Высокопрочный сплав на основе алюминия и изделие, выполненное из него



Высокопрочный сплав на основе алюминия и изделие, выполненное из него
Высокопрочный сплав на основе алюминия и изделие, выполненное из него

 


Владельцы патента RU 2556849:

Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") (RU)

Изобретение относится к высоколегированным сверхпрочным сплавам на основе алюминия системы Al-Zn-Mg-Cu, предназначенным для применения в качестве конструкционного материала в авиационной и ракетной технике, в транспортных наземных средствах и в изделиях приборного машиностроения. Высокопрочный сплав на основе алюминия и изделие, выполненное из него, содержат следующие компоненты, мас.%: цинк 8,5-9,3, магний 1,6-2,1, медь 1,3-1,8, цирконий 0,06-0,14, марганец 0,01-0,1, железо 0,02-0,10, кремний 0,01-0,05, хром 0,01-0,05, бериллий 0,0001-0,005, водород 0,8·10-5-2,7·10-5 и по крайней мере один из элементов группы, содержащей титан 0,02-0,06, бор 0,001-0,01, алюминий - остальное. Суммарное содержание основных компонентов цинка, магния, меди не должно превышать 12,5-13,0%. Суммарное содержание переходных металлов циркония, марганца и хрома не должно превышать 0,25-0,30%. Соотношение железа к кремнию должно быть не менее 1,5. Техническим результатом настоящего изобретения является повышение прочностных характеристик и вязкости разрушения сплава. 2 н. и 3 з.п. ф-лы, 2 табл., 1 пр.

 

Изобретение относится к области цветной металлургии сплавов на основе алюминия, а именно к высокопрочным высоколегированным сплавам системы Al-Zn-Mg-Cu, используемым в качестве конструкционного материала для основных (как правило, длинномерных) силовых элементов планера самолетов (обшивок и стрингерного набора верха крыла, стоек, балок и др.), ракет, а также для изделий транспортных средств (преимущественно наземных) и приборной нагруженной техники.

Известна серия современных распространенных высокопрочных и сверхпрочных сплавов различного назначения традиционной системы Al-Zn-Mg-Cu, дополнительно и эффективно легированных микродобавкой переходного элемента циркония для повышения пластичности, технологичности (в т.ч. прокаливаемости), прочности.

К ним относятся, прежде всего, российский высокопрочный сплав (патент РФ №2165995 C1, 05.10.1999) с повышенной вязкостью разрушения, содержащий следующие компоненты, мас.%:

Цинк 6,35-8,0
Магний 0,5-2,5
Медь 0,8-1,3
Цирконий 0,07-0,20
Титан 0,03-0,10
Марганец 0,01-0,1
Хром 0,01-0,05
Железо 0,06-0,26
Кремний 0,01-0,20
Бериллий 0,0001-0,05
Алюминий Остальное

Американский сплав 7085 компании «Alcoa» [New Generation High-Strenght and High Damage Tolerance 7085 Thick Alloy Product with Low Quench Sensitivity Proc. of the ICAA-9, 2004, p. 969-974] имеет следующий химический состав, мас.%:

Цинк 7,0-8,0
Магний 1,2-1,8
Медь 1,3-2,0
Цирконий 0,08-0,15
Титан <0,06
Марганец <0,04
Хром <0,04
Железо <0,08
Кремний <0,06
Алюминий Остальное

Немецкой компанией «Otto Fuchs» разработан новый сплав 7037 [A New High Strength Aluminum Alloy for Aerospace Application. Proc of the ICAA-11, 2008, p. 209-214] химического состава, мас.%:

Цинк 7,8-9,0
Магний 1,3-2,1
Медь 0,6-1,1
Цирконий 0,06-0,25
Железо ≤0,10
Кремний ≤0,10
Титан ≤0,10
Марганец ≤0,5
Хром ≤0,04
Алюминий Остальное

Эти сплавы прочнее ранее введенных и использующихся сплавов с цирконием (7010, 7050), но имеют недостаточно высокий уровень статической прочности и удельных характеристик прочности, не позволяющий достигать в полной мере летных характеристик, увеличивать весовую эффективность изделий для повышения экономичности топлива, дальности, скорости и высоты полета, грузоподъемности и т.д.

Общим для этих сплавов является то, что они предлагаются преимущественно для массивных (толщиной до 150-200 мм) полуфабрикатов применительно к сложным изделиям внутреннего силового набора (лонжеронам, фитингам и др.) и должны обладать низкой чувствительностью к скорости охлаждения при закалке.

