Способ сушки влажного газового потока, обогащенного со2, из способа кислородного горения



Способ сушки влажного газового потока, обогащенного со2, из способа кислородного горения
Способ сушки влажного газового потока, обогащенного со2, из способа кислородного горения

 


Владельцы патента RU 2552448:

АЛЬСТОМ ТЕКНОЛОДЖИ ЛТД (CH)

Способ сушки влажного газового потока, обогащенного CO2, из способа кислородного горения включает: сжатие влажного газового потока, обогащенного CO2, до рабочего давления способа сушки, охлаждение влажного газового потока, обогащенного CO2, по меньшей мере, в одном охладителе, альтернативно, сушку влажного газового потока, обогащенного CO2, по меньшей мере, в одной сушилке, которая содержит, по меньшей мере, один слой десиканта, и регенерацию слоя десиканта посредством прохождения нагретого регенерирующего газа через сушилку в направлении, противоположном направлению потока влажного газового потока, обогащенного CO2, разделение высушенного газового потока, обогащенного CO2, в способе очистки на газовый поток очищенного СО2 и отработанный газовый поток, обогащенный азотом и кислородом, при этом отработанный газовый поток, обогащенный азотом и кислородом, используют в качестве регенерирующего газа, и после регенерации сушилку продувают, по меньшей мере, один раз газовым потоком высокого давления, обогащенным CO2, поступающим из компрессора, и при этом сушилку загружают до рабочего давления способа сушки газовым потоком высокого давления, обогащенным CO2, поступающим из компрессора, перед каждым способом сушки. Изобретение позволяет уменьшить потери CO2 и уменьшить потребление энергии. 12 з.п. ф-лы, 2 ил.

 

Уровень техники

Настоящее описание относится к способу сушки влажного газового потока, обогащенного CO2, из способа кислородного горения, в частности к способу сушки с помощью способа адсорбции с использованием десиканта (адсорбента) и регенерации этого адсорбента.

Влажный газовый поток, обогащенный CO2, из способа кислородного горения должен обрабатываться для удаления H2O в течение первой стадии сжатия или после нее. Влажность влажного газового потока, обогащенного CO2, должна ограничиваться из-за необходимости предотвращения образования твердых гидратов или фазы коррозивной свободной воды в течение следующих далее способов разделения или инжектирования. Для такой стадии или способа сушки, как правило, используют, по меньшей мере, одну емкость, содержащую, по меньшей мере, один десикант, для адсорбирования влажности из влажного газового потока, обогащенного CO2, проходящего через десикант в одном направлении. Для регенерации десиканта предлагается поток через слой десиканта в противоположном направлении. Типичные установки предусматривают две сушилки, где одна находится в рабочем состоянии, в то время как другая в нерабочем, соответственно, в режиме регенерации.

Документ WO 2009/071816 A2 описывает способ сушки газа, обогащенного диоксидом углерода, при высоком давлении, при котором газ, обогащенный диоксидом углерода, очищают в адсорбционном узле сушки, содержащем, по меньшей мере, две емкости с адсорбентом, работающим в цикле, в котором одну емкость снабжают газом, обогащенным диоксидом углерода, для сушки, в то время как другая емкость подвергается воздействию высокого давления и регенерируется посредством потока сухого газа, получаемого с помощью узла сушки, узел сушки производит, по меньшей мере, один сухой газ, обогащенный диоксидом углерода, при первом повышении давления, по меньшей мере, одной емкости, в течение которого газ высокого давления, иной, чем продукт от узла сушки, подается в емкость.

Можно увидеть в качестве недостатка этого известного способа, что получаемый сухой газ, обогащенный диоксидом углерода, используется в качестве регенерирующего газа, и после регенерации газ высвобождается в атмосферу. Это вызывает бесполезные потери CO2. С другой стороны, рециклирование CO2 приводит к ненужному повышению потребности в энергии для сжатия.

Сущность изобретения

Указанные выше недостатки и неполноценности преодолевают или ослабляют с помощью способа сушки влажного газового потока, обогащенного CO2, из способа кислородного горения, способ включает: сжатие влажного газового потока, обогащенного CO2, до рабочего давления способа сушки, охлаждение влажного газового потока, обогащенного CO2, по меньшей мере, в одном охладителе, альтернативно, сушку влажного газового потока, обогащенного CO2, по меньшей мере, в одной сушилке, которая содержит, по меньшей мере, один слой десиканта, и регенерирование слоя десиканта посредством прохождения нагретого регенерирующего газа через сушилку в направлении, противоположном направлению потока влажного газового потока, обогащенного CO2, разделение высушенного газового потока, обогащенного CO2, в способе очистки на газовый поток очищенного СО2 и отработанный газовый поток, обогащенный азотом и кислородом, при этом отработанный газовый поток, обогащенный азотом и кислородом, используют в качестве регенерирующего газа, и после регенерации сушилку продувают, по меньшей мере, один раз газовым потоком высокого давления, обогащенным CO2, поступающим из компрессора, и при этом сушилку загружают до рабочего давления способа сушки газовым потоком высокого давления, обогащенным CO2, поступающим из компрессора, перед каждым способом сушки. Другие преимущественные варианты осуществления настоящего изобретения можно увидеть из прилагаемой формулы изобретения.

