Пьезокерамический материал для изготовления слоистых гетероструктур

Изобретение относится к области пьезокерамических материалов, предназначенных для изготовления многослойных ультразвуковых устройств в виде слоистых гетероструктур, являющихся основой различных пьезодатчиков (давления, медицинской диагностики, эмиссионного контроля гидроакустической аппаратуры и т.д.), работающих в режиме приема. Указанные материалы также могут быть использованы для изготовления многослойных пьезоэлектрических актюаторов, пьезоклапанов, низкочастотных пьезовибраторов и других типов пьезопреобразователей. Предлагаемый пьезокерамический материал по своему составу относится к твердым растворам системы PbTiO3-PbZrO3-PbNi1/3Nb2/3O3-PbZn1/3Nb2/3O3, содержащих в качестве легирующих добавок SrO, WO3, Bi2O3 и CdO, при следующем соотношении компонентов, мас.%: PbO 66,94-67,42, ZrO2 11,42-11,96, TiO2 9,02-9,43, SrO 0,35-0,40, WO3 0,16-0,27, Bi2O3 0,49-0,65, CdO 0,12-0,21, Nb2O5 8,18-8,39, ZnO 0,78-0,84, NiO 1,58-1,75. Технический результат изобретения заключается в создании пьезокерамического материала с более высокими значениями (по сравнению с прототипом) диэлектрических и пьезоэлектрических параметров при сохранении температуры его спекания на уровне 950°C. 3 табл.

 

Изобретение относится к области пьезокерамических материалов, предназначенных для изготовления многослойных ультразвуковых устройств в виде слоистых гетероструктур, являющихся основой различных пьезодатчиков (давления, медицинской диагностики, эмиссионного контроля гидроакустической аппаратуры и т.д.), работающих в режиме приема. Указанные материалы также могут быть использованы для изготовления многослойных пьезоэлектрических актюаторов, пьезоклапанов, низкочастотных пьезовибраторов и других типов пьезопреобразователей.

Известны пьезоматериалы, характеризующиеся относительно низкими значениями коэрцитивных полей, имеющих средние значения как пьезомодулей, так и относительной диэлектрической проницаемости в сочетании с высокими коэффициентами электромеханической связи. Все известные материалы этой группы созданы на основе пьезофаз твердых растворов цирконата титаната свинца (ЦТС), которые содержат различные легирующие добавки: АС-900 (Япония) [1], РСМ-33А [2], PZT-5A (США) [3], ЦТС-19, ЦТС-26 [4], ПКР[6] и др.

Известен пьезоматериал АС-900, имеющий температуру спекания 950-980°C, однако он характеризуется низкими значениями коэффициентов электромеханической связи при средних значениях пьезомодулей d31 и d33, что снижает эффективность преобразования механической энергии в электрическую (в режиме приема) и электрической в механическую (в режиме излучения). Другие же материалы рассматриваемой группы имеют высокие температуры спекания, что приводит к снижению выхода целевых изделий.

Наиболее близким по химическому составу, диэлектрическим и пьезоэлектрическим свойствам к заявляемому пьезоматериалу является пьезокерамический материал ЦТС-46 [7], принимаемый за прототип (таблица 2).

Таблица 2
Составы прототипа и заявляемого материала
Состав прототипа ЦТС-46 [7] (мас.%)
PbO ZrO2 TiO2 SrO WO3 Bi2O3 Ni2O3 CdO Nd2O5 ZnO NiO
64,05-64,52 19,11-20,30 10,92-11,52 1,54-2,25 0,23-0,62 0,72-1,87 0,08-0,25 0,59-1,18 - - -
Состав заявляемого материала (мас.%)
PbO ZrO2 TiO2 SrO WO3 Bi2O3 Ni2O3 CdO Nd2O5 ZnO NiO
66,94-67,42 11,42-11,96 9,02-9,43 0,35-0,40 0,16-0,27 0,49-0,65 - 0,12-0,21 8,18-8,39 0,78-0,84 1,58-1,75

Выбранный прототип обладает более высокими пьезоэлектрическими параметрами по сравнению с АС-900, однако эта разница по основному параметру (d33) не превышает 6% при одновременном снижении диэлектрической проницаемости на 34%.

С целью значительного повышения, по сравнению с прототипом, значений пьезомодуля d33 (до 670 пКл/Н) и εT33/εo (до 3000), при сохранении значений коэффициентов электромеханической связи, тангенса угла диэлектрических потерь и температуры спекания керамики:

- был изменен количественный состав прототипа по основным компонентам;

- в состав материала были дополнительно введены оксиды ниобия, цинка и никеля (II).