Следует отметить, что среди этих сплавов европейский сплав 7037 более легирован цинком (для получения высокой прочности), но мало легирован медью. Но он имеет повышенное предельное содержание марганца и кремния, что приводит к появлению дополнительных грубых вредных избыточных интерметаллидов и вторичных дисперсоидов и ухудшению служебных характеристик.

В патенте США компании «Alcoa» (патент США №7097719 B2, 29.08.2006) описан высокопрочный сплав для различных полуфабрикатов, в том числе длинномерных, толщиной до 76 мм с улучшенным сопротивлением усталости (за счет регламентации примесей) следующего химического состава, мас.%:

Цинк 7,6-8,4
Магний 1,8-2,3
Медь 2,0-2,6
Цирконий 0,088-0,25
Титан <0,06
Железо 0,01-0,09
Кремний 0,01-0,06

К главному недостатку этого сплава относится высокое содержание меди (более 2,0%), что вызывает появление избыточных грубых неблагоприятных фаз: растворимых (типа фазы S - Al2CuMg) и нерастворимых разного состава (в результате активного взаимодействия меди с примесью железа). Сюда же можно отнести недостаточную пластичность в литом состоянии и, соответственно, склонность к образованию трещин в слитках, особенно крупногабаритных плоских для катаных полуфабрикатов.

Для высоконагруженных деталей в России создан высоколегированный высокопрочный сплав на основе алюминия (патент РФ №2164541 C2, 05.02.1999), для которого очень важны статические характеристики прочности.

Сплав обладает следующим химическим составом, мас.%:

Цинк 8,0-9,0
Магний 2,3-3,0
Медь 2,0-2,6
Цирконий 0,10-0,20
Железо 0,05-0,3
Кремний 0,03-0,15
При соотношении Fe/Si≥0,5
Бериллий 0,0001-0,002
Водород 0,9-3,6·10-5
Алюминий Остальное

В соответствии с задачами сплав сильно легирован, в том числе магнием и медью, что обеспечивает высокие значения статической и конструкционной прочности. Однако такое легирование, так же как и присутствие повышенного максимального содержания примесей нежелательно для сплава с особыми требованиями к сочетанию прочностных характеристик с вязкостью разрушения, коррозионными и другими свойствами, необходимыми для авиационных и др. конструкций.

Наиболее близким по химическому составу к предлагаемому изобретению является высокопрочный сплав 7056 (Recently-developed aluminium solutions for aerospace applications. Proc. of ICAA-10, Canada, 2006, p.p. 1271-1278.), содержащий, мас.%:

Цинк 8,5-9,7
Магний 1,5-2,3
Медь 1,2-1,9
Цирконий 0,05-0,15
Железо <0,12
Кремний <0,10
Титан <0,08
Марганец <0,20

Недостатки этого высоколегированного сплава (в основном для элементов авиационных конструкций) заключаются в следующем:

- высокая и сверхвысокая прочность обеспечивается сильным легированием главными компонентами (цинком, магнием, медью) при неограниченной максимальной сумме (до 13,9%), что выше суммарной их предельной растворимости в твердом алюминиевом растворе (для получения максимальной прочности), и приводит к образованию избыточных грубых растворимых интерметаллидов и, соответственно, к снижению характеристик трещиностойкости, пластичности, сопротивления усталости;

- недостаточное ограничение примесей железа, кремния и переходных элементов титана, марганца вызывает образование нерастворимых грубых эвтектических и первичных интерметаллидов и вторичных дисперсоидов, также ведет к снижению необходимых эксплуатационных характеристик (вязкости разрушения и др.), особенно без регламентации их соотношения; последнее дополнительно не обеспечивает получение крупногабаритных слитков в результате образования кристаллизационных трещин;

- состав сплава не создает оптимальные условия формирования структуры и необходимого комплекса эксплуатационных характеристик ответственных конструкций, таких как обшивки и стрингеры крыла, стойки самолетов и др., требующихся для современных и перспективных авиационных изделий.

Технической задачей настоящего изобретения является создание сплава с повышенными механическими свойствами, сочетающимися с требуемым уровнем эксплуатационных характеристик, необходимым для силовых элементов планера самолета, ракет и других изделий, при достаточной традиционными методами технологичности для производства различных деформируемых полуфабрикатов, особенно длинномерных.

Техническим результатом настоящего изобретения является повышение прочностных характеристик и вязкости разрушения.