Настоящий способ предлагает способ сушки влажного газового потока, обогащенного CO2, из способа кислородного горения, имеющий низкие потери CO2 и высокую энергетическую эффективность. Более конкретно, способ сушки влажного газового потока, обогащенного CO2, из способа кислородного горения предлагает следующие преимущества.

Уменьшение потерь CO2, поскольку для регенерации десиканта в сушилке отбирается газовый поток с низким содержанием CO2.

Уменьшение потребления энергии в течение способа сушки и регенерации.

Краткое описание чертежей

Другие признаки и преимущества настоящего изобретения станут ясны из следующего далее описания вариантов осуществления настоящего изобретения, приведенных неограничивающих примеров и с использованием ссылок на прилагаемые чертежи, в которых:

Фиг.1 представляет собой блок-схему способа сушки влажного газового потока, обогащенного CO2, из способа кислородного горения в соответствии с первым вариантом осуществления,

Фиг.2 представляет собой блок-схему способа сушки влажного газового потока, обогащенного CO2, из способа кислородного горения в соответствии со вторым вариантом осуществления.

Подробное описание

Влажный газовый поток, обогащенный CO2, из способа кислородного горения должен обрабатываться для удаления H2O в течение первой стадии сжатия или после нее. Влажность влажного газового потока, обогащенного CO2, должна ограничиваться из-за необходимости предотвращения образования твердых гидратов или фазы коррозивной свободной воды в течение следующего далее способа разделения или инжектирования способа очистки от CO2.

В соответствии с фиг.1, влажный газовый поток 1, обогащенный CO2, этот газовый поток также может обозначаться как поток топочного газа, поступающий в горячем состоянии из способа кислородного горения, поступает через линию 11 в компрессор 2, и газ сжимается в нем до рабочего давления способа сушки, которое предпочтительно находится в пределах между 10 и 60 бар. Компрессор 2 обычно имеет множество стадий сжатия, и по этой причине можно также устанавливать узел сушки 6.1, 6.2 на промежуточной ступени сжатия. Наиболее предпочтительно давление в качестве рабочего давления способа сушки выбирают в пределах от 25 до 55 бар. Таким образом, можно свести к минимуму нагрузку воды для способа сушки посредством стадии конденсации между выходом 2 ступени сжатия и сушилкой 6.1, 6.2. В варианте осуществления настоящего изобретения, показанном на фиг.1, горячий газовый поток 1 после компрессора 2 проходит (через линию 11) и охлаждается, по меньшей мере, в одном охладителе, предпочтительно в двух охладителях 3.1 и 3.2. Кроме того и предпочтительно, размещается устройство 4 для обработки топочного газа, расположенное после охладителя 3.1, для удаления Hg, SOx, пыли и тому подобное, а также, предпочтительно, сепаратор 5 паров и жидкости, расположенный после охладителя 3.2, для отделения конденсированной влажности от газового потока, и выход для жидкости через линию 13, ведущую к устройству для обработки сточных вод (не показано). Включение устройства 4 для обработки топочного газа увеличивает срок службы десиканта 7.1, 7.2, размещенного в сушилке 6.1, 6.2, в то время как включение сепаратора 5 паров и жидкости поможет в уменьшении размеров сушилки 6.1, 6.2.

После охладителя 3.1, 3.2 предпочтительно размещают две сушилки 6.1, 6.2 для сушки влажного газового потока 1, обогащенного CO2. Каждая сушилка содержит, по меньшей мере, один неподвижный слой десиканта 7.1, 7.2 для адсорбции влажности из влажного газового потока 1, обогащенного CO2. В соответствии с настоящим изобретением каждая сушилка 6.1, 6.2 работает попеременно в режиме сушки и в режиме регенерации. В режиме сушки влажный газовый поток 1, обогащенный CO2, сушится с помощью десиканта 7.1, 7.2, а в режиме регенерации десикант 7.1, 7.2 регенерируется с помощью потока 9 регенерирующего газа. В соответствии с фиг.1 сушилка 6.2 находится в режиме сушки, а сушилка 6.1 находится в режиме регенерации или в нерабочем режиме. По этой причине, если используют две или более сушилок 6.1, 6.2, тогда сушилки предпочтительно располагают параллельно, для использования их так, как описано выше. Клапаны 20.1, 20.2 и 17.1, 17.2 будут открыты и/или закрыты, соответственно.

