Новые отверждающие агенты

Авторы патента:


Новые отверждающие агенты
Новые отверждающие агенты
Новые отверждающие агенты
Новые отверждающие агенты
Новые отверждающие агенты
Новые отверждающие агенты
Новые отверждающие агенты
Новые отверждающие агенты
Новые отверждающие агенты
Новые отверждающие агенты
Новые отверждающие агенты
Новые отверждающие агенты
Новые отверждающие агенты

Владельцы патента RU 2557548:

ХЕКСЕЛ КОМПОЗИТС ЛИМИТЕД (GB)

Изобретение относится к способной к отверждению эпоксидной или уретановой смоле, а также к отвержденной смоле. Способная к отверждению смола содержит соединение, имеющее структуру (I), где каждый атом углерода 2 вместе или с атомами углерода 1 или углерода 3 являются членами конденсированного циклоалифатического кольца. Когда атом углерода 1 является членом кольца, то также им является атом N, и каждый из атомов углерода - членов алифатического или ароматического кольца - может быть или членом других конденсированных колец или может быть связанным с группой, выбранной из Н, или линейного или разветвленного алкила от С1 до С5. Отвержденную смолу получают воздействием повышенной температуры и необязательно повышенным давлением на вышеуказанную неотвержденную смолу. Изобретение позволяет повысить температуру стеклования смолосодержащей системы. 2 н. 13 з. п. ф-лы, 1 табл., 5 пр.

(I)

 

Область техники, к которой относится изобретение

Данное изобретение описывает новые отверждающие агенты для смол, особенно эпоксидных и уретановых смол.

Уровень техники

Способные к отверждению смолосодержащие системы широко известны и имеют широкий круг использования в различных областях техники. Эти системы функционируют за счет реакции между молекулами смолы и отверждающими (вулканизирующими) агентами. При активации, например при совместном смешивании или при нагревании, функциональные группы в отверждающем агенте взаимодействуют с функциональными группами молекул смолы, образуя обширную полимерную сетку, и этот процесс известен как отверждение (или вулканизация).

Полученная отвержденная смола обладает физическими свойствами, которые в значительной мере или полностью зависят от выбора смолы, выбора вулканизирующего агента и применяемого режима вулканизации. Широкий спектр физических свойств может быть достигнут путем изменения одного или более этих составляющих.

Особенно полезным физическим свойством отвержденных смол являются механическая прочность и устойчивость к внешнему воздействию без образования трещины. Такие смолы особенно полезны при образовании структуры.

Тем не менее, известно, что отвержденные жесткие смолы имеют, как правило, низкую температуру стеклования, что может сделать их неприемлемыми к использованию в структурах. Известные методы повышения температуры стеклования обычно приводят к тому, что материал становится боле ломким, что опять-таки делает его непригодным к использованию в структурах. Кроме того, известные методы закаливания хрупкой смолы обычно также понижают температуру стеклования.

Создается впечатление, что отвержденные смолосодержащие системы, которые были бы одновременно механически прочными и имели высокую температуру стеклования и, таким образом, могли бы быть использованы в структурных применениях, не являются легкодоступными для известных систем.

Сущность изобретения

В первом аспекте настоящее изобретение описывает способную к отверждению смолу, включающую соединение, имеющее структуру:

где каждый атом углерода 2 вместе или с его же (в том же кольце) атомом углерода 1 или с атомом 3 являются членами конденсированного циклоалифатического кольца, и когда атом углерода 1 является членом кольца, то также им является атом N, и где каждый из атомов углерода - членов алифатического или ароматического кольца - может быть или членом дальнейших конденсированных циклоалифатических колец или быть связанным с группой, выбранной из Н или линейного или разветвленного алкила от С1 до С5.

Найдено, что соединения изобретения являются прекрасными отверждающими (вулканизирующими) агентами, особенно для эпоксидных и уретановых систем. По всей вероятности, присутствие циклоалифатических групп придает жесткость отверждающему агенту, что обеспечивает более высокую температуру стеклования в отвержденной системе смолы.

Удивительно, но повышение температуры стеклования не сопровождается повышением хрупкости отвержденной системы смолы.

Любые атомы углерода, формирующие любые дальнейшие конденсированные циклоалифатические кольца, могут также быть связаны или с атомом Н или с линейным или разветвленным алкилом от С1 до С5. Предпочтительно каждый из атомов углерода - членов алифатического или ароматического кольца - связан или с атомом Н или с линейным или разветвленным алкилом от С1 до С4. Более предпочтительно, если они связаны с линейным или разветвленным алкилом от С1 до С3, наиболее предпочтительно если они связаны с Н, С1 или С3 алкилом.