Для достижения технического результата предложен высокопрочный сплав на основе алюминия, включающий основные компоненты цинк, магний, медь при их регламентированном предельном количестве, добавки переходных металлов цирконий, марганец, хром, также при регламентированных ограничениях, соотношений примесных элементов железа, кремния, по крайней мере один элемент из группы, включающей титан и бор, отличающийся тем, что он дополнительно содержит бериллий и водород при следующем соотношении компонентов, мас.%:

Цинк 8,5-9,3
Магний 1,6-2,1
Медь 1,3-1,8
Цирконий 0,06-0,14
Марганец 0,01-0,1
Железо 0,02-0,10
Кремний 0,01-0,05
Хром 0,01-0,05
Бериллий 0,0001-0,005
Водород 0,8·10-5-2,7·10-5
Алюминий Остальное

И по крайней мере один элемент из группы:

Титан 0,005-0,06
Бор 0,001-0,01

Предпочтительно, сумма основных легирующих элементов цинка, магния, меди не должна превышать 12,5-13,0%.

Предпочтительно, суммарное содержание переходных элементов циркония, марганца и хрома не должно превышать 0,25-0,30%.

Предпочтительно, соотношение железа к кремнию должно быть не менее 1,5 при сильном ограничении содержания обоих примесей, особенно кремния.

Наряду с главным элементом - антирекристаллизатором цирконием присутствие в предлагаемом сплаве в небольших количествах хрома, марганца при регламентации общей суммы элементов, не превышающей 0,25-0,30%, способствует формированию и стабилизации нерекристаллизованной зеренной структуры, зарождению упрочняющих фаз и соответственно дополнительному приросту прочности, а также положительно влияет на сопротивление коррозионному растрескиванию под напряжением и расслаивающей коррозии.

Введение бериллия снижает окисляемость и улучшает жидкотекучесть при плавке, повышая качество слитков и полуфабрикатов (особенно крупных). Присутствие в микродозах водорода способствует образованию мелкозернистой структуры, равномерному распределению неизбежных неметаллических микровключений по объему слитков и полуфабрикатов и повышению их пластичности.

Малые добавки титана и/или бора, оказывающие модифицирующее действие, приводят к гетерогенной кристаллизации сплава и измельчению зерна и, соответственно, к улучшению пластичности слитков и полуфабрикатов и к расширению возможности увеличения их размеров и повышению качества.

Превышение содержания примеси железа над содержанием примеси кремния (более чем в 1,5 раза) при жестком их контроле и регламентации (для ограничения появления грубых нерастворимых интерметаллидов и отрицательного влияния на прочностные и эксплуатационные свойства) необходимо для улучшения литейных свойств высоколегированных сплавов с целью возможности получения крупных слитков для длинномерных полуфабрикатов.

Поддержание умеренного количества меди (до 1,8%) и магния (до 2,1%) при повышении содержания цинка (до 9,3%) и сохранении общей степени легированности основными компонентами в сплаве обеспечивает повышенные прочностные характеристики. При этом ограничивается возможность образования избыточных медьсодержащих интерметаллических фаз и их отрицательного влияния на характеристики вязкости разрушения, пластичности, усталости.

Коррозионная стойкость к опасным видам коррозии - коррозионное растрескивание (КР), расслаивающаяся коррозия (РСК), в основном регулируется режимами искусственного старения.

Примеры осуществления

В условиях опытного производства были отлиты слитки, химические составы которых приведены в табл. 1. Слитки имели диаметр 110 мм, получены полунепрерывным методом с охлаждением поверхности водой. Плавки осуществлялись в электрической печи. После гомогенизации при температуре 460°C в течение 24 часов подробно проводили микроанализ структуры по сечению слитков методами оптической и электронной микроскопии, микрорентгеноспектрального фазового анализа (МРСА), дифференциального термического анализа (ДТА).

Оценивали значения среднего зерна dcp в исследуемых слитках и полуфабрикатах методом количественной металлографии в поляризованном свете на оксидированных микрошлифах; количественная металлография использовалась широко при анализе объемной доли и формы интерметаллических фаз. Для исследования характера и пластичности разрушения использовался фрактографический анализ с помощью электронного сканирующего микроскопа.