Другой предпочтительный вариант осуществления настоящего изобретения предлагает систему, имеющую две сушилки 6.1, 6.2, работающих последовательно (не показано) с условиями изменения последовательности, в которой через сушилки 6.1, 6.2 проходит газовый поток 1, обогащенный CO2, для предотвращения нежелательного прохождения воды в систему, расположенную далее. В таких системах через сушилку 6.1, 6.2 сначала проходит газовый поток 1, обогащенный CO2, затем она также достигает первой своей адсорбционной емкости. Эта сушилка 6.1, 6.2 будет исключаться из работы посредством ее обхода, затем она регенерируется и включается опять в работу с изменением последовательности, это означает, что через регенерированную сушилку 6.1, 6.2 газовый поток 1, обогащенный CO2, проходит как через вторую сушилку.

После сушилок 6.1, 6.2 высушенный газовый поток 8, обогащенный CO2 (высушенный поток топочного газа), подвергается воздействию способа очистки (не показано), где высушенный газовый поток 8, обогащенный CO2, разделяется на почти чистый газовый поток CO2 и отработанный газовый поток, содержащий большие количества азота и кислорода.

В соответствии с настоящим изобретением отработанный газ, содержащий азот и кислород, используют в качестве регенерующего газа 9 и пропускают через линию 12 в сушилку 6.1, 6.2 при противоположном направлении потока по сравнению с направлением потока влажного газового потока 1, обогащенного CO2, и в течение режима регенерации сушилок 6.1, 6.2 для десорбции влажности из десиканта 7.1, 7.2. Перед тем, как поток 9 регенерующего газа вводится в сушилки 6.1, 6.2, он предпочтительно нагревается до температуры, большей чем 160°C и меньшей чем 300°C, с помощью нагревателя 10. Поток 9 регенерующего газа использует более низкое давление, чем влажный газовый поток 1, обогащенный CO2, в течение режима сушки. Способ регенерации осуществляют периодически, но время цикла зависит от десиканта 7.1, 7.2 (адсорбента) и содержания влажности влажного газового потока 1, обогащенного CO2.

В соответствии с настоящим изобретением сушилку 6.1, 6.2 продувают или очищают, по меньшей мере, один раз с помощью газового потока, обогащенного CO2, после регенерации десиканта 7.1, 7.2, и этот продувочный газовый поток отбирают с выхода компрессора 2. Продувку сушилки 6.1, 6.2 осуществляют посредством частичного повышения давления с помощью газового потока, обогащенного CO2, с последующим понижением давления сушилки 6.1, 6.2 с выпуском в атмосферу или назад, в предыдущий способ или в способ сушки, соответственно. Продувку необходимо осуществлять для уменьшения содержания инертных газов, подобных азоту, захватываемых потоком 9 регенерующего газа в сушилке 6.1, 6.2. В соответствии с фиг.1 газовый поток, обогащенный CO2, предпочтительно отбирают непосредственно с выхода компрессора 2 (перед охладителями 3.1, 3.2) через линию 14. В соответствии с другим предпочтительным вариантом осуществления и как показано на фиг.2, газовый поток, обогащенный CO2, для продувки сушилки 6.1, 6.2 отбирают после охладителя 3.1, 3.2 через линию 15 и нагревают в нагревателе 10, по меньшей мере, до 80°C перед тем, как газовый поток, обогащенный CO2, вводят для продувки в сушилку 6.1, 6.2. Посредством нагрева газового потока, обогащенного CO2, до указанной выше температуры предотвращается образование твердых продуктов в CO2, вызываемое расширением газа в емкости сушилки, имеющей давление регенерирующего газа.

Чтобы опять ввести сушилку 6.1, 6.2 в работу и в соответствии с настоящим изобретением, давление в сушилке 6.1, 6.2 увеличивают до рабочего давления способа сушки с помощью газового потока, обогащенного CO2, после способа регенерации и/или способа продувки. В соответствии с фиг.1 газовый поток, обогащенный CO2, для повышения давления в сушилке 6.1, 6.2 предпочтительно отбирают непосредственно с выхода компрессора 2 (перед охладителями 3.1, 3.2) через линию 14. В соответствии с другим предпочтительным вариантом осуществления, и как показано на фиг.2, газовый поток, обогащенный CO2, для повышения давление в сушилке 6.1, 6.2 отбирают после охладителя 3.1, 3.2 через линию 15 и нагревают в нагревателе 10 до того, как газовый поток, обогащенный CO2, поступает в сушилку 6.1, 6.2. По этой причине, горячий газовый поток, обогащенный CO2 (нагреваемый либо с помощью компрессора 2, либо с помощью нагревателя 10), используют для загрузки сушилки 6.1, 6.2.

