Новые отвердители



Новые отвердители
Новые отвердители
Новые отвердители
Новые отвердители
Новые отвердители
Новые отвердители
Новые отвердители
Новые отвердители
Новые отвердители
Новые отвердители
Новые отвердители
Новые отвердители
Новые отвердители
Новые отвердители
Новые отвердители

 


Владельцы патента RU 2576615:

ХЕКСЕЛ КОМПОЗИТС ЛИМИТЕД (GB)

Изобретение относится к новому жидкому при комнатной температуре отвердителю смолы, предпочтительно эпоксидной смолы. Отвердитель представляет собой гибридный метилен-бис-анилин формулы (1)

в которой каждый из R1-R4 независимо выбран из неразветвленного или разветвленного C1-C5-алкила. Изобретение также относится к смеси в жидкой форме, полученной взаимодействием анилина А и анилина В с формальдегидом в кислотной среде и содержащей гибридный метилен-бис-анилин А (А-А), гибридный метилен-бис-анилин В (В-В) и 30-63 мас.% гибридного метилен-бис-анилина формулы (1), к способу ее получения, а также к двухкомпонентной отверждаемой полимерной системе, содержащей жидкий вышеуказанный отвердитель или вышеуказанную смесь и отверждаемую смолу, предпочтительно эпоксидную смолу. Изобретение также относится к отвержденной смоле, предназначенной для получения структурированных материалов, и к способу ее получения. Способ заключается в смешении компонентов двухкомпонентной отверждаемой полимерной системы, с последующим отверждением при повышенной температуре. Смола предпочтительно имеет по меньшей мере одну или несколько характеристик, выбранных из следующих физических свойств: Tc в сухом состоянии выше 170°C, Tc во влажном состоянии выше 150°C и модуль упругости, по меньшей мере, 3,0 ГПа без

присутствия каких-либо структурированных волокон. 6 н. и 11 з.п. ф-лы, 3 табл., 7 пр.

 

Область техники, к которой относится изобретение

Настоящее изобретение относится к новым материалам, подходящим для использования в качестве отвердителей, в частности для эпоксидных смол, и которые являются жидкостями при комнатной температуре.

Предпосылки создания изобретения

Отверждающие агенты, или отвердители, используются для взаимодействия с мономером смолы, таким как эпоксид, изоцианат, кислотный ангидрид и т.д., с получением отвержденной полимерной смолы.

Получаемые отвержденные смолы используются в различных отраслях и в широком ряду применений. Химические и физические свойства получаемых отвержденных смол широко варьируются, главным образом, в зависимости от выбора мономера и отвердителя.

Имеется потребность в отверждающихся полимерных системах, которые могут обеспечить улучшенные химические и физические свойства, в частности, для использования в требующихся применениях, таких как для использования в аэрокосмических композитных материалах.

Обычно жидкую смесь мономера смолы и отвердителя впрыскивают или вливают в волокнистую армирующую структуру, например, в так называемых способах литьевого прессования или вливания. Это включает получение жидкой смеси, содержащей как отверждающуюся смолу, так и отвердителя, при повышенной температуре, чтобы снизить вязкость, пригодную для вливания. Отвердитель поэтому должен иметь низкую реакционную способность для предотвращения преждевременной реакции, имеющей место до вливания. После вливания получаемый композитный материал отверждают выдержкой при повышенной температуре с получением отвержденного композитного материала.

Традиционно такие жидкие смеси получают как однокомпонентные системы, комбинирующие мономер смолы и отвердитель, однородно смешанные вместе. Это является удобным, т.к. позволяет конечному пользователю вводить только одну композицию в волокнистое армирование. Такие однокомпонентные системы являются обычно полутвердыми и становятся жидкостью только при повышенной температуре, например, от 60°C до 100°C, когда требуется для использования. Так как отвердитель и смола находятся вместе в одном и том же материале, отвердитель должен выбираться так, чтобы иметь низкую реакционную способность. Низкая реакционная способность должна также сохраняться при увеличенной температуре, когда композиция становится текучей жидкостью.

Особенно пригодным типом отвердителя являются ароматические амины, т.к. они обеспечивают хорошие структурированные характеристики вместе с низкой реакционной способностью. Известные ароматические амины, которые имеют хорошие механические характеристики в отвержденной смоле, являются все твердыми при комнатной температуре.