Слитки после гомогенизации прессовали при 390-410°C на полосы сечением 15×70 мм с коэффициентом вытяжки >8,0. По данным ДТА температура кристаллизации эвтектик исследованных сплавов находилась в пределах 473-476°C. Заготовки из прессованных полос закаливали с температуры 470°C, с учетом перепадов в печи (после длительной выдержки 90 мин) в холодной воде (20-25°C). В свежезакаленном состоянии заготовки растягивали со средней степенью деформации ~1,5%. В пределах 4 ч после закалки полосы подвергали различному искусственному старению: варианта Т1 по одноступенчатому (на максимальную прочность) режиму 120°C, 24 ч и варианта по двухступенчатому режиму типа Т22 (на первой ступени при 120°C, 1,5 ч + на второй ступени при 150°C и небольшой степени перестаривания - 10-20 МПа).

Комплекс механических и коррозионных свойств исследовали на образцах, вырезанных из прессованных полос.

Механические свойства при растяжении (предел прочности, предел текучести, относительное удлинение) определяли на круглых образцах с диаметром рабочей части d0=5 мм согласно ГОСТ 1497. Трещиностойкость оценивали по удельной работе разрушения (КСТ) при ударном изгибе образца с усталостной трещиной в V-образном надрезе, а также по ударной вязкости (KCU) образцов с U-образным надрезом согласно ГОСТ 9454.

Сопротивление малоцикловой усталости (МЦУ) оценивали по времени до разрушения круглых продольных образцов с кольцевым надрезом (Kt=2,2) при высоком напряжении ( σ max = 0,7 σ B н ) и частоте f=3 Гц.

Коррозионные свойства изучали по:

- сопротивлению расслаивающей коррозии (РСК) плоских продольных образцов по 10-ти балльной системе в соответствии с ГОСТ 9.904;

- сопротивлению коррозионному растрескиванию под напряжением (КР) по времени до разрушения поперечных образцов при напряжении σ=0,75σ0,2 и других условиях по ГОСТ 9.019;

- удельной электропроводимости вихретоковым неразрушающим методом по ОСТ 1 92133.

В табл. 2 представлен комплекс механических (в т.ч. показатели вязкости разрушения) и коррозионных свойств прессованных полос из заявленного и известного сплавов, объемное содержание избыточных интерметаллидов в сплавах.

Как видно из полученных и представленных результатов, состав предложенного сплава позволил получить высокий уровень прочностных свойств и показателей вязкости разрушения (с транскристаллитным изломом) при высокой пластичности (относительного удлинения) и приемлемой коррозионной стойкости к расслаивающей коррозии и коррозионному растрескиванию.

Таким образом, предложенный высокопрочный сплав обеспечивает повышение весовой эффективности при обеспечении ресурса и надежности эксплуатации изделий.

Сплав предназначен в качестве конструкционного материала для основных элементов планера самолета, особенно в сжатых зонах (обшивки и стрингеры верха крыла, силовые стойки, балки и др.), ракетной техники и других изделий.

Из сплава изготавливаются катаные (листы, плиты), прессованные (профили, панели и др.) полуфабрикаты, включая длинномерные из крупных слитков с повышенным уровнем прочностных и эксплуатационных (в том числе с повышенной вязкостью разрушения) характеристик.

1. Высокопрочный сплав на основе алюминия, содержащий цинк, магний, медь, цирконий, марганец, железо, кремний, хром, по крайней мере один элемент из группы, включающей титан и бор, отличающийся тем, что он дополнительно содержит бериллий и водород при следующем соотношении компонентов, мас.%:

цинк 8,5-9,3
магний 1,6-2,1
медь 1,3-1,8
цирконий 0,06-0,14
марганец 0,01-0,1
железо 0,02-0,10
кремний 0,01-0,05
хром 0,01-0,05
бериллий 0,0001-0,005
водород 0,8·10-5-2,7·10-5
по крайней мере один элемент из группы:
титан
бор
алюминий
0,005-0,06
0,001-0,01
остальное

2. Сплав на основе алюминия по п. 1, отличающийся тем, что суммарное содержание цинка, магния и меди не превышает 12,5-13,0%.

3. Сплав на основе алюминия по п. 1, отличающийся тем, что суммарное содержание циркония, марганца и хрома не превышает 0,25-0,30%.

4. Сплав на основе алюминия по п. 1, отличающийся тем, что соотношение железа к кремнию составляет не менее 1,5.

5. Изделие, выполненное из высокопрочного сплава на основе алюминия, отличающееся тем, что оно выполнено из сплава по п. 1.



