Способ изготовления электродов электрохимических устройств с твердым электролитом


 


Владельцы патента RU 2543071:

Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской академии наук (RU)

Изобретение относится к области электротехники, а именно к способу изготовления электродов электрохимических устройств с твердым электролитом. Снижение поляризационного сопротивления электрода, а также улучшение протекания электродных реакций газообмена является техническим результатом предложенного изобретения. Способ включает пропитку электрода раствором азотнокислого празеодима с его последующей термообработкой, при этом электрод однократно пропитывают раствором азотнокислого празеодима в этиловом спирте с концентрацией 0.3-2.0 мас.% PrO1.83, после чего термообработку электрода ведут при нагреве со скоростью не более 50°С/час до температуры образования пленки оксида празеодима на границе «электрод/электролит». 1 табл.

 

Изобретение относится к области электрохимической энергетики и может быть использовано при изготовлении электродов, работающих в окислительной атмосфере, применяемых в различных электрохимических устройствах с твердым электролитом, таких как топливные элементы, электролизеры, электрохимические насосы, датчики и т.п.

Важнейшее требование к электродам вышеуказанных устройств состоит в том, что они должны иметь малое поляризационное сопротивление, чтобы обеспечивать эффективную работу устройства. Один из способов уменьшения поляризационного сопротивления - активация электродов путем введения в него электрохимически активных добавок - активаторов.

Наиболее близким к заявляемому способу является способ изготовления электродов, работающих в окислительной атмосфере, применяемых для электрохимических устройств с твердым электролитом, известный из RU 2322730, опубл. 20.04.2008. Согласно этому способу, в сформированном двухслойном электроде распределен высокодисперсный нанопорошок PrO2-δ в количестве 7-10 масс.% по отношению к массе электрода.

Таким образом, необходимое уменьшение поляризационного сопротивления электродов для электрохимических устройств, достигается большим количеством активатора по отношению к массе электрода. Для введения в электрод большого количества активатора в процессе, включающем пропитку и прокаливание, нужно осуществлять неоднократную пропитку насыщенными концентрированными (около 40 масс.% в случае нитрата празеодима) растворами активатора, что нетехнологично. Ситуация усугубляется тем, что при пропитке электрода большими количествами активатора на его внешней поверхности образуется слой активатора, который затрудняет коммутацию электродов и который, в ряде случаев, нужно счищать, чтобы присоединить токоподвод. Кроме того, активатор, введенный в электрод в большом количестве, заполняет поры электрода, ухудшая газообмен, который важен для протекания электродных реакций с участием газов (кислород, водяной пар, CO2, водород, метан и т.д.) в устройствах с твердым электролитом. Таким образом, известный способ по прототипу нетехнологичен и отрицательно влияет на газообмен.

Задача настоящего изобретения состоит в разработке технологичного способа изготовления электродов в устройствах с твердым электролитом, позволяющим изготавливать малополяризуемые электроды, свободные от вышеперечисленных недостатков.

Для решения поставленной задачи способ изготовления электродов электрохимических устройств с твердым электролитом включает пропитку электрода раствором азотнокислого празеодима с последующей термообработкой, при этом электрод однократно пропитывают раствором азотнокислого празеодима в этиловом спирте с концентраций 0.3-2.0 масс.% в пересчете на оксид празеодима, термообработку ведут при нагреве со скоростью не более 50°С/час до температуры образования пленки оксида празеодима.

Введение в электрод в качестве активатора пленкообразующего спиртового раствора азотнокислого празеодима с последующей термообработкой при заявленных режимах, приводит к образованию на границе «электрод/электролит» пленки оксида празеодима, которая способствует резкому снижению поляризационного сопротивления электрода. При этом способ характеризуется повышенной технологичностью, обусловленной однократным нанесением раствора азотнокислого празеодима и позволяет избежать недостатков, вызванных введением в электрод большого количества активатора. Выбор интервала концентраций раствора азотнокислого празеодима (0.3-2.0 масс.% в пересчете на PrO1.83) обусловлен тем, что именно в этом интервале на границе «электрод/электролит» образуется пленка оксида празеодима с нужными характеристиками. При использовании раствора азотнокислого празеодима с концентрацией, меньшей 0.3 масс.% PrO1.83, образующаяся пленка слабо активирует электрод, а при концентрации раствора азотнокислого празеодима, превышающей 2.0 масс.% PrO1.83, пленка не образуется - покрытие распадается на отдельные кристаллики - порошинки и также слабо активирует электрод. Пропитанный в соответствии с заявленным способом, термически обработанный электрод содержит оксид празеодима в количестве 0.3-2.0 масс.%, что существенно меньше, чем в способе по прототипу.