Сохранение низкой температуры спекания керамики обеспечивалось заменой в составе материала Ni2O на NiO и увеличением его массовой доли последней фазы в системе. Это обеспечивает высокий уровень дефектности промежуточных продуктов реакции на этапе ее синтеза, что снижает энергию активации процесса первичной рекристаллизации, т.е. увеличивает число активных центров роста зерен (в единице объема целевого продукта) еще на этапе его синтеза. Кроме этого высокая и контролируемая составом дефектность шихты обеспечивает значительную скорость процессов вторичной рекристаллизации и роста зерен, что позволяет изготавливать высокоплотную керамику без применения метода горячего прессования [6].

Предлагаемый пьезокерамический материал по своему составу относится к твердым растворам системы PbTiO3-PbZrO3-PbNi1/3Nb2/3O3-PbZn1/3Nb2/3O3. содержащих в качестве легирующих добавок: SrO, WO3, Bi2O3 и CdO.

Состав материала может быть выражен через масс.% исходных оксидов в виде:

PbO - 66,94-67,42,

ZrO2 - 11,42-11,96,

TiO2 - 9,02-9,43,

SrO - 0,35-0,40,

WO3 - 0,16-0,27,

Bi2O3 - 0,49-0,65%,

CdO - 0,12-0,21,

NiO - 1,58-1,75,

Nb2O5 - 8,18-8,39,

ZnO 0,78 - 0,84.

Технический результат изобретения заключается в создании пьезокерамического материала с более высокими значениями (по сравнению с прототипом) диэлектрических и пьезоэлектрических параметров d33 (до 670 пКл/Н) и εT33/εo (до 3000), с сохранением значений коэффициентов электромеханической связи, тангенса угла диэлектрических потерь и температуры спекания керамики на уровне 950-980°C.

Для сравнения в таблице 1 приведены основные электрофизические параметры заявляемого и известных пьезокерамических материалов.

Таблица 1
Электрофизические параметры заявляемого и известных пьезокерамических материалов
марка tgδ, % εT33/εo -d31·1012, Кл/Н d33·1012, Кл/Н Kp Tc, °C Тспек,· °C Источник
1 2 3 4 5 6 7 8 9
ЦТС-19 2-3 1800 175 385 0,56 290 1220 [4]
ЦТС-26 2.0 1800 162 350 0,55 350 1230 [4]
РСМ-33А (Jap.) 1,7 3200 232 529 0,66 205 1250 [2]
ЦТСНВ-1 1,9 2200 200 430 0,54 240 1230 [5]
АРС-855 (США) 1,3 3300 226 480 0,68 250 1260 [5]
АРС-856 (США) 2,7 4100 242 545 0,65 150 1240 [5]
PZT-5A (США) 2.1 1700 171 374 0,60 365 1250 [3]
ПКР-6 <1 2300 195 455 0.62 230 1270 [6]
АС-900 (Jap.) 2-3 3200 180 480 0,50 210 950 [1]
ЦТС-46 1-2 2100 220 510 0,62 275 950 [7]
Заявляемый материал 1-2 3000 245 670 0,62 220 950

Из данных таблицы 1 можно сделать вывод, что большинство материалов данной группы характеризуются температурами спекания выше 1200°C, что требует использования при сборке гетероструктур типа пьезопленка - металл, платиновой пасты. При повышении температуры многослойной системы внутренний платиновый электрод при на начальных этапах обжига пакетов частично испаряется. Это связано с тем, что образующийся при разложении пасты мелкодисперсный порошок металла окисляется кислородом воздуха с образованием летучих оксидов [6]. Пары оксидов могут проникать в объем формирующихся одновременно с платиновым порошком, керамических пленок, создавая в них токопроводящие каналы, которые электрически замыкают два противоположных электрода. Описанное явление приводит к росту брака в производстве указанного' типа гетероструктур. В связи с этим, с технологической точки зрения, необходимо снижение температуры спекания керамических пленок в составе гетероструктур, что позволит заменить платину сплавом (Pd+Ag), что снизит вероятность замыкания электродов в системе и будет способствовать снижению себестоимости изделия в целом.

Пример:

Для получения порошков пьезофаз использовался традиционный метод твердофазных реакций. В качестве прекурсоров синтеза применялись оксиды и карбонаты элементов, входящих в состав целевой фазы: PbO, ZnO Bi2O3 и SrCO3 - марки ч.д.а., TiO2 Nb2O5 и WO3 - марки о.с.ч., ZrO2 (ЦРО-1), NiO и CdO - марки ч. Соответствие образцов сырья заявленному качеству (входной контроль) осуществлялось методами ДТА, ТГА, а их фазовый состав оценивался с помощью дифракционных методов анализа (РФА и РСА). Рассчитанные массы порошков реагентов, с учетом корректировки, определенной на этапе входного контроля, взвешивались с точностью 0,0005 г.

