Способ измерения разности давлений датчиком с частотно-модулированным выходным сигналом и датчик для осуществления способа

Изобретение относится к приборостроению, может быть использовано самостоятельно или в составе измерительно-вычислительных комплексов и систем управления, работающих в широком диапазоне механических и тепловых воздействий и предназначенных для получения информации о разности давлений исследуемых жидких и газообразных сред. Способ измерения разности давлений с частотно-модулированным выходным сигналом характеризуется тем, что используют две идентичные мембраны с эпитаксиально выращенными на них резонаторами, возбуждают собственные колебания резонаторов и формируют частотно-модулированный выходной сигнал. Способ также характеризуется тем, что для возбуждения собственных колебаний используют силу Ампера, возникающую в результате взаимодействия магнитного поля тока, текущего по проводнику с током, текущим по резонаторам, при этом проводник и резонаторы размещают внутри вакуумированной полости между мембранами. Датчик разности давлений с частотно-модулированным выходным сигналом содержит полый корпус, две идентичные мембраны с эпитаксиально выращенными на них резонаторами, систему возбуждения колебаний резонаторов и систему формирования выходного сигнала. Внутри вакуумированной полости расположены токонесущий напыленный проводник, создающий магнитное поле для возбуждения собственных колебаний резонаторов, и резонаторы. Техническим результатом изобретения является упрощение конструкции и повышение технологичности изготовления датчика. 2 н.п. ф-лы, 3 ил.

 

Изобретение относится к приборостроению, может быть использовано самостоятельно или в составе измерительно-вычислительных комплексов и систем управления, работающих в широком диапазоне механических и тепловых воздействий и предназначенных для получения информации о разности давлений исследуемых жидких и газообразных сред.

Изобретение может быть использовано в измерительно-вычислительных комплексах для магистральных и внутренних трубопроводов, систем подачи топлива, в паровых и газовых турбинах, городских инженерных сетях, бытовой технике, медицинских системах, в космическом и авиационном оборудовании.

Известен способ измерения разности давлений датчиками с частотно-модулированным выходным сигналом. Кремниевые резонаторы обладают одинаковыми формой, размерами и идентичными механическими характеристиками, эпитаксиально выращены на рабочих поверхностях мембран.

Известен патент США №4841775 [1], содержащий датчик разности давлений, выполненный в виде единого кремниевого кристалла, включающего диод и транзистор, резонансные измерительные преобразователи.

Известен способ измерения разности давлений датчиком с частотно-модулированным выходным сигналом (патент ЕРО 456029 А1) [2], по которому используют мембрану с эпитаксиально выращенными на ней резонаторами, в которых формируется частотно-модулированный выходной сигнал.

Известен также датчик давления с частотно-модулированным выходным сигналом по указанному патенту [2], содержащий корпус, кремниевую мембрану с эпитаксиально выращенными на ней в едином технологическом процессе резонаторами и вакуумирующими их капсулами для обеспечения достаточно высокого уровня добротности механической колебательной системы, систему возбуждения колебаний с постоянным магнитом, систему формирования выходного сигнала.

Этот датчик обладает достаточно высокими метрологическими характеристиками, поскольку мембрана, резонаторы и капсула являются фрагментами одного монокристалла и изготовлены методом эпитаксиального наращивания и селективного травления. Решение по данному патенту выбрано в качестве ближайшего аналога.

Однако сложность процесса изготовления пары «резонатор-капсула» и размещения в корпусе магнита и магнитопровода системы возбуждения резонатора делает конструкцию ближайшего аналога нетехнологичной.

Предлагаемые способ и конструкция датчика давления не требуют применения системы возбуждения с постоянным магнитом, как у прототипа, что существенно упрощает конструкцию и делает ее намного технологичней, при сохранении высоких метрологических характеристик и добротности резонатора.