Однако свойственная реакционная способность между мономером смолы и отвердителем никогда не может быть удалена полностью, даже когда они находятся в твердой форме, и это ограничивает объем материала, который может транспортироваться, и когда присутствуют опасные температурные условия. Кроме того, если определена категория транспортирования UN4.1, тогда для таких однокомпонентных композиций отверждающейся смолы морское транспортирование является трудным, а воздушное транспортирование запрещено.

Поэтому весьма желательными были бы дальнейшие улучшения в области композиций отверждающейся смолы, которые могут дать отвержденные смолы, подходящие для использования в структурированных применениях.

Краткое описание изобретения

Авторы настоящего изобретения установили, что значительные улучшения могут быть получены введением инновационной стадии отхода от однокомпонентной системы. Если, например, может быть разработана двухкомпонентная система, включающая физическое отделение мономера от отвердителя, это может исключить любые проблемы, связанные с нежелательной реакцией в процессе транспортирования и хранения. Такие двухкомпонентные системы, однако, включают дополнительную стадию для конечного пользователя смешения двух компонентов вместе перед использованием.

Однако, как рассмотрено, ароматические аминные отвердители, известные как способные обеспечить превосходные структурированные механические свойства в отвержденной смоле вместе с низкой реакционной способностью, являются твердыми кристаллическими веществами при комнатной температуре. Введение указанных отвердителей в двухкомпонентные системы поэтому также требует стадию нагревания и плавления до, в процессе и после смешения и поэтому становится неудобным для конечного пользователя.

Жидкие ароматические амины известны, но имеют реакционную способность, которая является неприемлемо высокой, так что преждевременная реакция имеет место прежде, чем имеет место пропитка.

Можно смешивать твердые ароматические амины с другими жидкими ароматическими аминами, но известные жидкие ароматические амины дают плохие механические характеристики в отвержденной смоле и имеют нежелательную высокую реакционную способность.

Таким образом, принятие двухкомпонентной жидкой системы отверждения, которая имеет низкую реакционную способность и еще способна к получению отвержденной полимерной системы, имеющей механические свойства, подходящие для использования в структурированном применении, в частности, в аэрокосмическом применении, оказывается невозможным с известными системами.

Тем не менее авторами были проведены инновационные исследования по решению указанных трудностей. Таким образом, в первом аспекте настоящее изобретение относится к отвердителям, имеющим формулу

,

в которой R1-R4 каждый выбран из линейного или разветвленного С15алкила.

Такие материалы обычно называются метилен-бис-анилинами, где нет отсутствия симметрии между двумя анилиновыми кольцами. Тем не менее для удобства такие материалы называются здесь гибридными метилен-бис-анилинами. Было установлено, что такие гибридные метилен-бис-анилины являются жидкостями при комнатной температуре и дают еще отвержденные полимерные системы, в частности, с эпоксидами, имеющие превосходные механические свойства, подходящие для использования в структурированных применениях, в частности в аэрокосмических применениях.

Таким образом, они могут успешно использоваться как часть двухкомпонентной жидкой отверждающейся полимерной композиции.

Ссылки здесь на термины «жидкий» или «жидкий при комнатной температуре» означают, что рассматриваемые материалы имеют температуру плавления ниже 25°C, предпочтительно, ниже 20°C и не кристаллизуются во времени.

Указанные материалы могут быть удобно получены, во втором аспекте настоящего изобретения, взаимодействием двух анилинов со следующими формулами:

в кислотной среде с формальдегидом или соединениями, которые образуют формальдегид.

Например, формальдегид может быть в форме раствора формалина, параформальдегида или триоксана или других известных форм свободного или связанного формальдегида.

Массовое соотношение анилина А и анилина В может варьироваться в широком интервале. Однако было установлено, что обычно больше гибридного метилен-бис-анилина образуется, когда количества аналина А и анилина В являются сравнимыми. Таким образом, массовое соотношение анилина А и анилина В составляет от 4:1 до 1:4, более предпочтительно, от 2:1 до 1:2.

Такая реакция неизбежно дает в результате образование симметричных А-А и В-В бис-анилинов, а также требуемого гибридного А-В метилен-бис-анилина.