Посредством загрузки сушилки 6.1, 6.2 до способа сушки в соответствии с настоящим изобретением, будут предотвращаться скачки давления во время переключения между способом регенерации и способом сушки, поскольку скачки давления могут приводить к повреждениям, подобным компактированию/измельчению слоя сушилки (слоя десиканта) или подъему этого слоя, в случае потока для повышения давления, направленного вверх, а также к возможному отключению компрессора 2 или к нарушениям в способе. По этой причине предусматривается, по меньшей мере, один клапан 16.1, 16.2 на входной и, по меньшей мере, один клапан 17.1, 17.2 на выходной трубе (или непосредственно присоединенный на сушилке 6.1, 6.2) для уменьшения и/или увеличения давления в сушилке 6.1, 6.2. Обычный способ уменьшения давления или его ослабления в сушилке 6.1, 6.2, соответственно, заключается в том, что содержащийся газ будет направляться через клапан 18.1, 18.2 в атмосферу. Это происходит также с загружаемым регенерующим газом. Эта операция будет осуществляться, если обычная линия подачи исходных материалов и выпуска продукта блокируется.

Посредством использования горячего газового потока, обогащенного CO2, в соответствии с настоящим изобретением для загрузки сушилки 6.1, 6.2 вместо использования высушенного, но холодного потока CO2 из сушилки 6.1, 6.2 предотвращаются возникновение термических напряжений в используемом материале сушилки 6.1, 6.2 и в десиканте 7.1, 7.2. При использовании горячего газового потока в соответствии с настоящим изобретением может предотвращаться понижение температуры с образованием сухого льда (в самом плохом случае) после адиабатического расширения в сушилке 6.1, 6.2, поскольку расширяющийся горячий газовый поток имеет также более низкую, но не слишком низкую температуру. Температура горячего газового потока, обогащенного CO2, зависит от отношения сжатия компрессора 2 и предпочтительно находится в пределах между 80 и 140°C. В противном случае, когда газовый поток, обогащенный CO2, нагревают в нагревателе 10, затем его предпочтительно нагревают, по меньшей мере, до 80°C перед тем, как газовый поток, обогащенный CO2, вводят для загрузки в сушилку 6.1, 6.2.

Для первого повышения давления или загрузки сушилки 6.1, 6.2 после запуска системы не должны предусматриваться никакие специальные установки. Это предпочтительно достигается посредством обеспечения того, что все слои 7.1, 7.2 десикантов всех сушилок 6.1, 6.2, необходимые для операции адсорбции, открыты для компрессора 2 при запуске компрессора, это означает, что соответствующие клапаны открыты.

В соответствии с режимом работы (сушка, регенерация, продувка, загрузка или выключение) сушилки 6.1, 6.2 клапаны 16.1, 16.2, 17.1, 17.2, 18.1, 18.2, 19.1, 19.2, 20.1, 20.2, 21 и 22 являются либо открытыми, либо закрытыми. Например, в течение способа сушки клапаны 20.2 и 17.2 сушилки 6.2 (или клапаны 20.1 и 17.1 сушилки 6.1) открыты, все другие клапаны сушилки 6.2 закрыты. В течение способа регенерации клапаны 21 (существует только в соответствии с примером на фиг.2), 19.2 и 18.2 сушилки 6.2 (или клапаны 19.1 и 18.1 сушилки 6.1) открыты, все другие клапаны сушилки 6.2 закрыты (включая клапан 22, который существует только в соответствии с примером на фиг.2). В течение способа продувки клапаны 22 (существует только в соответствии с примером на фиг.2) и 16.2 сушилки 6.2 (или клапан 16.1 сушилки 6.1) являются открытыми и закрываются после достижения определенного уровня давления, предпочтительно 10-15 бар. Затем клапан 18.2 (или клапан 18.1 сушилки 6.1) открывается еще раз для понижения давления в системе. Эта последовательность может повторяться в случае, когда уровни примесей по-прежнему являются слишком высокими. В противном случае, загрузка сушилки 6.1, 6.2 может начинаться посредством открывания клапанов 22 (существует только в соответствии с примером на фиг.2) и 16.2 сушилки 6.2 (или клапана 16.1 сушилки 6.1), все другие клапаны сушилки 6.2 закрыты (включая клапан 21, который существует только в соответствии с примером на фиг.2). Когда уровень давления в сушилке 6.1, 6.2 достигает уровня рабочего давления способа сушки, линия 11.2 с ее технологическими клапанами 20.2 и 17.2 сушилки 6.2 (или линии 11.1 с ее клапанами 20.1 и 17.1 сушилки 6.1) может открываться, чтобы ввести соответствующую сушилку опять в операцию адсорбции, что означает операцию сушки.

Способы сушки и регенерации в соответствии с настоящим изобретением обеспечивает наилучшее решение по отношению к потреблению энергии, а также низкие потери CO2.

Хотя настоящее изобретение описывается со ссылками на различные иллюстративные варианты осуществления, специалистам в данной области будет понятно, что могут быть проделаны разнообразные изменения, и эквиваленты могут заменять его элементы без отклонения от рамок настоящего изобретения. В дополнение к этому, может быть проделано множество модификаций для адаптации конкретной ситуации или материала к концепции настоящего изобретения без отклонения от его основных рамок. По этой причине предполагается, что настоящее изобретение не будет ограниченным конкретным вариантом осуществления, описанным как наилучший режим, предполагаемый для осуществления настоящего изобретения, но что настоящее изобретение будет включать все варианты осуществления, попадающие в рамки прилагаемой формулы изобретения.