Для достижения указанного технического результата в предлагаемых способе и датчике разности давлений с частотно-модулированным выходным сигналом в полом корпусе содержится чувствительный элемент - две кремниевые монокристаллические мембраны с эпитаксиально выращенными на них вторичными измерительными преобразователями - резонаторами, разделенными вакуумированной полостью, обеспечивающим требуемый уровень добротности колебательной системы без дополнительного капсулирования, и напыленный на диэлектрический кронштейн проводник, магнитное поле тока, в котором взаимодействует с магнитным полем тока в балке возбуждения резонатора, генерирующий в нем механические колебания.

Таким образом, сущность изобретения можно сформулировать так.

Способ измерения разности давлений с частотно-модулированным выходным сигналом, по которому используют мембрану с эпитаксиально выращенными на ней резонаторами, в которых формируется частотно-модулированный выходной сигнал, отличающийся тем, что вводят дополнительно мембрану, токонесущий напыленный проводник, для возбуждения собственных колебаний резонаторов используют силу Ампера, возникающую в результате взаимодействия магнитного поля тока, текущего по проводнику, а также по резонаторам, при этом проводник и резонаторы размещают внутри вакуумированной полости между мембранами.

Датчик разности давлений с частотно-модулированным выходным сигналом, реализующий способ по п. 1, содержащий систему возбуждения собственных колебаний резонаторов и систему формирования частотно-модулированного выходного сигнала, отличающийся тем, что корпус выполнен полым и образован двумя идентичными мембранами с эпитаксиально выращенными на них резонаторами с возможностью вакуумирования, в системе возбуждения собственных колебаний резонаторов внутри вакуумированной полости расположены токонесущий напыленный проводник, создающий магнитное поле для возбуждения собственных колебаний резонаторов, и резонаторы.

Изобретение представлено на чертежах: фиг. 1 - общий вид датчика, фиг. 2 - то же с линией разреза по А-А фиг. 1 (увеличенный масштаб), фиг. 3 - функциональна схема датчика. На фигурах цифрами обозначено: 1 - корпус датчика, 2 - идентичные кремниевые мембраны с резонаторами 3, 4, проводник 5, система возбуждения резонаторов 6, система съема и обработки сигнала 7.

Сущность изобретения: датчик разности давления включает корпус 1, чувствительный элемент - две идентичные кремниевые мембраны 2, вторичные измерительные преобразователи - резонаторы 3, 4, проводник 5, систему возбуждения резонаторов 6, систему съема и обработки сигнала 7.

Датчик работает следующим образом. Под действием сил давления происходит деформация мембран 2, приводящая к растяжению резонаторов 3, 4 и изменению резонансных частот, пропорционально измеряемым давлениям.

Разность давлений определяется сравнением резонансных частот резонаторов каждой мембраны 2, при этом собственные колебания резонаторов 3, 4 возбуждаются силой Ампера, возникающей при взаимодействии магнитных полей токов в напыленном проводнике и балке резонатора.

Датчик может выполняться как в защищенном, так и в незащищенном вариантах, а также применяться в режиме измерения абсолютного давления.

Источники информации

1. Патент США №4841775, G01L 9/00, G01L 011/00, заявл. 19.01.1988, опубл. 27.06.1989.

2. Европейский патент EPO 456029 A1, G01L 11/00, заявка №91106472.3, заявл. 23.04.1991, опубл. 13.11.1991.

1. Способ измерения разности давлений с частотно-модулированным выходным сигналом, по которому используют мембрану с эпитаксиально выращенными на ней резонаторами, в которых формируется частотно-модулированный выходной сигнал, отличающийся тем, что вводят дополнительно мембрану, токонесущий напыленный проводник, для возбуждения собственных колебаний резонаторов используют силу Ампера, возникающую в результате взаимодействия магнитного поля тока, текущего по проводнику, а также по резонаторам, при этом проводник и резонаторы размещают внутри вакуумированной полости между мембранами.