Таким образом, в третьем аспекте настоящее изобретение относится к смеси метилен-бис-анилинов А-А, В-В и А-В, полученной взаимодействием вместе анилинов А и В, которые отличаются друг от друга, как определено выше, в кислотной среде с формальдегидом или соединениями, которые образуют формальдегид.

Было также установлено, что такие смеси являются жидкостью при комнатной температуре, несмотря на присутствие симметричных бис-анилинов, и что они обеспечивают отвержденные смолы с превосходными механическими свойствами.

Однако, предпочтительно, смесь содержит, по меньшей мере, 30% масс., предпочтительно, по меньшей мере, 40% масс., предпочтительно, по меньшей мере, 50% масс., гибридного метилен-бис-анилина А-В, т.е. формулы I.

Радикалы R1-R4 представляют собой каждый либо неразветвленную, либо разветвленную С15-алкил-группу. Предпочтительно, они представляют собой каждый либо неразветвленную, либо разветвленную С14-алкил-группу, более предпочтительно, С13-алкил-группу. Было установлено, что такое регулирование R-групп необходимо для того, чтобы гибридный бис-анилин оставался жидкостью при обеспечении хороших структурированных характеристик.

Особенно предпочтительной является молекула, в которой R1 представляет собой СН3, R2 представляет собой СН(СН3)2, R3 представляет собой С2Н5, и R4 представляет собой С2Н5.

Как рассмотрено выше, гибридные метилен-бис-анилины согласно настоящему изобретению являются подходящими для использования в двухкомпонентной жидкой системе отверждения смолы. Таким образом, в четвертом аспекте настоящее изобретение относится к двухкомпонентной жидкой отверждающейся полимерной системе, содержащей первый жидкий компонент, содержащий гибридный метилен-бис-анилин, как описано здесь, и второй жидкий компонент, содержащий отверждающуюся смолу.

В такой двухкомпонентной системе обычно первый жидкий компонент содержит, по меньшей мере, 50% масс. гибридного метилен-бис-анилина (т.е. формулы I) или смеси, содержащей гибридный метилен-бис-анилин согласно настоящему изобретению. Обычно второй компонент содержит, по меньшей мере, 50% масс. жидкой отверждающейся смолы.

В пятом аспекте настоящее изобретение относится к способу смешения вместе двух компонентов четвертого аспекта с образованием смеси, затем отверждения смеси выдержкой при повышенной температуре.

В шестом аспекте настоящее изобретение относится к отвержденной смоле, полученной способом согласно пятому аспекту изобретения.

Предпочтительно, отвержденная смола без присутствия каких-либо структурированных волокон имеет, по меньшей мере, одно, предпочтительно, по меньшей мере, два, более предпочтительно, все из следующих физических свойств: Тс в сухом состоянии выше 170°C, Тс во влажном состоянии выше 150°C и модуль упругости выше 3,0 ГПа.

Обычно смесь вливают или впрыскивают в структурированную волокнистую структуру, известную как волокнистая заготовка, перед отверждением. Например, структурированной волокнистой структурой может быть структурированный слой волокон.

В предпочтительном варианте отвержденная смола принимает форму структурированного компонента, например аэрокосмического структурированного компонента.

Волокна в структурированных волокнистых слоях заготовки могут быть однонаправленными, тканевой формы или многоосными. Размещение волокон в смежных слоях может быть ортогональным друг к другу в так называемом размещении 0/90, обозначающем углы между смежными волокнистыми слоями. Другие размещения, такие как 0/+45/-45/90, являются, конечно, возможными среди многих других размещений.

Волокна могут содержать расщепленные (т.е. разрушенные при растяжении), избирательно дискретные и сплошные волокна.

Структурированные волокна могут быть выполнены из широкого ряда материалов, таких как стекло, углерод, графит, металлизированные полимеры, арамид и их смеси. Углеродные волокна являются предпочтительными.

Отверждающаяся смола может быть выбрана, например, из эпоксида, изоцианата и кислотного ангидрида. Предпочтительно, отверждающейся смолой является эпоксидная смола или изоцианатная смола.

Подходящие эпоксидные смолы могут содержать монофункциональные, дифункциональные, трифункциональные и тетрафункциональные эпоксидные смолы.

