O, и, необязательно, гидролиза полученного сложного эфира формулы 1. Изобретение также относится к промежуточному соединению формулы 2 или его соли. Соединение формулы 1 по изобретению предназначено для применения для превентивного и/или терапевтического лечения заболевания или нарушения, опосредуемого рецептором CXCR3 в качестве лекарственного средства или в составе фармацевтической композиции. Технический результат – производные циклоалканкарбоновой кислоты в качестве антагонистов рецептора CXCR3. 4 н. и 16 з.п. ф-лы, 6 табл., 160 пр. (Ia)

Изобретение относится к области фармацевтики и представляет собой композицию, предназначенную для местного применения для стимуляции рубцевания кожи или слизистых оболочек, содержащую менее чем 1 КОЕ/мл аэробной флоры и не содержащую консервантов, которая в расчете на общую массу композиции содержит: по меньшей мере 0,1 мас. % гиалуроновой кислоты, представляющей собой смесь гиалуроновой кислоты с низкой молекулярной массой, имеющей молекулярную массу от 600 до 1,000 кДа, и гиалуроновой кислоты с высокой молекулярной массой, имеющей молекулярную массу от 800 до 1,200 кДа, причем указанная гиалуроновая кислота с высокой молекулярной массой имеет более высокую молекулярную массу, чем указанная гиалуроновая кислота с низкой молекулярной массой; по меньшей мере один агент для рубцевания кожи и воду. Изобретение обеспечивает создание композиции, в которой гиалуроновая кислота с высокой молекулярной массой усиливает рубцевание посредством ее пленкообразующего эффекта, в то время как гиалуроновая кислота с низкой молекулярной массой, благодаря ее проникающей способности, усиливает проникновение компонентов композиции в ткани. Композиция по изобретению демонстрирует улучшенные заживляющие свойства, улучшает структуру эпидермиса и ускоряет дифференциацию грануляционной ткани. 6 з.п. ф-лы, 2 пр., 2 табл.

Изобретение относится к области органической химии, а именно к новому гетероциклическому соединению [RD93], которая может быть полезно для лечения невосприимчивого к гормонам рака простаты, доброкачественной гиперплазии простаты, рака молочной железы и рака яичников. Технический результат: получено новое гетероциклическое соединение, обладающее полезными биологическими свойствами. 1 н. и 5 з.п.ф-лы, 41 ил., 11 табл., 61 пр.

Изобретение относится к области органической химии, а именно к производному оксотиоимидазолина формулы (I) или к его мезомеру, рацемату, энантиомеру, диастереомеру, или их смеси, где А представляет собой -CR' или N; R' представляет собой водород или галоген; Z1 и Z2 каждый независимо представляет собой метил; R1 и R2 каждый независимо выбирают из группы, состоящей из S или О; R3 выбирают из группы, состоящей из C1-С3-алкила, гетероциклила, выбранного из тетрагидрофурана, тетрагидропирана, пиперидина, диоксо-тетрагидротиопирана, азетидина, пирролидина, оксетана; С6-арила и -S(O)mR6; когда R3 выбирают из гетероциклила, выбранного из тетрагидрофурана, тетрагидропирана, пиперидина, диоксо-тетрагидротиопирана, азетидина, пирролидина, оксетана; или С6-арила, каждый из гетероциклила и арила необязательно замещен одной или более группой, выбранной из группы, состоящей из C1-алкила, -OR6, -C(O)NR7R8, -S(O)mR6 и -C(O)R6; когда R3 представляет собой C1-С3-алкил, алкил замещен одной или более группой, выбранной из группы, состоящей из галогена, циано, амино, С3-циклоалкила, тетрагидрофурана, -OR6, -C(O)NR7R8, -S(O)mR6 и -C(O)OR6, при этом циклоалкил необязательно замещен одной группой, выбранной из циано, амино, -OR6, -C(O)NR7R8 и -C(O)OR6; R4 и R5 каждый независимо выбирают из группы, состоящей из циано, C1-алкила, галогена и -CF3; R6 представляет собой водород, C1-алкил или -CF3; R7 и R8 каждый независимо выбирают из группы, состоящей из водорода и C1-алкила, и m представляет собой 2. Также изобретение относится к промежуточным соединениям, способу получения соединения формулы (I), фармацевтической композиции на основе соединения формулы (I) и его применению. Технический результат: получены новые производные оксотиогидантоина, полезные при лечении заболеваний, опосредованных андрогенным рецептором. 11 н. и 7 з.п. ф-лы, 51 пр.

Изобретение относится к композиции, ингибирующей теломеразу. Указанная композиция включает блок-сополимер полиоксиэтилена и полиоксипропилена, а также координационное соединение производного имидизол-4-она, ингибирующее теломеразу, общей формулы При этом координационное соединение производного имидазол-4-она содержится в количестве от 5 до 60 мас.%, блок-сополимер – остальное. Изобретение обеспечивает больший эффект ингибирования теломеразы за счет увеличения растворимости координационных соединений производных имидазол-4-она. 8 з.п. ф-лы, 3 ил., 2 табл., 1 пр.

Группа изобретений относится к фармацевтическим композициям для лечения рака. Предложены: комбинация для применения в качестве лекарственного средства в лечении рака, содержащая: (S)-4-амино-N-(1-(4-хлорфенил)-3-гидроксипропил)-1-(7Н-пирроло[2,3-d]пиримидин-4-ил)пиперидин-4-карбоксамид (AZD5363) или его соль с модулятором передачи сигналов рецепторов андрогенов, выбранным из: 4-{3-[4-циано-3-(трифторметил)-фенил]-5,5-диметил-4-оксо-2-тиоксоимидазолидин-1-ил}-2-фтор-N-метилбензамида (MDV-3100) и N-[4-циано-3-(трифторметил)-фенил]-3-[(4-фторфенил)-сульфонил]-2-гидрокси-2-метилпропанамида (бикалутамида) или его соли, набор указанных компонентов для применения в лечении рака (варианты). Технический результат состоит в большем (85%) ингибировании роста опухоли сочетанием AZD5363+бикалутамид против монотерапии кастрационно-резистентного рака предстательной железы, комбинация демонстрировала хорошую переносимость и в синергизме противоопухолевого действия AZD5363+ MDV-3100. 3 н. и 6 з.п. ф-лы, 3 ил., 1 табл.
Наверх