Новый технический результат, достигаемый заявленным способом, заключается в снижении поляризационного сопротивления электрода при однократном введении в электролит малых количеств активатора, улучшении протекания электродных реакций газообмена, упрощении коммутации электродов.

Предлагаемый способ апробирован в лабораторных условиях в Институте высокотемпературной электрохимии УрО РАН. Эксперименты были проведены в одних и тех же условиях на электрохимических ячейках с твердым электролитом состава 0.9ZrO2+0.1Y2O3 (далее YSZ), на который были нанесены платиновые электроды. Для нанесения электродов использовали тонкоизмельченный порошок чистой платины в виде взвеси в спирте. Платиновые порошковые электроды наносили методом окрашивания на обе стороны круглых пластинок твердого электролита YSZ диаметром 10 мм и толщиной около 0.5 мм. Нанесенные электроды припекали на воздухе при температуре 1100°С. Операцию нанесения электродов на твердый электролит проводили дважды, результирующий электрод содержал количество платины около 15 мг/см2.

Активирование платиновых электродов производили, смачивая их пленкообразующим спиртовым раствором нитрата празеодима, с последующей термообработкой.

Эксперименты с использованием электронной микроскопии (растровый электронный микроскоп JSM 5900LV с энергодисперсионным спектрометром INCA ENERGY) показали, что пленки оксидов получаются только из пленкообразующих растворов, предельное содержание соли в которых (в пересчете на оксид празеодима) не превышает ~ 2.0 масс.%. При использовании насыщенных спиртовых растворов нитратов, указанных в прототипе, пленка на границе «электрод/электролит» не образуется ни при каких условиях термообработки электрода; покрытие распадается на отдельные кристаллики-порошинки.

Платиновые электроды, пропитанные спиртовым раствором нитратов празеодима, с концентрацией активатора 0.3-2.0 масс.% в пересчете на оксид празеодима, прокаливали на воздухе в двух режимах - при быстром нагреве (200°С/час), при котором пленка оксида-активатора не образуется, и при медленном нагреве (50°С/час), при котором пленка оксида-активатора образуется. Нагрев в обоих случаях вели до температуры 850°С, время выдержки при максимальной температуре составляло 1 час.

Сравнительные характеристики электродов изучали с помощью импедансметра «PARSTAT 2273» в области частот 0.1÷1 МГц при амплитуде сигнала 30 мВ. Измерения проводили в атмосфере воздуха в интервале температур 700÷500°С, который соответствует средним рабочим температурам электрохимических устройств с данными материалами.

В таблице приведены результаты сравнительных испытаний платиновых электродов:

1) неактивированных;

2) активированных растворами нитрата празеодима в режиме термообработки электрода, не образующим пленку активатора на границе «электрод/электролит»;

3) активированных растворами нитрата празеодима в режиме термообработки электрода, при котором образуется пленка активатора на границе «электрод/электролит»;

Испытания показали, что в интервале температур 700÷500°С неактивированный электрод имеет высокое поляризационное сопротивление, составляющее 700÷52000 Ом. Электрод, однократно пропитанный раствором азотнокислого празеодима в этиловом спирте с концентрацией, меньшей 0.3 масс.%, в пересчете на оксид празеодима с последующей термообработкой в интервале температур 700-500°С при медленном нагреве со скоростью 50°С/час, содержит оксид празеодима в количестве, меньшем 0.05 мг/см2. Пленка активатора при этом не образуется, улучшение характеристик электрода не происходит. Электрод, однократно пропитанный раствором азотнокислого празеодима в этиловом спирте с оптимальной концентрацией 0.3-2.0 масс.% PrO1.83 с последующей термообработкой в этом же интервале температур с такой же скоростью нагрева, содержит оксид празеодима в количестве 0.05-0.30 мг оксида празеодима на 1 см2 поверхности электрода. В этом случае на границе «электрод/электролит» образуется пленка активатора, и поляризационное сопротивление электрода резко уменьшается.

Из результатов этих испытаний следует, что предлагаемый способ имеет существенные преимущества по сравнению с прототипом. По этому способу достаточно однократного введения в электролит малых количеств активатора для образования на 1 см2 поверхности электрода 0.05-0.30 мг оксида празеодима, достаточного, чтобы при термообработке электрода нагревом со скоростью не более 50°С/час до температуры образования на границе «электрод/электролит» пленки оксида празеодима, достичь резкого снижения поляризационного сопротивления электрода. Малое количество введенного в электрод активатора меньше забивает его поры, что способствует лучшему протеканию электродных реакций газообмена. При этом на внешней поверхности электрода не образуется изолирующий слой, затрудняющий коммутацию электродов.