2. Датчик разности давлений с частотно-модулированным выходным сигналом, реализующий способ по п. 1, содержащий систему возбуждения собственных колебаний резонаторов и систему формирования частотно-модулированного выходного сигнала, отличающийся тем, что корпус выполнен полым и образован двумя идентичными мембранами с эпитаксиально выращенными на них резонаторами с возможностью вакуумирования, в системе возбуждения собственных колебаний резонаторов внутри вакуумированной полости расположены токонесущий напыленный проводник, создающий магнитное поле для возбуждения собственных колебаний резонаторов, и резонаторы.



 

Похожие патенты:

Изобретение относится к приборостроению, может быть использовано самостоятельно или в составе измерительно-вычислительных комплексов и систем управления. Способ измерения разности давлений датчиком с частотно-модулированным выходным сигналом заключается в том, что используют две идентичные мембраны с эпитаксиально выращенными на них резонаторами, разделенные вакуумированным промежутком.

Способ определения потерь нефти и нефтепродуктов применим как в процессе сбора, подготовки, транспортировки и хранения нефти на промыслах, так и при транспортировке нефти по магистральным нефтепроводам, а также может быть использован на предприятиях, занимающихся переработкой нефти, хранением, транспортировкой и распределением нефтепродуктов.

Изобретение относится к области измерительной техники. Устройство для измерения давления и скорости его изменения состоит из проточного пневматического канала 1, содержащего два анемочувствительных элемента 2, 3 измерения скорости изменения давления и сообщающего глухую камеру 4 с газодинамическим объектом, микронагнетателя 5 с электроприводом, измерительного 6 анемочувствительного элемента, компенсационного 7 анемочувствительного элемента, первого 8 и второго 9 формирующих сопел, канала 10 измерения давления, канала 11 измерения скорости изменения давления, микроконтроллера 12 и средства 13 отображения информации.

Изобретение относится к измерительной технике и может быть использовано для измерения давления жидкости и газов. Резонансный сенсор давления содержит измерительную мембрану с возбуждающим электродом и резонансной полостью, к краям которой с двух сторон жестко закреплен резонансный элемент в форме балки с прямоугольным сечением, в теле которого сформированы тензорезисторы, при этом размер сечения балки в ортогональном направлении к плоскости колебаний постоянен, а в направлении колебаний возрастает по линейному закону, достигая максимального значения по середине балки, причем отношение максимального размера сечения к минимальному в указанном направлении лежит в интервале от 1 до 6.

Изобретение относится к измерительной технике и может быть использовано для измерения давления контролируемой среды. Вибрационный датчик избыточного давления состоит из герметично перекрываемого корпуса, чувствительного элемента, датчика возбуждения колебаний, датчика съема колебаний, усилителя, преобразователя и регистратора.
Изобретение относится к акустической диагностике и может быть использовано в магистральных нефтегазопроводах. .

Изобретение относится к области измерительной техники, в частности к преобразователям давлений, и может быть использовано в разработке и изготовлении малогабаритных полупроводниковых датчиков давлений.

Изобретение относится к измерительной технике и может быть использовано для измерения давления контролируемой среды - жидкости, суспензии, газа. .

Изобретение относится к пищевой промышленности, а именно представляет собой прибор для одновременного мониторинга нескольких физико-химических параметров молока в процессе его свертывания, например температуры, вязкости, активной кислотности, активности ионов кальция (или других ионов в зависимости от выбора ион-селективных электродов).

Предлагаемое изобретение относится к измерительной технике, в частности к средствам измерения давления, и может быть использовано при измерении динамического давления совместно с пьезоэлектрическими датчиками динамического давления. Устройство измерения динамического давления содержит пьезоэлемент 1 и измерительный блок 2, который состоит из генератора переменного тока 3, усилителя широкополосного 4, полосового фильтра 5, выпрямителя 6, фильтра нижних частот 7 и микроконтроллера 8. Выход пьезоэлемента 1 подключен к выходу генератора переменного тока 3, а выход генератора переменного тока 3 - к усилителю широкополосному 4. Усилитель широкополосный 4 соединен с полосовым фильтром 5 и фильтром нижних частот 7. Полосовой фильтр 5 через выпрямитель 6 соединен с первым входом микроконтроллера 8, второй вход которого подключен к фильтру нижних частот 7. Технический результат заключается в повышении быстродействия устройства путем одновременного измерения температуры и динамического давления, повышении точности устройства при измерении динамического давления путем коррекции температурной погрешности измерения динамического давления. 1 ил.