Таким образом, соединения предпочтительно имеют молекулярную массу, не превышающую 600, более предпочтительно не превышающую 500, наиболее предпочтительно не превышающую 400, и оптимально - не превышающую 350.

Циклоалифатические кольца, как правило, включают пять или шесть атомов углерода, предпочтительно шесть. Как правило, каждое циклоалифатическое кольцо содержит только атомы углерода.

Соединение является амином, как правило, диамином, с атомом N, связанным с соответствующим числом атомов водорода.

В первом предпочтительном воплощении соединения являются первичными ароматическими аминами типа:

Во втором предпочтительном воплощении соединения являются вторичными ароматическими аминами типа:

В этих разделах Z может означать атом углерода или простую связь (т.е. циклоалифатические кольца могут быть пяти- или шестичленными).

R1 и R2 (или точно также R3 и R4) могут необязательно формировать часть дальнейшего циклоалифатического кольца.

В другом воплощении изобретения углерод 2 может быть членом двух конденсированных циклоалифатических колец, одного - с атомом углерода 1 и другого - с атомом углерода 3. Другие построения также возможны.

Отверждающие агенты могут быть легко применимы тогда, когда требуются амино-функционализированные отверждающие агенты. Они поэтому являются особенно подходящими как отверждающие агенты для эпоксидных и уретановых систем.

Подходящие эпоксидные смолы могут включать монофункциональные, бифункциональные, трифункциональные и/или тетрафункциональные эпоксидные смолы.

Подходящие бифункциональные эпоксидные смолы включают, например, те, которые основаны на: диглицидиловом эфире бисфенола F, диглицидиловом эфире бисфенола А (необязательно бромированном), фенольных и крезольных эпоксидных новолаках, глицидиловых эфирах фенолальдегидных аддуктов и других ароматических эпоксидных смолах, глицидиловых эфирах алифатических диолов, диглицидиловом эфире диэтиленгликоля, ароматических эпоксидных смолах, алифатических полиглициловых эфирах, эпоксидированных олефинах, бромированных смолах, ароматических глицидиловых аминах, гетероциклических глицидиловых имидинах и амидах, фторированных эпоксидных смолах, глицидиловых эфирах или любой их комбинации.

Бифункциональные эпоксидные смолы могут быть предпочтительно выбраны из диглицидилового эфира бисфенола F, диглицидилового эфира бисфенола А, диглицидилдигидроксинафталена, диглицидиловых эфиров или любой их комбинации.

Подходящие трифункциональные эпоксидные смолы могут, например, включать те, которые основаны на фенольных или крезольных эпоксидных новолаках, глицидиловых эфирах фенолальдегидных аддуктов, ароматических эпоксидных смолах, алифатических триглицидиловых эфирах, диалифатических триглицидиловых эфирах, алифатических полиглицидиловых эфирах, эпоксидированных олефинах, бромированных смолах, триглицидиламинофенолах, ароматических глицидиловых аминах, гетероциклических глицидиловых имидинах и амидах, фторированных эпоксидных смолах или любой их комбинации.

Подходящие тетрафункциональные эпоксидные смолы включают N,N,N',N'-тетраглицидил-м-ксилендиамин (доступен коммерчески от компании Mitsubishi Gas Chemical Company под названием Tetrad-X и как Erisys GA-240 от компании CVC Chemicals) и N,N,N',N'-тетраглицидилметилендианилин (например, MY721 от компании Huntsman Advanced Materials) и их алкил- и галогензамещенные производные.

Также как для образования полимеров с эпоксидными соединениями молекулы настоящего изобретения могут быть использованы для получения полимеров уретанового типа или полимеров уретан-мочевина. Подходящие изоцианаты для образования указанных полимеров включают дифенилметандиизоцианат (МДИ), в чистой кристаллической форме или в сырой полимерной форме; толуолдиизоцианат (ТДИ); изофорондиизоцианат (ИФДИ); ксилендиизоцианат; гександиизоцианат и другие, хорошо известные в данной области. Также могут присутствовать димеризованные и тримеризованные изоцианаты. Могут также присутствовать полиолы для создания мягких сегментов, например высокомолекулярные полиэфиры полиолов, включая гидроксил функционализированный политетраметиленоксид, полипропиленоксид и полиэтиленоксид или полиэфирные полиолы, включая поликапролактондиолы; и низкомолекулярные гидроксильные соединения, такие как глицерин, триметилолпропан, этиленгликоль, бутандиол и тому подобные, для создания поперечных связей или жестких сегментов. Другие амины, как первичные, так и вторичные, могут необязательно присутствовать. Твердые эластомеры, термопластики, адгезивные материалы или пены могут быть получены в зависимости от применяемых условий и присутствия соответствующих добавок, например катализаторов, воды или других порообразующих агентов, наполнителей или других добавок, обычно применяемых в технологии уретанов.