Подходящие дифункциональные эпоксидные смолы включают в себя, путем примера, дифункциональные эпоксидные смолы на основе: диглицидилового простого эфира бисфенола F, бисфенола А (необязательно бромированного), фенол- и крезол-эпокси-новолаков, глицидиловых простых эфиров фенольно-альдегидных аддуктов, глицидиловых простых эфиров алифатических диолов, диглицидилового простого эфира диэтиленгликоля, ароматических эпоксидных смол, алифатических полиглицидиловых простых эфиров, эпоксидированных олефинов, бромированных смол, ароматических глицидиламинов, гетероциклических глицидилимидинов и -амидов, фторированных эпоксидных смол или любой их комбинации.

Дифункциональные эпоксидные смолы могут быть, предпочтительно, выбраны из диглицидилового простого эфира бисфенола F, диглицидилового простого эфира бисфенола А, диглицидилдигидроксинафталина или любой их комбинации.

Подходящие трифункциональные эпоксидные смолы выбираются из трифункциональных эпоксидных смол на основе фенол- и крезол-эпоксиноволаков, глицидиловых простых эфиров фенольно-альдегидных аддуктов, ароматических эпоксидных смол, алифатических триглицидиловых простых эфиров, диалифатических триглицидиловых простых эфиров, алифатических полиглицидиловых простых эфиров, эпоксидированных олефинов, бромированных смол, триглицидиламинофенилов, ароматических глицидиламинов, гетероциклических глицидилимидинов и -амидов, фторированных эпоксидных смол или любой их комбинации.

Подходящие тетрафункциональные эпоксидные смолы включают в себя N,N,N',N'-тетраглицидил-мета-ксилолдиамин (коммерчески доступный от фирмы Mitsubishi Gas Chemical Company под маркой Tetrad-X и как Erisys GA-240 от фирмы CVC Chemicals) и N,N,N',N'-тетраглицидилметилендиамин (например, MY721) от фирмы Huntsman Advanced Materials.

Настоящее изобретение теперь будет проиллюстрировано посредством примеров.

ПРИМЕРЫ

Примеры 1-5 показывают получение отвердителей. Примеры 6 и 7 показывают отвержденные системы эпоксидной смолы.

Сравнительный пример 1

Синтез метилен-диэтиланилин-диизопропиланилина ((М-ДЭАДИПА) (M-DEADIPA))

Смешивают 35 мл пропан-2-ола, 65 мл воды и 15,4 мл концентрированной серной кислоты и добавляют к 21,9 г 2,6-диэтиланилина ((ДЗА)(DEA)) и 28,1 г 2,6-диизопропиланилина ((ДИПА)(DIPA)) в реакционной колбе объемом 500 мл, обеспеченной механической мешалкой. Полученную кристаллическую суспензию нагревают при 60°C с перемешиванием и в течение 30 мин добавляют 13,3 мл 35% масс./масс. водного раствора формальдегида. Суспензия постепенно становится менее вязкой и визуально более прозрачной. Через 5 ч смесь снова становится непрозрачной и охлаждается до комнатной температуры перед нейтрализацией 35% аммиачным раствором. Продукт экстрагируют хлороформом (в котором смесь полностью растворяется) и промывают дистиллированной водой. Прозрачную органическую фазу сушат над сульфатом натрия, фильтруют, и растворитель удаляют роторным пленочным испарением. Получают 49 г прозрачной янтарной вязкой жидкости. Кристаллизация может быть видна в данном продукте через 14 суток (336 ч) при комнатной температуре.

Таким образом, хотя гибридный метилен-бис-анилин был получен, он не является стабильной жидкостью.

Сравнительный пример 2

Синтез метилен-метилизопропиланилина-диэтиланилина ((М-МИПАДЭА) (M-MIPADEA))

Используют условия примера 1, за исключением того, что смесь аминов содержит 2-метил-6-изопропиланилин ((МИПА)(MIPA)) и 2,6-диэтиланилин ((ДЭА)(DEA)). Проводят ряд реакций, в которых соотношение МИПА:ДЭА варьируется при использовании 14,71 мл раствора формалина в качестве источника формальдегида. Используемые количества показаны ниже.

Примечание: Кислотной смесью является 127 мл смеси 194 мл пропан-2-ола, 359 мл воды и 85,2 мл концентрированной серной кислоты.