Изобретение относится к области измерительной техники, в частности к области волоконно-оптических средств измерений давления, и применимо в нефтяной и газовой промышленности, медико-биологических исследованиях, гидроакустике, аэродинамике, системах охраны при дистанционном мониторинге давления. Датчик давления включает корпус с закрепленной в нем упругой мембраной, оптический канал, содержащий фиксируемый и подвижный световоды. Подвижный световод соединен через штангу с мембраной. Подвижный и фиксируемый световоды установлены с возможностью поперечного перемещения относительно своих осей, причем фиксируемый световод установлен с возможностью перемещения и фиксации в корпусе с помощью винта и гайки. По торцам входа и выхода световодов расположен сальник. Технический результат - расширение диапазона применения датчика во взрывоопасных средах при сохранении его малых габаритов. 2 ил.

Изобретение относится к испытаниям металлических конструкций и может быть использовано в кабельной технике для оценки работоспособности муфт кабельных погружных электродвигателей. Стенд испытаний кабельных муфт содержит термокамеру с крышкой, в которой размещают испытываемую муфту. Термокамера разделена поршнем на верхнюю и нижнюю полости, к верхней полости подведен трубопровод для закачки соленого раствора, а к нижней полости и к внутренней полости испытываемой муфты подключены трубопроводы для подачи масла. Трубопровод для закачки соленого раствора и трубопровод для подачи масла, подключенный к внутренней полости испытываемой муфты, соединены через распределитель и оснащены индивидуальными манометрами и общим дифференциальным манометром. Кабельная муфта вмонтирована в пробку, закрепленную в крышке. Техническим результатом изобретения является возможность проведения испытания кабельных муфт на перепад давлений при высоких температурах и при наличии агрессивной среды. 2 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике, в частности к средствам измерения давления, и может быть использовано в датчиках давления. Устройство для измерения давления состоит из штока, первого, второго и третьего пьезоэлементов. Шток неподвижно соединен с первым и третьим пьезоэлементами, первой мостовой измерительной схемой, образованной дифференциальным емкостным преобразователем, состоящим из первого конденсатора C1 и второго конденсатора С2, а также резисторов R1 и R2, первого режекторного фильтра, первого усилителя заряда, второго режекторного фильтра, второго усилителя заряда, генератора высокой частоты, первого усилителя сигнала разбаланса мостовой измерительной цепи, выпрямителя, источника питания постоянного тока, образованной терморезисторами R3 и R4, а также резисторами R4 и R5, второго усилителя сигнала разбаланса мостовой измерительной цепи и микроконтроллера. Выходы первого и третьего пьезоэлементов соединены с первым входом A1 микроконтроллера через первый режекторный фильтр и первый усилитель заряда. Выходы второго пьезоэлемента соединены со вторым входом микроконтроллера А2 через второй режекторный фильтр и второй усилитель заряда. Выходы генератора высокой частоты соединены с третьим входом А3 микроконтроллера через первую мостовую измерительную цепь. первый усилитель сигнала разбаланса мостовой измерительной цепи и выпрямитель. Выходы источника постоянного тока соединены через вторую мостовую измерительную цепь с четвертым входом А4 микроконтроллера через второй усилитель разбаланса мостовой измерительной цепи. Технический результат заключается в повышении точности измерения, а также увеличении функциональных возможностей. 4 ил.