Таким образом, заявленный способ позволяет более технологично изготавливать малополяризуемые электроды, способствует лучшему протеканию электродных реакций газообмена и упрощению коммутации электродов.

Таблица
Температура, °С Поляризационное сопротивление электрода, Ом·см2
без активации с активацией 0.2 мг оксида/см2
без образования пленки с образованием пленки
700 0.7·103 1.2·103 0.5
600 7.8·103 8.3·103 1.7
500 52.0·103 75.0·103 18.0

Способ изготовления электродов электрохимических устройств с твердым электролитом, включающий пропитку электрода раствором азотнокислого празеодима с его последующей термообработкой, отличающийся тем, что электрод однократно пропитывают раствором азотнокислого празеодима в этиловом спирте с концентрацией 0.3-2.0 масс.% PrO1.83, термообработку электрода ведут при нагреве со скоростью не более 50°C/час до температуры образования пленки оксида празеодима на границе «электрод/электролит».



 

Похожие патенты:

Изобретение относится к области электротехники, а именно к способу изготовления пористых катодных материалов на основе манганита лантана-стронция, и может быть использовано для изготовления твердооксидных топливных элементов (ТОТЭ), работающих при высоких температурах.

Изобретение относится к устройству электрохимического генератора с твердым электролитом, преимущественно для генераторов малой и средней мощности до 15÷20 кВт. Указанный генератор содержит заключенные в корпус с теплоизолирующими стенками, рабочую камеру с батареей топливных элементов, камеру сгорания, конвертор природного газа, каналы для подачи и отвода топлива и газов, при этом конвертор природного газа установлен в рабочей камере, генератор содержит теплообменник, смонтированный в теплоизолирующих стенках, при этом канал для подачи газа-окислителя в рабочую камеру образован пространством между камерой сгорания и рабочей камерой и соединен с каналом для подачи воздуха в теплообменник, каналы для отходящих газов которого соединены с камерой сгорания.

Изобретение относится к области химических источников тока, а именно к способам модификации полимерных перфторированных сульфокатионитных мембран, которые используют при изготовлении мембранно-электродных блоков (МЭБ), применяемых в топливных элементах (ТЭ) различного типа, в том числе в портативных электронных устройствах.

Предложена батарея твердооксидных топливных элементов, получаемая посредством способа, содержащего этапы: (a) формирование первого блока батареи топливных элементов путем чередования, по меньшей мере, одной соединительной пластины, по меньшей мере, с одной единицей топливного элемента, и обеспечение стеклянного уплотнителя в промежутке между соединительной пластиной и каждой единицей топливного элемента, при этом стеклянный уплотнитель содержит, в мас.%: 50-70 SiO2, 0-20 Al2O3, 10-50 CaO, 0-10 MgO, 0-6 (Na2O+K2O), 0-10 B2O3 и 0-5 функциональных элементов, выбранных из TiO2, ZrO2, F, P2O5, MoO3, Fe2O3, MnO2, La-Sr-Mn-O перовскита (LSM), и их комбинаций; (b) преобразование названного первого блока батареи топливных элементов во второй блок, имеющий толщину стеклянного уплотнителя 5-100 мкм, посредством нагревания названного первого блока до температуры 500°C или выше, и воздействия на батарею элементов давлением нагрузки от 2 до 20 кг/см2; (c) преобразование названного второго блока в конечный блок батареи топливных элементов посредством охлаждения второго блока из этапа (b) до температуры ниже, чем температура на этапе (b).

Изобретение относится к области электротехники, а именно к способу получения твердооксидного топливного элемента с двухслойным несущим катодом, который включает формование электродного и коллекторного слоев катода, их спекание, при этом на электродный слой катода наносят и припекают слой твердого стабилизированного иттрием (YSZ) электролита, на слой электролита наносят анод, после чего полученный элемент спекают, при этом коллекторный слой катода формуют из порошка манганита лантана стронция, а электродный слой - из смеси порошков манганита лантана стронция и оксида циркония, стабилизированного оксидом иттрия.

Изобретение относится к области катализа, а именно каталитическим активным пористым композитным материалам, которые могут быть использованы в качестве несущих электродов электрохимических устройств для получения водорода и/или кислорода либо высоко- и среднетемпературных твердооксидных топливных элементов (ТОТЭ).

Изобретение относится к области химических источников тока, а именно к способу изготовления и материалу каталитического электрода - элемента мембранно-электродного блока для водородных и спиртовых топливных элементов.

Изобретение относится к области электротехники, а именно к несущим катодам на основе манганита лантана стронция. Способ получения двухслойного катода для твердооксидных топливных элементов, включает формование электродного и коллекторного слоев катода и их спекание, при этом коллекторный слой катода формуют из порошка манганита лантана стронция, а электродный слой - из смеси порошков манганита лантана стронция и оксида циркония, стабилизированного оксидом иттрия.