Отверждающие агенты особенно применимы для целей строительства, конструирования. Для таких применений полезно, чтобы материалы имели умеренно высокую точку плавления, особенно если композиция должна до отверждения храниться какой-то промежуток времени при комнатной температуре. Так, в предпочтительном разделе отверждающие агенты имеют точку плавления от 80°C до 200°C.

Для некоторых применений предпочтительны жидкие отверждаемые смолосодержащие композиции, например, может быть использован метод конструирования, известный как Resin Transfer Moulding (RTM). В таких случаях может быть предпочтительно, чтобы отверждающие агенты были жидкими при комнатной температуре или имели точки плавления ниже 100ºС.

Вторичные ароматические амины представляют особый интерес. Поскольку они имеют только два реактивных аминных атома водорода, они бифункциональны. Это приводит к более низкой плотности сшивки в полученной отвержденной смоле, обеспечивая повышенную вязкость. Однако, как это ни странно, это сопровождается относительно высокими температурами стеклования, подходящими для применения в высокоответственных структурных строительных применениях (композициях), таких как в авиакосмической промышленности.

Поскольку материалы используются в структурных приложениях, они являются особенно подходящими как компоненты препрегов. Препрег включает волокнистую структуру, пре-импрегнированную отверждаемой смолой и отверждающим агентом, кроме других материалов. Обычно несколько слоев таких препрегов «уложены» желательным образом, и полученный ламинат отверждается с получением отвержденного композитного ламината.

Таким образом, изобретение также описывает препрег, включающий структурообразующие волокна, способную к отверждению смолу и отверждающий агент, как это здесь описано.

Волокна в структурных слоях волокон полученного материала могут иметь единонаправленную, текстурную форму или быть мультиаксиальными. Расположение волокон в соседствующих слоях может быть ортогональным по отношению друг к другу в так называемом 0/90 расположении, что означает углы между соседствующими слоями волокон. Другие расположения, такие как 0/+45/-45/90, тоже, конечно, возможны среди многих других расположений.

Волокна могут включать испорченные (например, частично сломанные), селективно прерывающиеся или непрерывные волокна.

Структурообразующие волокна могут быть сделаны из большого разнообразия материалов, таких как стекло, углерод, графит, металлизированные полимеры арамид и их смеси. Предпочтительны углеродные волокна.

Отверждение может быть осуществлено любым подходящим методом, известным в данной области, а так как отверждаемые смолы, как правило, являются термореактивными смолами, это предпочтительно достигается за счет повышенных температур и необязательно повышенного давления.

Полученные отвержденные смолы предпочтительно имеют температуру стеклования выше 100°C, более предпочтительно выше 120°C, еще более предпочтительно - выше 140°C.

Изобретение будет проиллюстрировано примерами.

Примеры

Несколько соединений являются предпочтительными, особенно:

Соединение I

Соединение II

Соединение III

Соединение IV

Соединение V

Все соединения получены кислотно-катализируемой конденсацией исходного производного анилина с раствором формальдегида. Ниже приведены детали получения этих соединений.

Соединение I

К 25 г 5,6,7,8-тетрагидро-1-нафтиламина в 74 мл кислотной среды, содержащей 29 мл пропан-2-ола, 36 мл воды и 9 мл концентрированной серной кислоты, при 60°C добавляли в течение 1 часа 7,5 мл раствора формальдегида (35%). Смесь нагревали еще 3,5 часа, затем охлаждали, нейтрализовали, и продукт растирали с водой. Полученный полутвердый продукт переводили в сульфатную соль, промывали ацетоном, фильтровали, свободный амин регенирировали раствором аммиака, и полученный порошок розоватого цвета промывали водой и высушивали, получая твердый продукт бежевого цвета с температурой плавления между 80 и 120°C.

Соединение III

В 5-литровую колбу при 60°C добавляли 500 г 1,2,3,4-тетрагидрохинолина к смеси 188 мл концентрированной серной кислоты, 428 мл пропан-2-ола и 793 мл воды. При механическом перемешивании в течение 70 мин по каплям добавляли 162,4 г 35%-ного раствора формалина. Реакцию продолжали в течение 3 часов, затем охлаждали и нейтрализовали раствором аммиака, получая желтый гранулированный твердый продукт. Твердый продукт отфильтровывали и кипятили с промышленным метилированным (денатурированным) спиртом (ПМС), затем суспензию охлаждали и фильтровали. После высушивания получали 416 г (80% от теоретического) твердого желтого продукта с температурой плавления между 120-122°C. ЯМР: ДМСО-d6, 400 МГц, 1,75 м.д. (м, 4H, CH2), 2,6 (т, 4H, CH2), 3,15 (м, 4H, CH2), 3,5 (с, 2H в CH2 мостике), 5,37 (с, 2H, NH), 6,32 (д, 2H, ароматические 5-CH), 6,65 (м, 4H, ароматические CH).