Таблица 2
Пример Устойчивость к кристаллизации
2,1 Кристаллизуется сразу после роторного пленочного испарения
2,2 Кристаллизуется с 1 ч выделением
2,3 Кристаллизуется через 3 суток (72 ч)
2,4 Кристаллизуется через 2 недели (336 ч)

Продукт из примера 2,4 имеет частичную жидкую фазу через 2 недели (336 ч), но большая часть продукта кристаллизуется, и смесь не может быть вылита из ее сосуда без предварительного нагревания для расплавления кристаллов.

Сравнительный пример 3

Получение смеси М-МИПА и М-ДЭА

25 г М-МИПА и 20,3 г М-ДЭА расплавляют нагреванием при 100°C. Затем два жидких отвердителя смешивают вместе и охлаждают до комнатной температуры с образованием вязкого коричневого полутвердого вещества. Кристаллизация имеет место в 1 день (24 ч).

Пример 4

Синтез М-МИПАХДЭА

В 5-литровый фланцевый реакционный сосуд помещают смесь 137 мл серной кислоты, 580 мл воды и 313 мл пропан-2-ола. В сосуд добавляют 250 г 3-хлоро-2,6-диэтиланилина и 203 г 2-метил-6-изопропиланилина. Колбу обеспечивают мешалкой, капельной воронкой и холодильником, и температуру повышают до 60°C.

В течение 1 ч добавляют 120 мл раствора формалина (35% масс./масс.), и затем нагревание продолжается в течение 5 ч. Содержимое сосуда охлаждают и нейтрализуют аммиачным раствором.

Продукт экстрагируют в этилацетате, промывают водой, сушат над сульфатом натрия, фильтруют и подвергают роторному испарению с получением 467 г янтарной жидкости.

Анализ методом высокоэффективной жидкостной хроматографии ((ВЭЖХ)(HPLC)) показывает, что требуемый гибридный метилен-бис-анилин М-МИПАХДЭА присутствует в количестве 63% масс. от общей массы вместе с 15% масс. М-МИПА и 21% масс. М-ХДЭА.

Жидкость не показывает признаков кристаллизации в течение 3 мес. (2160 ч).

Сравнительный пример 5

Получение смеси М-МИПА и М-ХДЭА

25 г М-МИПА и 20,3 г М-ХДЭА расплавляют нагреванием при 100°C. Затем два жидких отвердителя смешивают вместе и охлаждают до комнатной температуры с образованием вязкого коричневого полутвердого вещества. Кристаллизация имеет место в 1 день (24 ч).

Сравнение данного примера с примером 4 показывает, что гибридный бис-анилин по существу получается как стабильная жидкость при комнатной температуре.

Пример 6

Получение рецептуры смолы на основе М-МИПАХДЭА

100 г эпоксидной смолы MY721 (фирма Huntsman Advanced Materials, Швейцария) смешивают с 76,3 г отвердителя М-МИПАХДЭА, полученного в примере 5, при температуре 80°C с образованием гомогенной смеси.

Сравнительный пример 7

Получение рецептуры смолы на основе смеси М-МИПА и М-ХДЭА

100 г эпоксидной смолы MY721 (фирма Huntsman Advanced Materials, Швейцария) смешивают с 34,3 г отвердителя М-МИПА и 41,9 г отвердителя М-ХДЭА при температуре 80°C с образованием гомогенной смеси. М-МИПА и М-ХДЭА предварительно расплавляют при 100°C до полностью жидкого состояния.

Сравнение свойств примеров 6 и 7

Свойства материалов примеров 6 и 7 сравнивают со свойствами коммерческой смолы литьевого прессования RTM6 (доступной от фирмы Hexcel) в таблице ниже. Реакционная способность и Тс являются подобными характеристикам RTM6, делая их подходящими для формования аэрокосмического жидкого композита.

Однако, поскольку отвердитель примера 7 кристаллизуется, он не подходит для двухкомпонентной полимерной системы. Отвердитель примера 6 не кристаллизуется, имеет низкую реакционную способность и поэтому подходит для двухкомпонентной полимерной системы.