Предложенное изобретение относится к области электротехники, а именно, к способу изготовления из листового материала сепаратора для топливного элемента, содержащего формованные или профилированные выпуклости и вогнутости, и устройству для изготовления указанного сепаратора.
Изобретение относится к области мембранной техники. На поверхность гетерогенных ионообменных мембран, выполненных из полиэтилена и диспергированного в нем ионполимера, наносят раствор сульфированного политетрафторэтилена в органическом растворителе.

Изобретение относится к устройству электрохимического генератора с твердым электролитом, преимущественно для генераторов малой и средней мощности до 15÷20 кВт. Указанный генератор содержит заключенные в корпус с теплоизолирующими стенками, рабочую камеру с батареей топливных элементов, камеру сгорания, конвертор природного газа, каналы для подачи и отвода топлива и газов, при этом конвертор природного газа установлен в рабочей камере, генератор содержит теплообменник, смонтированный в теплоизолирующих стенках, при этом канал для подачи газа-окислителя в рабочую камеру образован пространством между камерой сгорания и рабочей камерой и соединен с каналом для подачи воздуха в теплообменник, каналы для отходящих газов которого соединены с камерой сгорания.

Изобретение относится к композитному кислородному электроду, содержащему пористую структуру основы, включающую две отдельные, но перколированные фазы, причем первая фаза представляет собой электронопроводящую фазу, а вторая фаза представляет собой оксидную ионопроводящую фазу, и электрокаталитический слой на поверхности указанной структуры основы, причем указанный электрокаталитический слой содержит первые наночастицы, представляющие собой электрокаталитически активные наночастицы и вторые наночастицы, формируемые из ионопроводящего материала, при этом первые и вторые частицы произвольно распределены по всему злектрокаталитическому слою.

Изобретение относится к электродной камере химического источника тока, включающей в себя бинепрерывную микроэмульсию, при этом каталитические частицы создаются in situ в текучей среде, которая может действовать как катод, а также как анод.

Изобретение относится к области химических источников тока, а именно к способу изготовления и материалу каталитического электрода - элемента мембранно-электродного блока для водородных и спиртовых топливных элементов.

Изобретение относится к каталитическому электроду для мембранно-электродных блоков спиртовых (использующих в качестве топлива метанол или этанол) топливных элементов, где в качестве электрокаталитического материала используется электропроводный диоксид титана, легированный оксидом рутения в соотношении рутения к титану от 4 до 7 мол.%, с нанесенными на поверхности сферических частиц оксида титана, легированного рутением, наночастицами платины размером 3-5 нм.

Настоящее изобретение относится к области химических источников тока, а именно к материалу носителя для электрокатализаторов на основе диоксида титана, легированного рутением, для применения в качестве материала анода в спиртовых низкотемпературных топливных элементах с полимерной протонобменной мембраной.

Предложенное изобретение относится к способу изготовления электрохимического преобразователя энергии с твердым электролитом, который включает нанесение металлокерамического материала (2А), (2В) на обе стороны центральной керамической пластины (1), причем на обеих сторонах этой пластины в металлокерамическом материале (2А), (2В) проделывают каналы (3А), (3В), затем каналы (3А), (3В) по обе стороны пластины покрывают слоями металлокерамического материала (4А), (4В).
Изобретение относится к способу плазмохимической обработки углеродного носителя электрохимического катализатора. Способ заключается в том, что обработку производят в вакуумной камере, снабженной устройством для возбуждения холодной плазмы, держателем углеродного порошка, выполненным с возможностью перемешивания порошка, а также устройством подачи кислородо-аммиачной газовой смеси, установленной с возможностью подачи газовой смеси в полость вакуумной камеры, аммиачно-кислородную газовую смесь подают в вакуумную камеру, где возбуждают холодную плазму, перемешивают порошок углеродного носителя и производят обработку поверхности углеродного носителя холодной плазмой при низком давлении, при этом для размещения порошка углеродного носителя используют установленную в держателе пористую подложку с открытой пористостью, выполненную из инертного материала, пневматически связанную с устройством подачи кислородо-аммиачной газовой смеси, помещают на подложку слои частиц углеродного носителя, через пористую подложку продувают кислородо-аммиачную газовую смесь с образованием над подложкой псевдокипящего слоя частиц углеродного носителя.

Изобретение относится к области электрохимии. .

Изобретение относится к цельнокерамическому твердооксидному элементу и способу его получения. .

Изобретение относится к области электротехники, а именно к способу получения катодного материала со структурой НАСИКОН для литиевой автономной энергетики (гибридного транспорта, электромобилей, буферных систем хранения энергии и т.д.).
Наверх