Помол порошков на первом этапе осуществлялся в планетарной мельнице в течение 20 минут, а на втором - в вибромельнице в течение 20 минут. Магнитная сепарация шихты проводилась после второго этапа помола. Полученный порошок брикетировался, и пресс-заготовки обжигались при Т=750°C в течение 1 часа, и после перешихтовки и повторного брикетирования - при Т=800°C - 1 час. Продукт синтеза подвергался помолу, по представленному выше режиму, что позволяло изготавливать порошки целевой фазы с удельной поверхностью не менее 6000 см /г, в соответствии с данными, получаемыми с помощью ПСХ-12. Фазовый состав порошка определялся методом РФА.

В однофазные порошки вводилась связка в виде 3% раствора ПВС и они прессовались давлением до 850 кг/см2. Пресс-заготовки имели форму цилиндра диаметром 22 мм и высотой 7 мм. Образцы помещались в закрывающиеся кюветы на подслой из цирконата свинца и обжигались в течение 2-2,5 часа при Т=940-950°C. Спеченная керамика разрезалась на заготовки высотой ≈1,5 мм, которые шлифовались по толщине и диаметру до стандартного размера [4]. На поверхности полученных после шлифовки дисков наносились серебряные электроды (метод вжигания). Образцы поляризовались на воздухе в установке ПВС при 180-200°C полем 1,5-1,7 кВ/мм. Электрофизические параметры керамических пьезоматериалов на образцах стандартных размеров определялись согласно ОСТ 110444-87. В таблице 3 представлены электрофизические параметры предлагаемого материала для различных вариантов состава, лежащих в пределах заявляемой области.

Полученные экспериментальные данные свидетельствуют о том, что предлагаемый пьезоэлектрический материал обладает оптимальными, с точки зрения решаемой задачи, и более высокими значениями пьезопараметров (в заявленном интервале составов) по сравнению с прототипом. По сравнению с материалами, представленными в таблице 1 (ЦТС-19, PZT-5A, РСМ-33А ЦТСНВ-1 АРС-855 АРС-856 ПКР - 6) предлагаемый материал имеет более низкую (в среднем на 300°C) температуру спекания, а по сравнению с АС-900 (Тспек=950°C) характеризуется более высокими значениями диэлектрических и пьезоэлектрических параметров.

Таблица 3
Изменение электрофизических параметров пьезоэлектрических материалов при изменении их составов в пределах заявляемой области
Состав заявляемого материала (мас.%)
пример 1 PbO ZrO2 TiO2 SrO WO3 Bi2O3 CdO Nb2O5 ZnO NiO
67,1 11,55 9,43 0,35 0,20 0,60 0,15 8,22 0,80 1,60
ЭФП tgδ, % εT33/εo -d31·1012, Кл/Н d33·1012, Кл/Н Kp Tc, °C Тспек,°C
1,9 2750 219 600 0,61 224 950
Состав заявляемого материала (мас.%)
пример 2 PbO ZrO2 TiO2 SrO WO3 Bi2O3 CdO Nb2O5 ZnO NiO
67,2 11,6 9,3 0,38 0,22 0,50 0,20 8,22 0,78 1,58
ЭФП tgδ, % εT33/εo -d31·1012, Кл/Н d33·1012, Кл/Н Kp Tc, °C Тспек,°C
1,8 2880 227 620 0,62 226 950
Состав заявляемого материала (мас.%)
пример 3 PbO ZrO2 TiO2 SrO WO3 Bi2O3 CdO Nb2O5 ZnO NiO
67,2 11,42 9,23 0,39 0,19 0,58 0,18 8,29 0,81 1,71
ЭФП tgδ, % εT33/εo -d31·1012, Кл/Н d33·1012, Кл/Н Kp Tc, °C Тспек,°C
1,4 3050 247 675 0,62 220 950
Состав заявляемого материала (мас.%)
пример 4 PbO ZrO2 TiO2 SrO WO3 Bi2O3 CdO Nb2O5 ZnO NiO
67,4 11,42 9,02 0,35 0,26 0,49 0,12 8,39 0,84 1,71
ЭФП tgδ, % εT33/εo -d31·1012, Кл/Н d33·1012, Кл/Н Kp Tc, °C Тспек,°C
1,7 2920 231 633 0,61 223 950
Состав заявляемого материала (мас.%)
пример 5 PbO ZrO2 TiO2 SrO WO3 Bi2O3 CdO Nb2O5 ZnO NiO
66,9 11,96 9,03 0,40 0,16 0,65 0,21 8,19 0,78 1,75
ЭФП tgδ, % εT33/εo -d31·1012, Кл/Н d33·1012, Кл/Н Kp Tc, °C Тспек,°C
1,9 2790 222 610 0,61 218 950

Источники информации

1. Каталог фирмы «Hayashc» chemical Jndustzy Co. LTD. Япония.