Таблица 3
Испытание Единицы RTM6 Пример 6 Пример 7
Начало Тс (по методу ДСК) °C -16,5 -8,8 -12,0
Средняя Тс (по методу ДСК) °C -15,1 -7,8 -9,0
Пиковое начало (по методу ДСК) °C 214 217 202
Пик (по методу ДСК) °C 242 251 244
Разность по высоте DH (по методу ДСК) Джг-1 411 392 432
Тс в сухом состоянии °C 200 208 207
Тс во влажном состоянии °C 167 186 180
Изотермическая вязкость@ при 120°C мПас 30 44 53
Изотермическая вязкость@ при 120°C через 60 мин мПас 49 70 70
Модуль упругости ГПа 3,3 3,7 3,7

Можно видеть, что жидкий гибридный бис-анилин, используемый в примере 6, хотя является стабильной жидкостью при комнатной температуре, также дает отвержденные смолы с превосходными механическими свойствами.

1. Отвердитель смолы, представляющий собой гибридный метилен-бис-анилин, который имеет следующую формулу
,
в которой каждый из R1-R4 независимо выбран из неразветвленного или разветвленного C1-C5-алкила, который представляет собой жидкость при комнатной температуре.

2. Отвердитель смолы по п. 1, в котором каждый из R1-R4 представляет собой неразветвленную или разветвленную C1-C4-алкил-группу, более предпочтительно, C1-C3-алкилгруппу.

3. Способ получения смеси, включающей отвердитель по п. 1, включающий взаимодействие двух анилинов A и B при массовом соотношении (анилин A):(анилин B) от 4:1 до 1:4, имеющих следующие структурные формулы
и
в кислотной среде с формальдегидом или соединениями, которые образуют формальдегид, с получением смеси, включающей гибридный метилен-бис-анилин анилина A и анилина B, метилен-бис анилин анилина A (A-A) и метилен-бис анилин анилина B (B-B), где гибридный метилен-бис-анилин представлен формулой (1)
,
в которой каждый из R1-R4 независимо выбран из неразветвленного или разветвленного C1-C5-алкила,
где смесь представляет собой жидкость при комнатной температуре.

4. Способ по п. 3, в котором массовое соотношение (анилин A):(анилин B) составляет от 2:1 до 1:2.

5. Способ по п. 3, в котором каждый из R1-R4 представляет собой неразветвленную или разветвленную C1-C4-алкилгруппу, более предпочтительно, C1-C3-алкилгруппу.

6. Смесь в жидкой форме для использования в двухкомпонентной отверждающей полимерной системе, полученная способом по пп. 3-5, включающая
метилен-бис анилин анилина A (A-A), где анилин соответствует общей формуле А

метилен-бис анилин анилина B (B-B), где анилин соответствует общей формуле B
и
30-63 мас.% отвердителя, представляющего гибридный метилен-бис-анилин формулы (1) по п. 1, где каждый из R1-R4 независимо выбран из неразветвленного или разветвленного C1-C5-алкила.

7. Смесь по п. 6, которая содержит, по меньшей мере, 30 мас.%, предпочтительно, по меньшей мере, 40 мас.%, более предпочтительно, по меньшей мере, 50 мас.%, отвердителя формулы (1) по п. 1.

8. Смесь по п. 7, в котором каждый из R1-R4 представляет собой неразветвленную или разветвленную C1-C4-алкилгруппу, более предпочтительно, C1-C3-алкилгруппу.

9. Двухкомпонентная отверждаемая полимерная система, которая содержит жидкий компонент, содержащий отвердитель формулы (1) по п. 1 или смесь по любому из 6-8 в количестве по крайней мере 50 мас.%, и второй жидкий компонент, содержащий отверждаемую смолу.

10. Двухкомпонентная отверждаемая полимерная система по п. 9, в которой второй жидкий компонент содержит, по меньшей, 50 мас.% жидкой отверждаемой смолы.

11. Двухкомпонентная отверждаемая полимерная система по п. 9, в которой жидкой отверждаемой смолой является эпоксидная смола.

12. Двухкомпонентная отверждаемая полимерная система по п. 10, в которой жидкой отверждаемой смолой является эпоксидная смола.

13. Способ получения отвержденной смолы предназначенной для получения структурированных материалов, включающий смешение вместе первого и второго компонентов по п. 9 с образованием смеси с последующим отверждением смеси выдержкой при повышенной температуре.

14. Способ по п. 13, в котором смесь вливают в структурированную волокнистую структуру перед отверждением.

15. Способ по п. 14, в котором структурированной волокнистой структурой является структурированный слой волокон.

16. Отвержденная смола предназначенная для получения структурированных материалов, получаемая способом по любому из пп. 13-15.