 

Похожие патенты:

Изобретение относится к металлургии, в частности к сплавам на основе алюминия, предназначенным для изготовления деформированных полуфабрикатов в виде штамповок и труб для использования в газовых центрифугах, в компрессорах низкого давления, вакуумных молекулярных насосах и в других сильно нагруженных изделиях, работающих при умеренно повышенных температурах.
Изобретение относится к металлургии протекторных сплавов на основе алюминия и может быть использовано при производстве протекторов для защиты от коррозии различных металлических сооружений и конструкций.
Изобретение относится к металлургии алюминиевых полуфабрикатов, а именно к металлургии свариваемых алюминиевых сплавов системы алюминий - цинк - магний, и может найти применение при изготовлении гомогенных или слоистых броневых плит для броненесущих и бронекорпусных объектов.

Изобретение относится к конструкционным элементам из алюминиевого сплава, в частности для аэрокосмической промышленности. Плита выполнена толщиной по меньшей мере 4 дюйма из алюминиевого сплава, который содержит: от 6,4 до 8,5 мас.% Zn, от 1,4 до 1,9 мас.% Mg, от 1,4 до 1,85 мас.% Сu, от 0,05 до 0,15 Zr, от 0,01 до 0,06 мас.% Ti, до 0,15 мас.% Fe, до 0,12 мас.% Si, остальное алюминий, сопутствующие элементы и примеси.
Изобретение относится к области металлургии, в частности к способам производства труб осесимметричных штамповок диаметром до 200 мм из высокопрочных алюминиевых сплавов Al-Zn-Mg-Cu, легированных скандием и цирконием.
Изобретение относится к области металлургии, в частности к деформируемым алюминиевым сплавам, используемым в качестве высокопрочного конструкционного материала пониженной плотности разового применения.

Изобретение относится к активному материалу отрицательного электрода для электрического устройства, содержащему сплав с формулой состава SixZnyAlz, где каждый из х, y и z представляет массовое процентное содержание, удовлетворяющее: (1) x+y+z=100, (2) 26≤х≤47, (3) 18≤y≤44 и (4) 22≤z≤46.
Группа изобретений относится к изделиям из дисперсионно-твердеющего алюминиевого сплава. Изделие выполнено толщиной от 2 дюймов (50 мм) до 12 дюймов (305 мм) из сплава следующего химического состава, вес.%: Zn - от 3 до 11, Mg - от 1 до 3, Cu - от 0,9 до 3, Ge - от 0,03 до 0,4, Si - максимум 0,5, Fe -максимум 0,5, Ti - максимум 0,3, остальное - алюминий и обычные и/или неизбежные элементы и примеси.
Сплав на основе алюминия предназначен для изготовления деформированных полуфабрикатов в виде штамповок и труб для использования в газовых центрифугах, в компрессорах низкого давления, вакуумных молекулярных насосах и в других сильно нагруженных изделиях, работающих при умеренно повышенных температурах.

Изобретение относится к способу производства длинномерных, тонкостенных панелей и профилей, предназначенных для использования на железнодорожном транспорте. .

Изобретение относится к металлургии. Лигатуру алюминий-цирконий, технический алюминий и отходы загружают в центральную часть печного пространства с температурой 740-750°C. В расплав вводят лигатуру алюминий-бериллий при температуре 730-740°C, магний и цинк с температурой 710-730°C и после выдержки расплава 10-20 минут при температуре 710-730°C вводят медь, лигатуры алюминий-железо, алюминий-хром-магний. Осуществляют нагрев расплава до 720-740°C и перемешивание. За 15-25 минут до перелива расплав модифицируют лигатурой алюминий-титан в объеме 50% от расчетного количества. Перелитый в ковш расплав обрабатывают флюсом при температуре 710-730°C. Расплав из ковша переливают в миксер с предварительно загруженными и нагретыми до 750-770°C 20-40 минут лигатурами алюминий-титан в объеме 50% от расчетного количества и алюминий-титан-бор. Осуществляют вакуумную обработку 30-60 минут при температуре 710-730°C и остаточном давлении 1,3-2,0 кПа. Литье осуществляют с использованием фильтрующего элемента. Слиток охлаждают водой, подаваемой под давлением 100-150 кПа на широкие грани слитка, и под давлением 10-30 кПа - на узкие грани слитка. Обеспечивается получение слитков с однородной мелкой структурой, низким газосодержанием, равномерным распределением интерметаллидных фаз. 4 табл.