ИК (Фурье): 3389, 2925, 2613, 1613, 1512, 1316, 807 см-1

МС: 278 (молекулярный ион, 100%); 249 (15%); 146 (отрыв тетрагидрохинолина, 72%).

Соединение IV

В 1-литровую колбу добавляли 100 г индолина к 315 мл исходного кислотного раствора, приготовленного из 194 мл пропан-2-ола, 359 мл воды и 85 мл концентрированной серной кислоты. К слегка мутному раствору при 60°C в течение 1 часа добавляли 36,3 г 35%-ного раствора формалина. Смесь выдерживали при этих условиях еще 4 часа, охлаждали и экстрагировали этилацетатом. После выпаривания получали бежевый порошок, который фильтровали, промывали водой, и коричневую жидкую фазу удаляли. Продукт растворяли в малом объеме ПМС, получая белые кристаллы. После фильтрации и высушивания получали белые кристаллы из первой фракции и из маточного сиропа общим количеством 54 г. Температура плавления 92-93°C.

ИК (Фурье): 3344, 2892, 2843, 1610, 1492, 1248, 816, 768, 735, 693 см-1.

МС: 250 (молекулярный ион, 100%); 132 (отрыв индолина, 43%); 119 (отрыв CH3, 23%).

Соединение V

Вышеприведенный метод повторяли, используя 100 г 2-метилиндолина вместо индолина, 282 мл исходного кислотного раствора и 32,48 г формалина. Отделяли коричневое масло, которое не кристаллизовалось.

ИК (Фурье): 3360, 2959, 2924, 2840, 1616, 1492, 1250, 1103, 805,1 см-1.

МС: 278 (молекулярный ион, 66%); 146 (отрыв метилиндолина, 100%); 130 (отрыв метила, 18%).

Получение термореактивных полимеров из эпоксидных смол

Каждое из соединений, полученных выше, вводили в реакцию с эпоксидной смолой MY721 (получена от компании Huntsman, Великобритания) в стехиометрическом соотношении, используя стандартный вулканизирующий цикл - 2 часа при 180°C. Значения Tg полученных полимеров, измеренных методом ДМА, были следующими (измерены от начальной точки на кривой модуля упругости) (см.табл.1):

Таблица 1
Соединение E' Tg, °C
I 211
III 173
IV 161
V 152

Приведенные цифры показывают, что для новых соединений могут быть достигнуты предпочтительные значения Tg.

1. Способная к отверждению смола, включающая соединение, имеющее структуру

где каждый атом углерода 2 вместе или с его же атомами углерода 1 или углерода 3 являются членами конденсированного циклоалифатического кольца, и когда атом углерода 1 является членом кольца, то также им является атом N, и где каждый из атомов углерода - членов алифатического или ароматического кольца - может быть или членом других конденсированных колец или быть связанным с группой, выбранной из Н или линейного или разветвленного алкила от С1 до С5.

2. Способная к отверждению смола по п.1, где любые атомы углерода, формирующие часть любых дальнейших конденсированных циклоалифатических колец, связаны также или с атомом Н или с линейным или разветвленным алкилом от С1 до С5.

3. Способная к отверждению смола по п.1 или 2, где каждый из атомов углерода - членов алифатического или ароматического кольца - связан или с атомом Н или с линейным или разветвленным алкилом от С1 до С4, предпочтительно с Н или с линейным или разветвленным алкилом от С1 до С3.

4. Способная к отверждению смола по п.1, где соединение имеет молекулярную массу не выше 600, предпочтительно не выше 500, более предпочтительно не выше 400 и наиболее предпочтительно не выше 350.

5. Способная к отверждению смола по п.1, где циклоалифатические кольца включают пять или шесть атомов углерода, предпочтительно шесть.

6. Способная к отверждению смола по п.1, которая представляет собой первичный ароматический амин со структурой:

где Z может означать атом углерода или простую связь, и R1 и R2 и точно также R3 и R4 могут формировать часть дальнейшего циклоалифатического кольца.

7. Способная к отверждению смола по п.1, которая представляет собой вторичный ароматический амин со структурой:

где Z означает атом углерода или простую связь, и R1 и R2 и точно также R3 и R4 могут формировать часть дальнейшего циклоалифатического кольца.

8. Способная к отверждению смола по п.1, где атом углерода 2 является членом двух конденсированных циклоалифатических колец, одного - с атомом углерода 1 и другого - с атомом углерода 3.

9. Способная к отверждению смола по п.1, имеющая температуру плавления от 80°С до 200°С.

10. Способная к отверждению смола по п.1, где смола является эпоксидной или уретановой.