2. Electronic Components Catalog. 1974. 5. Matsushita Electric. Kadoma. Osaka. Japan.

3. Каталог фирмы «Uerizon», США.

4. Материалы пьезокерамические. Технические условия. Отраслевой стандарт ОСТ 110444-87. М. 1987. стр.16.

5. Панич А.А., Мараховский М.А.,. Мотин Д.В. Кристаллические и керамические пьезоэлектрики. Электронный журнал «Инженерный вестник Дона». 2011. №1.

6. Фесенко Е.Г., Данцигер А.Я., Разумовская О.Н. Новые пьезокерамические материалы. Ростов-на-Дону. Из. РГУ. 1983. 160 с.

7. Патент RU 2288902. Опубликовано: 10.12. 2006. Бюл. №34, Пьезокерамический материал. Патентообладатель ОАО «Элпа», Авторы: Мирошников П.В., Сегалла А.Г., Сафронов А.Я., Никифоров В.Г., Чернов В.А.

Пьезокерамический материал, включающий оксиды свинца, циркония, титана, стронция, вольфрама, висмута и кадмия, отличающийся тем, что дополнительно содержит оксиды цинка, ниобия и никеля (II) при следующем соотношении компонентов, мас.%:

PbO 66,94-67,42
ZrO2 11,42-11,96
TiO2 9,02-9,43
SrO 0,35-0,40
WO3 0,16-0,27
Bi2O3 0,49-0,65
CdO 0,12-0,21
Nb2O5 8,18-8,39
ZnO 0,78-0,84
NiO 1,58-1,75



 

Похожие патенты:

Изобретение относится к области сегнетомягких пьезокерамических материалов широкого применения, предназначенных для изготовления ультразвуковых устройств, работающих в режиме приема, пьезодатчиков различного назначения, а также для изготовления многослойных пьезокерамических элементов: актюаторов, биморфов и др., которые находят применение для контроля и точного позиционирования технологического оборудования в микроэлектронном производстве, для стыковки и подстройки оптических волокон, при автоюстировке и подстройке лазерных зеркал интерферометров, для управления лазерным лучом в различных системах.

Изобретение относится к области химического синтеза металлосодержащих растворов сложного состава, включающих как алкоксидные, так и карбоксилатные производные металлов, применяемых для получения оксидных твердых растворов с использованием золь-гель технологии, а именно к способам приготовления безводных пленкообразующих растворов для формирования сегнетоэлектрических пленок цирконата-титаната свинца с низкой температурой кристаллизации и может быть использовано в технологии микроэлектроники и, в частности, для производства энергонезависимых радиационно-стойких сегнетоэлектрических запоминающих устройств.
Изобретение относится к керамическому материалу, содержащему цирконат-титанат свинца и дополнительно включающему Nd и Ni, и может быть использовано для изготовления пьезоэлектрических возбудителей.

Изобретение относится к области химического синтеза металлосодержащих растворов сложного состава, включающих как алкоксидные, так и карбоксилатные производные металлов, применяемых для получения оксидных твердых растворов с использованием золь-гель технологии, а именно к способам приготовления безводных пленкообразующих растворов для формирования сегнетоэлектрических пленок цирконата-титаната свинца, и может быть использовано в технологии микроэлектроники и, в частности, для производства энергонезависимых сегнетоэлектрических запоминающих устройств.
Изобретение относится к химической технологии получения нанопорошков композиционных материалов на основе оксидов свинца, титана и циркония, используемых для получения керамики со специальными свойствами.

Изобретение относится к области сегнетожестких пьезокерамических материалов, устойчивых к электрическим и механическим воздействиям, предназначенных для ультразвуковых устройств, в том числе многослойных и работающих при сильных электрических и механических воздействиях.

Изобретение относится к области сегнетомягких пьезокерамических материалов, предназначенных для ультразвуковых устройств, работающих в режиме приема, различных пьезодатчиков, а также для устройств монолитного типа, таких как многослойные пьезоэлектрические актюаторы.

Изобретение относится к области сегнетожестких пьезокерамических материалов. .