1. Способ сушки влажного газового потока, обогащенного CO2, из способа кислородного горения, способ включает:
сжатие влажного газового потока (1), обогащенного CO2, до рабочего давления способа сушки,
охлаждение влажного газового потока (1), обогащенного CO2, по меньшей мере, в одном охладителе (3.1, 3.2),
альтернативную сушку влажного газового потока (1), обогащенного CO2, по меньшей мере, в одной сушилке (6.1, 6.2), которая содержит, по меньшей мере, один слой десиканта (7.1, 7.2), и регенерирование слоя десиканта (7.1, 7.2) посредством прохождения нагретого регенерирующего газа (9) через сушилку (6.1, 6.2) в направлении, противоположном направлению потока влажного газового потока (1), обогащенного CO2,
разделение высушенного газового потока (1), обогащенного CO2, в способе очистки на газовый поток очищенного СО2 и отработанный газовый поток, обогащенный азотом и кислородом,
при этом отработанный газовый поток, обогащенный азотом и кислородом, используют в качестве регенерирующего газа (9),
и после регенерации сушилку (6.1, 6.2) продувают, по меньшей мере, один раз газовым потоком высокого давления, обогащенным CO2, поступающим из компрессора (2),
и при этом сушилку (6.1, 6.2) загружают до рабочего давления способа сушки газовым потоком высокого давления, обогащенным CO2, поступающим из компрессора (2), перед каждым способом сушки.

2. Способ по п.1, в котором рабочее давление способа сушки находится в пределах между 10 и 60 бар.

3. Способ по п.1, в котором давление регенерирующего газа (9) в течение способа регенерации находится ниже рабочего давления способа сушки.

4. Способ по п.1, в котором газовый поток высокого давления, обогащенный CO2, для продувки сушилки (6.1, 6.2) отбирают непосредственно после компрессора (2) и вводят непосредственно в сушилку (6.1, 6.2).

5. Способ по п.1, в котором газовый поток высокого давления, обогащенный CO2, для продувки сушилки (6.1, 6.2) отбирают из охладителя (3.1, 3.2) и нагревают с помощью нагревателя (10), по меньшей мере, до 80°C перед тем, как его вводят в сушилку (6.1, 6.2).

6. Способ по п.1, в котором газовый поток высокого давления, обогащенный CO2, для загрузки сушилки (6.1, 6.2) перед каждым способом сушки отбирают непосредственно после компрессора (2) и вводят непосредственно в сушилку (6.1, 6.2).

7. Способ по п.1, в котором газовый поток высокого давления, обогащенный CO2, для загрузки сушилки (6.1, 6.2) перед каждым способом сушки отбирают после охладителя (3.1, 3.2) и нагревают с помощью нагревателя (10), по меньшей мере, до 80°C перед тем, как его вводят в сушилку (6.1, 6.2).

8. Способ по п.1, в котором Hg, и/или SOx, и/или пыль, содержащиеся во влажном газовом потоке (1), обогащенном CO2, удаляют с помощью устройства (4) для обработки топочного газа, расположенного перед сушилкой (6.1, 6.2).

9. Способ по п.1, в котором часть паров, содержащихся во влажном газовом потоке (1), обогащенном CO2, конденсируют и высвобождают с помощью сепаратора (5) паров и жидкости, расположенного перед сушилкой (6.1, 6.2).

10. Способ по п.1, в котором поток (9) регенерирующего газа нагревают с помощью нагревателя (10) до температуры 160-300°C.

11. Способ по п.1, в котором для сушки влажного газового потока (1), обогащенного CO2, используют две или более сушилок (6.1, 6.2) и располагают их параллельно друг другу, и при этом одна сушилка находится в режиме сушки, а другая (другие) находится/находятся в режиме регенерации или в режиме отключения.

12. Способ по п.1, в котором для сушки влажного газового потока (1), обогащенного CO2, используют две сушилки (6.1, 6.2) и располагают их последовательно, и при этом две сушилки (6.1, 6.2) находятся в режиме сушки или одна из сушилок (6.1, 6.2) находится в режиме регенерации посредством обхода влажным газовым потоком (1), обогащенным CO2, регенерированной сушилки (6.1, 6.2), в то время как другая сушилка (6.1, 6.2) находится в режиме сушки.

13. Способ по п.12, в котором регенерированная сушилка (6.1, 6.2) после регенерации вводится как вторая сушилка (6.1, 6.2) в последовательность сушилок (6.1, 6.2).



 

Похожие патенты:

Изобретение относится к способу компримирования и адсорбционной осушки газов и может найти применение в различных отраслях промышленности для получения глубоко осушенного сжатого газа.