11. Способная к отверждению смола по п.1, включающая структурный волокнистый каркас.

12. Способная к отверждению смола по п.11, которая является препрегом.

13. Отвержденная смола, полученная из способной к отверждению смолы по любому из предшествующих пунктов путем воздействия на смолу повышенной температурой и необязательно повышенным давлением.

14. Отвержденная смола по п.13, имеющая температуру стеклования выше 100°С, предпочтительно выше 120°С, более предпочтительно выше 140°С.

15. Отвержденная смола по п.13 или 14, которая формирует часть структурной единицы, предпочтительно для структур в аэрокосмической промышленности.



 

Похожие патенты:

Изобретение относится к способу получения циклического гуанидина, который может найти применение в композициях покрытия, в частности в электроосаждаемых композициях покрытия.

Изобретение относится к области эпоксидных композиций, в частности быстроотверждающихся эпоксидных композиций, используемых в качестве клеев, связующего для производства композиционных материалов.

Изобретение относится к новым простым полиэфирам общей формулы (1), которые могут быть использованы как отверждающее средство для эпоксидных соединений. В общей формуле (1) R1 представляет собой атом водорода или метильную группу, R2 представляет собой атом водорода или -С(=O)-С(R3)=СН2, R3 представляет собой атом водорода или метильную группу, при этом R1 может иметь одинаковые или отличные друг от друга значения, R2 может иметь одинаковые или отличные друг от друга значения, и в случае, когда R3 присутствует, R3 может иметь одинаковые или отличные друг от друга значения.

Изобретение относится к композиции смолы, используемой в качестве герметика, применению такой композиции, герметику для батареи с органическим электролитом, батарее с органическим электролитом и функциональному химическому продукту, содержащему вышеуказанную композицию смолы.

Настоящее изобретение относится к соединению VB формулы (I) или (II): , где R1 и R3 каждый независимо представляет собой алкил, содержащий от 1 до 12 атомов C, возможно замещенный одним или более галогеном, или арил, содержащий от 5 до 8 атомов C, и R2 означает водород или алкил, содержащий от 1 до 12 атомов C, возможно замещенный одним или более галогеном; или R1 и R2 вместе образуют двухвалентную углеводородную группу, представляющую собой карбоциклическое кольцо, имеющее от 5 до 8 атомов углерода, и R3 означает алкил, содержащий от 1 до 12 атомов C, возможно замещенный одним или более галогеном, или арил, содержащий от 5 до 8 атомов C, или R2 и R3 вместе образуют двухвалентную углеводородную группу, представляющую собой карбоциклическое кольцо, имеющее от 5 до 8 атомов углерода, и R1 представляет собой алкил, содержащий от 1 до 12 атомов C, возможно замещенный галогеном, или арил, содержащий от 5 до 8 атомов C, и R4 и R5 независимо друг от друга означают алкил, содержащий от 1 до 12 атомов C; A означает (a+b)-валентный радикал полиаминополиэпоксидного аддукта после удаления (a+b) первичных аминогрупп; a означает целое число от 0 до 3; и b означает целое число от 1 до 4; при условии, что сумма a и b равна целому числу от 1 до 4, а полиэпоксид, составляющий основу полиаминополиэпоксидного аддукта, представляет собой полиэпоксид Е, предпочтительно диэпоксид Е1, и имеет эпоксиэквивалентную массу (EEW) от 65 до 500 г/экв.

Настоящее изобретение относится к области получения полимерных композиций на основе эпоксидных смол и модифицированных аминных отвердителей, предназначенных для получения высопрочных композиционных материалов с повышенной деформационной теплостойкостью.

Изобретение относится к способам приготовления эпоксидных композиций и изделиям, изготовленных из них. .

Изобретение относится к способу нанесения покрытия на алюминиевые подложки с помощью анионного электроосаждения фосфатированной эпоксидной смолы. .
Изобретение относится к технологии получения отвердителей для эпоксидных смол. .
Изобретение относится к получению смол на основе простого политиоэфира и амина и к получению композиций на их основе. .