17. Отвержденная смола по п. 16, которая имеет, по меньшей мере, одно, предпочтительно, по меньшей мере, два, более предпочтительно, все из следующих физических свойств: Tc в сухом состоянии выше 170°C, Tc во влажном состоянии выше 150°C и модуль упругости, по меньшей мере, 3,0 ГПа без присутствия каких-либо структурированных волокон.



 

Похожие патенты:

Изобретение относится к области полимерных композиций на основе модифицированных олигомеров для защиты конструкций из алюминиевых сплавов, стали и углепластика при температурах эксплуатации от -60°С до 150°С и может быть использовано в авиационной промышленности.

Изобретение относится к не содержащей разбавителя отверждаемой композиции на основе эпоксидной смолы для производства композиционных материалов различного назначения.

Изобретение относится к лакокрасочным покрытиям, в частности к полимерным радиопрозрачным композициям, предназначенным для устранения поверхностных дефектов радиопрозрачных обтекателей из ПКМ, и может быть использовано в изделиях ГА и других конструкциях из ПКМ.

Изобретение относится к бинарной жидкой огнестойкой вспениваемой эпоксидной лакокрасочной композиции, а в частности, к огнестойкой не содержащей растворителей эпоксидной лакокрасочной композиции, характеризующейся пониженной токсичностью дыма при пожаре.

Изобретение относится к наносимой катионным электроосаждением красящей композиции, включающей в себя содержащую аминогруппы эпоксидную смолу, блокированный полиизоцианат, полученный реакцией полиизоцианатного соединения и содержащего активный водород компонента, содержащего пропиленгликоль, используемый для катионного электроосаждения гелеобразный полимер в виде микрочастиц, и пасту диспергированного пигмента, в которой содержащая аминогруппы эпоксидная смола представляет собой модифицированную полиолом содержащую аминогруппы эпоксидную смолу, полученную реакцией поликапролактонного полиольного соединения и содержащего аминогруппу соединения с модифицированной эпоксидной смолой, модифицированная эпоксидная смола получена присоединением капролактона к содержащей гидроксильные группы эпоксидной смоле, используемый для катионного электроосаждения гелеобразный полимер в виде микрочастиц получен сшивкой акрилового сополимера, содержащего гидролизуемую алкоксисилановую группу и катионную группу, и доля в смеси используемого для катионного электроосаждения гелеобразного полимера в виде микрочастиц в наносимой катионным электроосаждением красящей композиции, в терминах доли содержания твердых веществ, составляет от 0,1 до 20 частей по массе относительно суммарных 100 частей по массе содержащей аминогруппы эпоксидной смолы и блокированного полиизоцианатного соединения.

Изобретение относится к полиэфир-амидо-аминному соединению формулы III, к способу его получения и применению, к отверждаемой композиции покрытия, отвержденной композиции, а также к способу нанесения покрытия на поверхность подложки.
Изобретение относится к композициям, которые могут быть использованы для покрытия контейнеров различных видов, таких как контейнеры для напитков и продуктов питания.
Изобретение относится к элементу жесткости с покрытием, обеспечивающим получение усиленного волокнами продукта, в частности инфузионным способом. На элемент жесткости, выбранный из волокон, формованных волокон, нетканых материалов, трикотажа, матов с не упорядоченным расположением волокон и/или тканей, наносят композицию из твердой смолы и углеродных нанотрубок.

Изобретение относится к композиции для окрашивания катионным электроосаждением. Композиция содержит катионную эпоксидную смолу (А), модифицированную амином, блокированный изоцианатный отверждающий агент (В), гидрофобный агент (С), который является несшитой акриловой смолой, модификатор вязкости (D), являющийся частицами сшитой смолы со средним диаметром частицы от 50 до 200 нм, и нейтрализующую кислоту в водной среде.
Изобретение относится к эпоксидным композициям, предназначенным для нанесения покрытий, обеспечивающих выполнение высоких экологических требований, в частности для применения в бассейнах для разведения рыб, а также для использования в емкостях для питьевой воды, зубных пломбах и других целей.