Изобретение относится к устройству, способу и их использованию для выделения воды из газов или очистки воды. Устройство содержит контейнер с герметичным отверстием, крышкой, гигроскопичным материалом и устройством подачи энергии, расположенным в гигроскопичном материале, при этом контейнер выполнен из теплопроводного не прозрачного материала.

Изобретение относится к способу компримирования и адсорбционной осушки газов и может найти применение в промышленности для получения сжатого осушенного газа. Способ включает компримирование газа в многоступенчатом компрессоре совместно с газом регенерации, рециркулируемым на одну из ступеней компримирования, с получением компрессата, пропускание части компрессата в качестве десорбирующего агента через адсорбер, находящийся на первом этапе регенерации, который затем смешивают с остальной частью компрессата, смесь охлаждают, сепарируют и отправляют на осушку в адсорбер, находящийся в стадии адсорбции, с получением осушенного сжатого газа, основную часть которого направляют потребителю, а другую часть дросселируют и подают в адсорбер, находящийся на втором этапе регенерации, с получением газа регенерации.

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Способ очистки воздуха заключается в попеременном пропускании очищаемого воздуха через адсорбент, находящийся в двух адсорберах, при этом работу одного адсорбера осуществляют в режиме осушки, а работу второго адсорбера осуществляют в режиме регенерации.
Изобретение относится к сорбционным технологиям, в частности к адсорбентам, используемым для осушки от воды газовых сред. Адсорбент для удаления воды из газов содержит пористую матрицу, в поры которой введено активное влагопоглощающее гигроскопическое вещество из группы галогенидов щелочноземельных металлов, при этом в качестве пористой матрицы используют мезопористые силикаты из группы, включающей силикат МСМ-41, алюмосиликат, цирконосиликат или титаносиликат, полученные методом золь-гель метода или темплатного синтеза с последующим прогреванием в токе воздуха при температуре 200-450°C в течение 1-4 ч, в мезопоры которых размером 2-10 нм и общим объемом пор более 1 см3/г методом пропитки из водного раствора введен безводный хлорид кальция в количестве 40-100 вес.% в расчете на сухое вещество матрицы и последующей сушкой адсорбента на воздухе при 100°C в течение 2 ч.

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Техническим результатом является создание блока осушки с адсорбером, конструкция которого позволит исключить попадание капельной влаги на зерна адсорбента. Адсорбер содержит корпус, выполненный в виде полого цилиндра, профилированные фланцы со штуцерами, установленные с обоих торцев корпуса для подвода и отвода осушаемого воздуха, продольные ребра, установленные внутри корпуса.

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Техническим результатом является создание блока осушки с адсорбером, конструкция которого позволит исключить попадание капельной влаги на зерна адсорбента.

Изобретение относится к устройству и способу для осушки газа охлаждением. Устройство состоит из замкнутого контура охлаждения, содержащего хладагент, циркулирующий в контуре с помощью компрессора, и последовательно расположенные в направлении движения потока хладагента конденсатор, соединенный с выходом компрессора, и средство расширения, за которым размещен испаритель, соединенный с входом компрессора, при этом испаритель образует первую часть теплообменника, содержащего также вторую часть, через которую направляют осушаемый газ, кроме того, в контуре охлаждения имеется обводной трубопровод, который может быть перекрыт перепускным клапаном с помощью рабочего элемента клапана, который удерживается в закрытом положении под действием усилия пружинного элемента, и с помощью чувствительного к давлению элемента, который воздействует на рабочий элемент клапана, и посредством трубки управляющего давления подвержен воздействию локального управляющего давления в контуре охлаждения, причем трубка управляющего давления подключена к контуру охлаждения и подсоединена к замкнутому контуру охлаждения выше по ходу движения потока от выхода испарителя.

Изобретение относится к способу осушки газов. Способ включает пропускание газа через две или более камеры охлаждения, соединенные последовательно, причем в каждую из камер подают поток растворителя, который удаляет воду из газа, далее подают смешанный поток, состоящий из газа и растворителя, в каждую из этих камер охлаждения и после совместного охлаждения, его разделяют с помощью газожидкостного сепаратора на поток газа с пониженным содержанием воды и поток обогащенного водой растворителя, постепенно снижают содержание воды в газе от первой в направлении потока камеры охлаждения к последней, причем каждый поток растворителя, отделенный и обогащенный водой, либо используют в качестве питающего потока для камеры охлаждения выше по потоку, или возвращают непосредственно в блок регенерации для освобождения от воды.

Изобретение относится к способу сушки природного газа или промышленного газа, содержащего кислые газообразные компоненты, в котором после сушки газа осуществляют удаление кислых газообразных компонентов из осушенного газа.