Изобретение относится к композиции, содержащей по меньшей мере одну эпоксидную смолу и смесь, содержащую семь стереоизомеров диаминометилциклогексана в совершенно особом количественном отношении друг к другу. Композиция, пригодная для получения отвержденных эпоксидных смол, содержит: a) по меньшей мере одну эпоксидную смолу и b) смесь, содержащую семь изомеров 2,4- и 2,6-диамино-1-метилциклогексана в соотношении 75-95% масс. 2,4- к 5-25% масс. 2,6-диамино-1-метилциклогексана, композиция отличается тем, что методом газовой хроматографии выполняют хроматографическое измерение в определенных условиях, причем площадям хроматографических пиков соответствуют следующие диапазоны: пику 1 диапазон от 4,0 до 49,0%, пику 2 диапазон от 0,3 до 9,0%, пику 3 диапазон от 9,0 до 19,0%, пику 4 диапазон от 11,0 до 30,0%, пику 5 диапазон от 3,0 до 10,0%, пику 6 диапазон от 8,0 до 40,0% и пику 7 диапазон от 1,0 до 10,0%, причем сумма выраженных в процентах площадей хроматографических пиков в пересчете на используемое количество 2,4- и 2,6-диамино-1-метилциклогексана составляет 100% и причем исключена смесь, содержащая семь изомеров 2,4- и 2,6-диамино-1-метилциклогексана в соотношении 75-95% масс. 2,4- к 5-25% масс. 2,6-диамино-1-метилциклогексана, выраженным в процентах площадям хроматографических пиков которых, определенным указанным выше газохроматографическим методом и упорядоченным по возрастанию времени удерживания, соответствуют следующие диапазоны: пику 1 диапазон от 15,6 до 16,6%, пику 2 диапазон от 0,1 до 0,4%, пику 3 диапазон от 32,2 до 33,2%, пику 4 диапазон от 23,5 до 24,5%, пику 5 диапазон от 4,1 до 5,1%, пику 6 диапазон от 18,1 до 19,1% и пику 7 диапазон от 2,6 до 3,6%, причем сумма выраженных в процентах площадей хроматографических пиков в пересчете на используемое количество 2,4- и 2,6-диаминометилциклогексана составляет 100%. Заявлены также способ получения композиции, ее применение, отвержденная эпоксидная смола, смесь для отверждения, ее применение, способ получения отвержденной эпоксидной смолы и способ получения изделия. Технический результат - описанный отвердитель обеспечивает влияние на жизнеспособность композиций, а также обеспечивает более высокую температуру стеклования. 8 н. и 12 з.п. ф-лы, 3 табл., 9 пр.

Изобретение относится к эпоксидным композициям и может быть использовано для изготовления изделий из полимерных композиционных материалов (ПКМ), в частности крупногабаритных и сложной формы, методом вакуумной инфузии и технологии RTM (пропитки под давлением). Эпоксидная композиция для инфузионной технологии содержит эпоксидный олигомер, выбранный из группы, включающей три- и тетрафункциональные эпоксидные олигомеры и эвтектическую смесь, по меньшей мере, двух диаминов, выбранных из группы, включающей диаминодифенилсульфон, 3,3′-дихлор-4,4′-диаминодифенилметан, 4,4′-метилен-бис-(3-хлор-2,6,-диэтиланилин) и 4,4′-метилен-бис-2,6,-диэтиланилин, 4,4′-метилен-бис-2-изопропил-6-метиланилин и 4,4′-метилен-бис-2,6,-диизопропиланилин. Изобретение описывает и способ получения данной композиции. Изобретение позволяет получить эпоксидную композицию для получения крупногабаритных изделий методом вакуумной инфузии с высоким комплексом свойств, реализуемых путем регулирования скорости пропитки, при варьировании соотношения эпоксидных олигомеров различной химической структуры и вязкости при различном соотношении отвердителей в смеси, а также режимов отверждения при различных температурах от 160 до 200°C. 2 н. и 2 з.п. ф-лы, 1 ил., 2 табл.

Настоящее изобретение относится к эпоксидным смолам. Описана неотвержденная смола, используемая для приготовления неотвержденного композитного материала, содержащая: компонент эпоксидной смолы, содержащий трифункциональную эпоксидную смолу и/или тетрафункциональную эпоксидную смолу; термопластический компонент, выбранный из группы, состоящей из полиэфирсульфона, полиэфиримида, полисульфона, полиамидимида и полиамида; а также отверждающий агент, в основном состоящий из 4,4'-бис(п-аминофенокси)бифенила и/или его изомеров. Также описан неотвержденный композитный материал для изготовления композитной детали, содержащий указанную выше неотвержденную смолу. Описан способ изготовления препрега, включающий стадии: обеспечение неотвержденной смолы, содержащей компонент эпоксидной смолы, содержащий трифункциональную эпоксидную смолу и/или тетрафункциональную эпоксидную смолу; термопластический компонент, выбранный из группы, состоящей из полиэфирсульфона, полиэфиримида, полисульфона, полиамидимида и полиамида; отверждающий агент, в основном состоящий из 4,4'-бис(п-аминофенокси)бифенила и/или его изомеров; и объединение упомянутой неотвержденной смолы с армирующим волокнистым наполнителем с получением упомянутого препрега. Описан способ изготовления композитной детали с использованием неотвержденной смолы, содержащей компонент эпоксидной смолы и термопластический компонент, отличающийся тем, что с целью увеличения стойкости упомянутой композитной детали к действию растворителей неотвержденную смолу отверждают с помощью 4,4'-бис(п-аминофенокси)бифенила и/или его изомеров. Технический результат - получение смолы с повышенной ударной вязкостью и повышенной стойкостью отвержденной смолы к действию растворителей. 5 н. и 13 з.п. ф-лы, 2 ил., 7 табл., 4 пр.