Изобретение относится к области сенсорной электроники и может быть использовано для измерения параметров технологических сред, в медицине. Заявленный амплитудный волоконно-оптический сенсор давления содержит кремниевый мембранный упругий элемент с жестким центром, оптическое волокно, передающее излучение от внешнего источника и закрепленное на мембранном упругом элементе с возможностью перемещения только вместе с его жестким центром пропорционально измеряемому давлению, и один фотоприемник. При этом в заявленное устройство введены дополнительный фотоприемник, зеркало и две параллельные кремниевые пластины, расположенные перпендикулярно мембранному упругому элементу. Кроме того, оба фотоприемника включены по дифференциальной схеме и расположены на одной кремниевой пластине, а на другой пластине размещено зеркало, которое представляет собой плоскую отражающую поверхность кристаллографической ориентации типа (100) с углублениями пирамидальной формы, стенки углублений сходятся в одной точке, а кристаллографическая ориентация стенок типа (111). Технический результат - повышение чувствительности и снижение нелинейности преобразовательной характеристики. 1 ил.

Изобретение относится к области волоконной оптики и может быть использовано при разработке датчиков физических величин на основе кольцевого волоконно-оптического интерференционного чувствительного элемента. Заявленный гидроакустический волоконно-оптический датчик давления содержит каркас с воздушной полостью, образованной шпилькой, двумя фланцами и кольцевым многослойным волоконно-оптическим чувствительным элементом, при этом каждый предыдущий слой оптического волокна ЧЭ содержит слой клея быстрого отверждения, выполняющий склейку витков волокна между собой, обеспечивающий заполнение и выравнивание межвитковых промежутков до образования гладкой и жесткой цилиндрической поверхности, а каждый последующий слой оптического волокна со встречными направлениями витков также содержит слой клея быстрого отверждения, выполняющий склейку витков волокна между собой, обеспечивающий заполнение и выравнивание межвитковых промежутков. Технический результат заключается в разработке кольцевого чувствительного элемента, образованного путем многослойной намотки оптического волокна по спирали с возможностью склеивания витков и слоев волокна в единую колебательную систему, отличающуюся чувствительностью к звуковому давлению в диапазоне рабочих частот, а также низкими потерями оптической мощности при воздействии внешнего гидростатического давления, а также в обеспечении работоспособности гидроакустических кольцевых волоконно-оптических датчиков давления в составе гидроакустических антенн посредством создания многослойного кольца из оптического волокна, способного выдерживать без разрушения внешнее гидростатическое давление; создания колебательной механической системы в виде тонкостенного кольца, чувствительной к воздействию звукового давления в широкой полосе частот; снижения потерь оптической мощности в волоконно-оптическом кольце в условиях повышенных гидростатических давлений, что позволяет объединить датчики в многоэлементную антенну. 1 з.п. ф-лы, 2 ил.

Объектом изобретения является способ оценки давления (Pass) в вакуумном резервуаре (28) вакуумного сервотормоза (26) автотранспортного средства (10), при этом транспортное средство (10) содержит: тормозное устройство (16); сервотормоз (26); датчик (23) давления. При осуществлении способа на первом этапе (E1) циклически вычисляют давление (Pmc) торможения. На втором этапе (E2) вычисляют амплитуду (ΔPmc) снижения давления. В ходе второго этапа максимум (Pmc_max), а затем минимум (Pmc_min), достигаемые последовательно давлением торможения, сохраняют в памяти. Амплитуду (ΔPmc) снижения давления торможения вычисляют путем определения разности между максимумом (Pmc_max) и минимумом (Pmc_min). В ходе Третьего этапа (Е3), который начинается по завершении второго этапа (Е2), оценивают повышение (Conso) давления в вакуумном резервуаре (28) в зависимости от амплитуды (ΔPmc), вычисленной на втором этапе (Е2). Достигается быстрая и точная оценка давления в вакуумном резервуаре (28). 9 з.п. ф-лы, 7 ил.
Наверх