Изобретение относится к аппарату для отделения капель жидкости, увлекаемых газом или паром, проходящим через аппарат. Сепаратор жидкости содержит блоки из параллельных гофрированных пластин, расположенных на расстоянии друг от друга. Блоки из параллельных гофрированных пластин имеют следующие геометрические характеристики: длина волны или период гофр Р составляет от 6 до 24 мм, амплитуда A составляет Р/2. Зазор G между смежными гофрированными пластинами в блоках равен амплитуде A гофр. Техническим результатом является повышение эффективности захвата и сбора капель воды, увлекаемых потоком пара, проходящего через сепаратор, а также уменьшение повторного захвата собранной жидкости паровым потоком для слива через желоба и сливные трубки. 3 з.п. ф-лы, 2 ил.

Изобретение относится к устройству для удаления влаги из газовых сред. Адсорбционный осушитель содержит две секции, объединенные в один аппарат посредством общего корпуса и связанные между собой распределительными обвязками для газовых потоков, верхние входные и нижние выходные камеры с патрубками для осушаемого и осушенного газа и единые магистрали для теплоносителя. Каждая секция выполнена в виде прямоугольного параллелепипеда, оснащенного неразъемно присоединенными к нему верхней и нижней решетками, содержащими отверстия в форме вытянутых прямоугольников, в которые неразъемно вставлены заполненные адсорбентом реторты такой же формы в поперечном сечении с зазорами, образующими в секции межретортное пространство. Открытые верхняя и нижняя стороны реторт перекрыты сетками, прижатыми к решеткам секций с помощью верхней входной и нижней выходной камер. Нижняя выходная камера содержит наклонное днище и оснащена патрубком и вентилем для выпуска влаги, а верхняя входная камера снабжена патрубком, трехходовым краном и трубопроводом для вывода из реторт парообразных продуктов регенерации адсорбента. Изобретение обеспечивает повышение надежности, снижение тепловых затрат, снижение металлоемкости, повышение интенсивности теплообмена и эффективности осушки. 3 ил.

Изобретение относится к отделению частиц от газовых потоков с помощью туманоуловителя с волоконным слоем. Волокнистый слой в сборе содержит опору, имеющую верхний конец, нижний конец и цилиндрическую стенку. Стенка определяет внешнее пространство и внутреннее пространство. Стенка имеет отверстия для перемещения газового потока из внешнего пространства во внутреннее пространство. На опоре размещен волокнистый слой, блокирующий стенные отверстия. Волокнистый слой содержит собирающую волокнистую среду и имеет верхнюю часть, верхний концевой край, нижнюю часть, нижний концевой край, поверхность, расположенную выше по течению, и поверхность, расположенную ниже по течению. Слой содержит основание, находящееся рядом с нижним концом опоры, отверстие, находящееся рядом с верхним концом опоры. Газонепроницаемая оболочка находится на расстоянии от поверхности волокнистого слоя в его нижнем концевом крае. Оболочка имеет верхний конец и нижний конец и блокирует течение газового потока в часть волокнистого слоя, чтобы обеспечивать защищенную от газа дренажную область. Основание включает верхнюю стенку, боковую стенку и кольцеобразную кромку. Оболочка находится на расстоянии в направлении вверх от нижней части волокнистого слоя, причем оболочка проходит на высоту выше верхней стенки основания. Технический результат: предотвращение вторичного уноса жидкости в поток очищенного газа. 3 н. и 40 з.п. ф-лы, 12 ил.

Группа изобретений относится к области машиностроения, а именно к патронам влагоотделителя для устройств обеспечения сжатым воздухом тормозов транспортных средств. Патрон влагоотделителя для устройства обеспечения сжатым воздухом грузового автомобиля содержит наполненную осушителем сушильную камеру. Сушильная камера в аксиальном направлении выполнена с возможностью соединения с соединительным фланцем устройства обеспечения сжатым воздухом. На сушильной камере расположено рассчитанное по типу обратного клапана уплотнение, выполненное с возможностью осуществления в смонтированном состоянии патрона влагоотделителя герметизации между сушильной камерой и соединительным фланцем. Уплотнение имеет u-образный профиль поперечного сечения с гибкой закраиной. Способ эксплуатации патрона влагоотделителя заключается в том, что в устройстве обеспечения сжатым воздухом расположенное на сушильной камере уплотнение, имеющее u-образный профиль поперечного сечения с гибкой закраиной, во время фазы транспортировки устройства обеспечения сжатым воздухом осуществляет герметизацию между сушильной камерой и соединительным фланцем устройства обеспечения сжатым воздухом. Во время фазы продувки устройства обеспечения сжатым воздухом расположенное на сушильной камере уплотнение обеспечивает контролированный выход воздуха между соединительным фланцем и сушильной камерой. Достигается улучшение эксплуатационной надежности устройства обеспечения сжатым воздухом. 2 н. и 5 з.п. ф-лы, 4 ил.