Настоящее изобретение относится к эпоксидным смолам. Описана неотвержденная смола, используемая для приготовления неотвержденного композитного материала, содержащая: компонент эпоксидной смолы, содержащий трифункциональную эпоксидную смолу и/или тетрафункциональную эпоксидную смолу; термопластический компонент, выбранный из группы, состоящей из полиэфирсульфона, полиэфиримида, полисульфона, полиамидимида и полиамида; а также отверждающий агент, в основном состоящий из 4,4'-бис(п-аминофенокси)бифенила и/или его изомеров.

Изобретение относится к эпоксидным композициям и может быть использовано для изготовления изделий из полимерных композиционных материалов (ПКМ), в частности крупногабаритных и сложной формы, методом вакуумной инфузии и технологии RTM (пропитки под давлением).

Изобретение относится к композиции, содержащей по меньшей мере одну эпоксидную смолу и смесь, содержащую семь стереоизомеров диаминометилциклогексана в совершенно особом количественном отношении друг к другу.

Изобретение относится к способной к отверждению эпоксидной или уретановой смоле, а также к отвержденной смоле. Способная к отверждению смола содержит соединение, имеющее структуру (I), где каждый атом углерода 2 вместе или с атомами углерода 1 или углерода 3 являются членами конденсированного циклоалифатического кольца.

Изобретение относится к способу получения циклического гуанидина, который может найти применение в композициях покрытия, в частности в электроосаждаемых композициях покрытия.

Изобретение относится к области эпоксидных композиций, в частности быстроотверждающихся эпоксидных композиций, используемых в качестве клеев, связующего для производства композиционных материалов.

Изобретение относится к новым простым полиэфирам общей формулы (1), которые могут быть использованы как отверждающее средство для эпоксидных соединений. В общей формуле (1) R1 представляет собой атом водорода или метильную группу, R2 представляет собой атом водорода или -С(=O)-С(R3)=СН2, R3 представляет собой атом водорода или метильную группу, при этом R1 может иметь одинаковые или отличные друг от друга значения, R2 может иметь одинаковые или отличные друг от друга значения, и в случае, когда R3 присутствует, R3 может иметь одинаковые или отличные друг от друга значения.

Изобретение относится к композиции смолы, используемой в качестве герметика, применению такой композиции, герметику для батареи с органическим электролитом, батарее с органическим электролитом и функциональному химическому продукту, содержащему вышеуказанную композицию смолы.

Настоящее изобретение относится к соединению VB формулы (I) или (II): , где R1 и R3 каждый независимо представляет собой алкил, содержащий от 1 до 12 атомов C, возможно замещенный одним или более галогеном, или арил, содержащий от 5 до 8 атомов C, и R2 означает водород или алкил, содержащий от 1 до 12 атомов C, возможно замещенный одним или более галогеном; или R1 и R2 вместе образуют двухвалентную углеводородную группу, представляющую собой карбоциклическое кольцо, имеющее от 5 до 8 атомов углерода, и R3 означает алкил, содержащий от 1 до 12 атомов C, возможно замещенный одним или более галогеном, или арил, содержащий от 5 до 8 атомов C, или R2 и R3 вместе образуют двухвалентную углеводородную группу, представляющую собой карбоциклическое кольцо, имеющее от 5 до 8 атомов углерода, и R1 представляет собой алкил, содержащий от 1 до 12 атомов C, возможно замещенный галогеном, или арил, содержащий от 5 до 8 атомов C, и R4 и R5 независимо друг от друга означают алкил, содержащий от 1 до 12 атомов C; A означает (a+b)-валентный радикал полиаминополиэпоксидного аддукта после удаления (a+b) первичных аминогрупп; a означает целое число от 0 до 3; и b означает целое число от 1 до 4; при условии, что сумма a и b равна целому числу от 1 до 4, а полиэпоксид, составляющий основу полиаминополиэпоксидного аддукта, представляет собой полиэпоксид Е, предпочтительно диэпоксид Е1, и имеет эпоксиэквивалентную массу (EEW) от 65 до 500 г/экв.

Настоящее изобретение относится к области получения полимерных композиций на основе эпоксидных смол и модифицированных аминных отвердителей, предназначенных для получения высопрочных композиционных материалов с повышенной деформационной теплостойкостью.

Изобретение относится к способу получения о-хлоранилина (варианты). В каждом из вариантов способа о-хлоранилин получают путем каталитического восстановления о-нитрохлорбензола молекулярным водородом в присутствии модифицированных палладийсодержащих наночастиц в жидкой дисперсионной среде.
Наверх