Изобретение относится к новому жидкому при комнатной температуре отвердителю смолы, предпочтительно эпоксидной смолы. Отвердитель представляет собой гибридный метилен-бис-анилин формулы (1) в которой каждый из R1-R4 независимо выбран из неразветвленного или разветвленного C1-C5-алкила. Изобретение также относится к смеси в жидкой форме, полученной взаимодействием анилина А и анилина В с формальдегидом в кислотной среде и содержащей гибридный метилен-бис-анилин А (А-А), гибридный метилен-бис-анилин В (В-В) и 30-63 мас.% гибридного метилен-бис-анилина формулы (1), к способу ее получения, а также к двухкомпонентной отверждаемой полимерной системе, содержащей жидкий вышеуказанный отвердитель или вышеуказанную смесь и отверждаемую смолу, предпочтительно эпоксидную смолу. Изобретение также относится к отвержденной смоле, предназначенной для получения структурированных материалов, и к способу ее получения. Способ заключается в смешении компонентов двухкомпонентной отверждаемой полимерной системы, с последующим отверждением при повышенной температуре. Смола предпочтительно имеет по меньшей мере одну или несколько характеристик, выбранных из следующих физических свойств: Tc в сухом состоянии выше 170°C, Tc во влажном состоянии выше 150°C и модуль упругости, по меньшей мере, 3,0 ГПа без присутствия каких-либо структурированных волокон. 6 н. и 11 з.п. ф-лы, 3 табл., 7 пр.

Изобретение относится к конструкционному клею, который подходит для высокопрочного склеивания металлов и аэрокосмических конструкционных материалов. Конструкционный клей, отверждаемый при или ниже 93°C (200°F), получают путем смешивания смолосодержащего компонента (А) с каталитическим компонентом (В). Смолосодержащий компонент (А) включает по меньшей мере две различные полифункциональные эпоксидные смолы с различной эпоксидной функциональностью, выбранные из дифункциональной, трифункциональной и тетрафункциональной эпоксидных смол, более мелкие каучуковые частицы ядро-оболочка, имеющие размеры частиц меньше чем 100 нм, и более крупные каучуковые частицы ядро-оболочка, имеющие размеры частиц больше чем 100 нм, с весовым отношением более мелких каучуковых частиц ядро-оболочка к более крупным каучуковым частицам ядро-оболочка в диапазоне от 3:1 до 5:1, по меньшей мере один из эластомерного полимера с функциональной группой, способной реагировать с полифункциональными эпоксидными смолами, и полимера полиэфирсульфона, имеющего среднюю молекулярную массу в диапазоне 8000-14000, частицы неорганического наполнителя в эффективном количестве для регулирования реологии смолосодержащего компонента. Каталитический компонент (B) включает по меньшей мере один аминный отвердитель и частицы неорганического наполнителя, присутствующие в эффективном количестве, чтобы регулировать реологию каталитического компонента, при этом весовое отношение компонента (A) к компоненту (B) находится в диапазоне от 3:2 до 10:2. При отверждении в температурном диапазоне 65-93°C (150-200°F) конструкционный клей имеет температуру стеклования (Tс) выше чем 95°C (203°F), прочность при сдвиге клеевого соединения внахлест в диапазоне 33-37 МПа при 20-25°C и 24-27 МПа при 82°C, 15-18 МПа при 121°C согласно ASTM D3165, прочность при отслаивании в диапазоне 250-350 Н·м/м при 20-25°C согласно ASTM D3167. Заявлен вариант однокомпонентного клея и две слоистые структуры. Технический результат - пастообразный клей, описанный здесь, имеет пленочные свойства, что особенно важно при быстрой сборке, когда осуществляется склеивание аэрокосмических конструкций. Клей характеризуется высокими свойствами. 4 н. и 20 з.п. ф-лы, 14 табл., 5 пр.