Изобретение относится к способу адсорбционной осушки газов и может найти применение в нефтегазовой и других отраслях промышленности для осушки горючих газов. Способ включает адсорбционную осушку предварительно очищенного осушаемого газа при температуре адсорбции, регенерацию адсорбента путем косвенного нагрева адсорбента до температуры регенерации теплоносителем, последующий отдув паров воды из свободного пространства адсорбера частью осушенного газа, а также охлаждение регенерированного адсорбента до температуры адсорбции воздухом. При этом в качестве теплоносителя используют продукты окисления газа регенерации воздухом. Изобретение обеспечивает простую и эффективную осушку газа. 4 з. п. ф - лы, 1 ил.

Изобретение относится к адсорбционной осушке газов и может найти применение в различных отраслях промышленности для осушки газа до температуры точки росы минус 70°C и ниже. Способ включает компримирование осушаемого газа и осушку компрессата путем охлаждения в условиях дефлегмации с получением конденсата и газа дефлегмации и пропускания через адсорбент с получением осушенного сжатого газа и последующую регенерацию адсорбента. При этом газ дефлегмации осушают в установке, включающей три адсорбера, в каждом из которых находится слой адсорбента, для чего газ дефлегмации подвергают осушке в первом адсорбере и глубокой осушке во втором адсорбере, а регенерацию адсорбента осуществляют в третьем адсорбере, причем адсорберы циклически переключают. Изобретение обеспечивает эффективную осушку газа и снижение объема загрузки адсорбента. 1 ил.

Изобретение относится к способам адсорбционной осушки и может найти применение в нефтегазовой и других отраслях промышленности для осушки горючих газов. Способ включает адсорбционную осушку отсепарированного газа, регенерацию адсорбента путем продувки нагретым газом, для чего снижают давление до давления ниже давления адсорбции с получением редуцированного газа, продувают адсорбент первой частью газа окисления с получением первого продувочного газа, затем продувают адсорбент второй частью газа окисления, после продувают редуцированным газом с получением второго продувочного газа, поднимают давление до давления адсорбции и охлаждают адсорбент путем продувки осушенного газа, которую затем смешивают с остальной частью осушенного газа, при этом смесь первого и второго продувочных газов подвергают каталитическому окислению кислородсодержащим газом с получением газа окисления, который разделяют на две части и направляют на продувку адсорбента. Изобретение обеспечивает снижение энергоемкости, а также повышение пожаровзрывобезопасности и экологической безопасности. 3 з.п. ф-лы, 1 ил.

Описан способ безотходной подготовки скважинной продукции газоконденсатных месторождений, включающий сепарацию скважинной продукции в смеси с продуктом каталитической переработки с получением газа сепарации и конденсата, комплексную подготовку газа сепарации с получением товарного газа и широкой фракции легких углеводородов, каталитическую переработку широкой фракции легких углеводородов с получением газа как продукта каталитической переработки, при этом каталитическую переработку широкой фракции легких углеводородов осуществляют после смешения последней с конденсатом. Техническим результатом является повышение выхода товарного газа, упрощение способа, получение одного товарного продукта. 2 з.п. ф-лы, 1 ил.

Группа изобретений относится к способу сепарации жидкости от газа и к устройству для его осуществления, например, перед процессом осушки газа от влаги или процессом его компримирования. Способ сепарации газа от примесей включает первичную центробежную сепарацию газа, контактирование его с жидкостью, например промывочной или метанольной водой, и последующую вторичную сепарацию от капельной жидкости с вертикальным и кольцевым отбором. При этом контактирование газа с жидкостью и последующую вторичную сепарацию осуществляют одновременно при прямоточном центробежном течении фаз, вначале закрученным газовым потоком всасывают жидкость, а после контакта газа с жидкостью ее вытесняют. Контактно-сепарационное устройство содержит тарелку с основанием, в котором расположен прямоточный центробежный элемент с завихрителем под основанием и патрубком над ним, с выполненными на образующих патрубка каналами выхода жидкости, которые направлены тангенциально относительно его радиуса в точке выхода над полотном. В нижней части прямоточного патрубка, установленного на основании тарелки, выполнен тангенциальный канал входа жидкости. Высота канала выхода газожидкостной смеси, расположенного на образующей прямоточного патрубка, определена по формуле: h=πd/n, где π=3,14159, d - диаметр патрубка, м, n - число щелей по диаметральному сечению патрубка. Техническим результатом группы изобретений является повышение эффективности сепарации, сокращение числа технологических секций или аппаратов при проведении процесса центробежной сепарации. 2 н. и 2 з.п. ф-лы, 5 ил.

Изобретение относится к способам адсорбционной осушки газов. Способ включает компримирование предварительно очищенного сырого газа с получением компрессата, охлаждение компрессата до температуры адсорбции сторонним теплоносителем, по меньшей мере, частью редуцированного осушенного газа, сепарацию компрессата с получением конденсата и газа сепарации, адсорбционную осушку компрессата и регенерацию адсорбента, при этом осушенный газ редуцируют до давления использования, нагревают компрессатом и подают потребителю. Изобретение обеспечивает эффективную осушку газа и снижение объема загрузки адсорбента. 2 н. и 2 з.п ф-лы, 2 ил.
Наверх