Изобретение относится к области цветной металлургии, в которой получают многокомпонентные металлические сплавы, содержащие алюминий, цинк и кремний. Способ включает размещение предварительно сформированной и содержащей соединения всех перечисленных выше элементов исходной сырьевой смеси во внутреннем объеме применяемого для ее переработки устройства. В устройстве генерируют физические поля, накладываемые на все зоны его полости, в которых находится перерабатываемая в сплав исходная сырьевая масса. С помощью этих физических полей производят восстановление составляющих этот сплав Al; Zn; Si, т.е. компонентов исходного рудного материала. При проведении указанной выше операции осуществляется соединение входящих в сырьевую смесь отдельных уже восстановленных фрагментов готового конечного продукта в целостное монолитное структурное образование, состоящее из самого сплава. При выполнении способа производят перемешивание сырьевого материала. Техническим результатом является возможность получения указанного сплава непосредственно из рудного сырья. 2 н.п. ф-лы, 5 ил., 3 пр.

Изобретение относится к области металлургии, в частности к технологии термической обработки изделий из высокопрочных алюминиевых сплавов для использования в судостроении и конструкциях, эксплуатирующихся в морских условиях, авиакосмической технике, транспортном машиностроении. Способ термической обработки изделия из высокопрочного алюминиевого сплава системы Al - Zn - Mg - Cu, содержащего, мас.%: цинк 6,0-9,0, магний 1,6-2,6, медь 0,8-1,6, цирконий 0,07-0,15, железо 0,02-0,15, кремний менее 0,1, алюминий и неизбежные примеси - остальное, включает закалку и искусственное старение, содержащее стадии изотермического и неизотермического старения, при этом сначала проводят первую стадию изотермического старения при температуре 60-90°С в течение 10-24 ч, затем проводят первую стадию неизотермического старения путем нагрева изделия до температуры 160-195°С со скоростью 10-15°С/ч, после чего осуществляют вторую стадию изотермического старения при температуре 160-195°С в течение времени, определяемом из зависимости t=ln(473/T)/0,009, где t - время выдержки, ч, Т - температура выдержки, К, и вторую стадию неизотермического старения путем охлаждения с температуры 160-195°С до температуры 80°С со скоростью, определяемой по формуле V=ln(T/88,5)/0,0057, где V - скорость охлаждения, К/ч, Т - температура выдержки, К. Технический результат заключается в снижении склонности к расслаивающей, межкристаллитной и питтинговой коррозии, повышении однородности структуры и свойств в объеме изделия, получении изделий с повышенными прочностными и коррозионными характеристиками, в том числе для эксплуатации в морских условиях. 2 з.п. ф-лы, 2 табл., 1 пр.

Изобретение относится к получению изделий из алюминиевых сплавов 7ххх. Способ получения продуктов из деформируемого алюминиевого сплава 7ххх, содержащего 2,0-22 мас.% цинка и по меньшей мере 1,0 мас.% меди, включает приготовление изделия из алюминиевого сплава для послезакалочной холодной обработки давлением, холодную обработку давлением изделия на более чем 50% и термическую обработку с приданием формы во время этапа термической обработки, при этом упомянутое приготовление содержит этап закалки, а холодную обработку давлением и термическую обработку осуществляют для получения нерекристаллизованной микроструктуры, имеющей менее чем 50%-ю объемную долю зерен, имеющих разброс ориентации зерен не более 3°. Изобретение направлено на улучшение прочностных свойств сплавов 7ххх. 10 з.п. ф-лы, 3 пр., 17 табл., 31 ил.

Изобретение может быть использовано при получении паяных конструкций из алюминия и его сплавов. Припой содержит компоненты в следующем соотношении, мас. %: кремний 5-13, медь 4-7, цинк 4-7, никель 0,5-3, марганец 0,3-3, железо 0,3-3, по меньшей мере один элемент из группы, включающей стронций 0,001-0,2, бериллий 0,001-0,1, титан 0,001-0,1, натрий 0,001-0,2 и ванадий 0,001-0,2, остальное - алюминий. Отношение содержания железа к марганцу составляет от 1:1 до 1:1,1. Отношение содержания никеля к железу составляет не более 1:2. При вакуумной пайке припой дополнительно содержит магний в количестве 0,1-1 мас. %. При пайке с длительным термическим циклом припой дополнительно содержит, мас.%: кобальт 0,001-0,8 и молибден 0,001-0,8. Технический результат заключается в понижении температуры плавления припоя, повышении прочности и коррозионной стойкости получаемых паяных конструкций из алюминиевых сплавов, что обеспечивает повышение их срока службы. 2 з.п. ф-лы, 2 табл., 3 пр.
Наверх