Изобретение относится к вариантам композиции конструкционного клея и к подложке с покрытием. По первому варианту композиция содержит (а) первый компонент, содержащий: эпокси-аддукт, представляющий собой продукт реакции реагентов, включающих первое эпоксидное соединение, полиол и ангидрид и/или двухосновную кислоту, а также второе эпоксидное соединение, (b) при необходимости, частицы каучука, имеющие структуру ядро/оболочка, (с) второй компонент, который химически взаимодействует с первым компонентом, и (d) частицы графенового углерода. По второму варианту композиция содержит (а) пластификатор с блокированной эпоксидной группой, который представляет собой продукт реакции реагентов, включающих эпоксидное соединение, полиол или капролактон, ангидрид и/или двухосновную кислоту, (b) термически активируемый латентный отверждающий агент, (с) при необходимости, частицы графенового углерода. По третьему варианту композиция содержит (а) пластификатор с блокированной эпоксидной группой, который представляет собой продукт реакции реагентов, включающих эпоксидное соединение и полиэфир первичного или вторичного амина, и (b) термически активируемый латентный отверждающий агент. Подложка с покрытием содержит вышеуказанную композицию. Изобретение позволяет повысить прочность соединения, а также увеличить срок годности клея при хранении. 6 н. и 17 з.п. ф-лы, 1 ил., 9 табл., 8 пр.

Изобретение раскрывает способ пропитки реакторов с воздушным сердечником или деталей реакторов с воздушным сердечником, включающий следующие стадии: i) изготовление реактора с воздушным сердечником или детали реактора с воздушным сердечником, ii) нанесение системы пропитки на реактор с воздушным сердечником или деталь реактора с воздушным сердечником, причем вышеупомянутая система пропитки включает: a) один или несколько компонентов, представляющих собой полиглицидиловый простой эфир полифенола; b) один или несколько пластификаторов, выбранных из полипропиленгликоля или полиэтиленгликоля; c) дициандиамид и d) один или несколько ускорителей, выбранных из группы, которую составляют имидазол, производные имидазола, производные мочевины и их смеси, iii) отверждение пропитки реактора с воздушным сердечником или пропитки детали реактора с воздушным сердечником. Также раскрывается подвергнутый пропитке реактор с воздушным сердечником или делать реактора. Описывается применение системы пропитки для реактора с воздушным сердечником или деталей реактора. Технический результат заключается в получении системы пропитки для реакторов с воздушным сердечником с повышенной стойкостью к растрескиванию и устойчивостью к гидролизу. 3 н. и 9 з.п. ф-лы, 4 ил., 3 табл., 2 пр.

Изобретение относится к аминным отвердителям эпоксидных смол. Предложен отвердитель для эпоксидных смол, содержащий амин с по меньшей мере одной аминогруппой формулы (I) и амин с по меньшей мере одной аминогруппой формулы (II), где Х не является 2-гидроксифенилом и соотношение между количеством аминогрупп формул (I) и (II) составляет от 0,05 до 1,0. Технический результат – предложенные отвердители обладают слабым запахом и низкой вязкостью, быстро затвердевают с эпоксидными смолами, не давая помутнения при получении пленок с высокой прочностью и стойкостью. Предложенные составы эпоксидных смол особенно подходят для покрытий с низким уровнем эмиссии. 5 н. и 11 з.п. ф-лы, 5 табл., 6 пр.

Изобретение относится к отвердителю, подходящему для отверждения эпоксидных смол, к составу эпоксидной смолы и его применению, к отвержденному составу, а также к изделию. Отвердитель содержит амин нижеуказанной формулы и по меньшей мере один полиамин, содержащий по меньшей мере три аминных водорода, способных вступать в реакцию с эпоксидными группами. Состав эпоксидной смолы содержит по меньшей мере одну эпоксидную смолу и вышеуказанный отвердитель. Отвержденный состав получают в результате отверждения эпоксидной композиции с получением покрытия. Путем нанесения эпоксидной композиции на поверхность субстрата получают изделие. Изобретение позволяет получить отвердитель со слабым запахом, низкой вязкостью, который не проявляет тенденции к засыханию или к выпадению осадка на воздухе и способен затвердевать без помутнения в условиях влажности и низких температур, а также получить ровные неклейкие пленки высокой твердости. 5 н. и 12 з.п. ф-лы, 4 табл., 22 пр.

Изобретение относится к композициям покрытий. Композиция содержит полимер или сополимер полиметилметакрилата, имеющий среднюю молекулярную массу не менее 50000 г/моль, мономер, содержащий по крайней мере одно из веществ: алкилен-диакрилат, алкилен-диметакрилат, циклоалкилен-диакрилат или циклоалкилен-диметилакрилат, в котором по меньшей мере одно из указанных веществ составляет не менее 80 мас.% мономера, и стабилизатор ультрафиолетового излучения, причем стабилизатор содержит как минимум один УФ абсорбер или светостабилизатор на основе пространственно-затрудненных аминов. Изделие содержит полимерную подложку и первое покрытие поверхности полимерной подложки, где первое покрытие получается полимеризацией указанной композиции покрытия. Технический результат заключается в обеспечении износостойкого покрытия поверхности. 2 н. и 23 з.п. ф-лы, 3 ил., 5 табл., 9 пр.
Наверх