Изобретение относится к области пьезоэлектрических керамических материалов и может быть использовано для создания электромеханических преобразователей, работающих в широком диапазоне температур и давлений.

Изобретение относится к области производства пьезокерамических материалов, предназначенных для изготовления излучателей и приемников ультразвука, электромеханических преобразователей. Технический результат изобретения заключается в повышении температурной стабильности пьезокерамики. Пьезокерамический материал содержит следующие компоненты, мас.%: PbO 56,649-60,431; SrO 0,332-2,375; Na2O 0,376-0,888; Bi2O3 3,557-8,401; ZrO2 21,313-22,150; TiO2 11,528-12,050. 4 табл.

Изобретение относится к способу изготовления керамических пьезоматериалов из нано- и ультрадисперсных порошков фаз кислородно-октаэдрического типа, содержащих в позиции (В) ионы титана (IV), ниобия (V), циркония (IV), вольфрама (VI). цинка (II), никеля (II) и железа (III), кобальта (III) и других p- или d-элементов. Технический результат изобретения - повышение относительной диэлектрической проницаемости и пьезомодулей при сохранении у пьезоматериалов коэффициентов электромеханической связи. Способ получения керамических пьезоматериалов из нано- и/или ультрадисперсных порошков фаз кислородно-октаэдрического типа характеризуется тем, что нано- и/или ультрадисперсные порошки фаз кислородно-октаэдрического типа перед операцией формования и спекания обрабатывают спиртовым или водно-спиртовым раствором 1-8 мас. % гликолята аммония (NH4HC2O3), или формиата аммония (NH4COOH), или их смесей, после чего жидкую фазу удаляют, а полученный порошок высушивают. Пресс-заготовку, изготовленную из обработанного таким образом порошка, спекают 1,5-3 часа при температуре от 900 до 1250°С. 5 з.п. ф-лы, 30 пр., 2 табл.

Изобретение относится к области сегнетомягких пьезокерамических материалов, предназначенных для ультразвуковых устройств, работающих в режиме приема, различных пьезодатчиков, а также для устройств монолитного типа, таких как многослойные пьезоэлектрические актюаторы. Материал, включающий оксиды свинца, циркония, титана, стронция и висмута, дополнительно содержит оксиды гадолиния и эрбия при следующем соотношении компонентов, мас.%: РbO 64,05÷66,84; ZrO2 19,11÷19,60; ТiO2 10,92÷11,20; SrO 1,54÷2,15; Bi2O3 0,72÷1,57; Gd2O3 0,69÷1,18; Er2O3 0,18÷0,25. Технический результат заключается в получении пьезокерамического материала с улучшенными электрофизическими параметрами: повышенной пьезочувствительностью g31=11,8-11,9 мВ⋅м/Н, g33=26,9-27,4 мВ⋅м/Н, повышенным пьезомодулем d31=220-225⋅10-12 Кл/Н и d33=510-518⋅10-12 Кл/Н; повышенным коэффициентом электромеханической связи Кр=0,63-0,64; пониженным тангенсом угла диэлектрических потерь tgδ=1,6-1,7%. 1 пр., 2 табл.

Изобретение относится к технологии получения пьезокерамического материала ЦТС-19, который может быть использован в качестве пьезоактивной составляющей композиционных материалов со связностями 1-3 и 3-3, используемых в приемной аппаратуре в гидроакустике и медицине. Технический результат - повышение удельной чувствительности g33 до значений 40-45⋅10-3 В⋅м/Н, пьезомодуля d33 до значений 450-500⋅10-12 Кл/Н при сохранении значений относительной диэлектрической проницаемости . Для приготовления исходной шихты предварительно синтезируют оксид титана-циркония Ti0.47Zr0.53O2 методом химического соосаждения из азотнокислых растворов титана и циркония (Н2[Zr(NO3)6], Н2[Ti(NO3)6]), взятых в соотношении Ti4+/Zr4+=0,47/0,53, с термообработкой при температуре 800-950°С и времени выдержки 2-4 ч. Синтезированный ультрадисперсный порошок Ti0.47Zr0.53O2 смешивают с мелкодисперсными порошками PbO, Nb2O5 и SrCO3. Локальные механические напряжения на развитых поверхностях раздела ультрадисперсных порошков при взаимодействии с мелкодисперсными порошками при синтезе твердых растворов системы ЦТС приводят к образованию псевдоморфотропных областей, облегчению движения доменных стенок, переориентаций поляризации и изменению связанных с этим электрофизических свойств. 4 з.п. ф-лы, 2 ил., 2 табл.
Наверх