Широкополосный обтекатель



Широкополосный обтекатель
Широкополосный обтекатель
Широкополосный обтекатель
Широкополосный обтекатель
Широкополосный обтекатель

 


Владельцы патента RU 2559730:

Открытое акционерное общество "Обнинское научно-производственное предприятие "Технология" (RU)

,Изобретение относится к антенно-фидерным устройствам преимущественно к широкополосным антенным обтекателям. Техническим результатом является повышение коэффициента прохождения и снижение искажений, вносимых обтекателем в поле падающей волны в широкой полосе частот. Для этого широкополосный обтекатель, содержащий однослойную стенку из материала в форме колпака, снабженного узлом крепления к летательному аппарату, характеризуется тем, что стенка выполнена из диамагнитного материала µ≤1, с диэлектрической проницаемостью ε = 1 μ , с диэлектрическими tg(δε)<0,0100 и магнитными tg(δµ)<0,0100 потерями, где диэлектрическая проницаемость определяется как ε=ε′·(1+i·tg(δε)), а магнитная проницаемость определяется как µ=µ′·(1+i·tg(δµ)). 5 ил.

 

Изобретение относится к антенно-фидерным устройствам преимущественно к широкополосным антенным обтекателям.

Известен антенный обтекатель, содержащий стенку из диэлектрического материала в форме колпака, снабженного узлом крепления к летательному аппарату, с диэлектрической стенкой, соответствующей полуволновой электрической толщине на рабочей частоте: Каплун В.А. Обтекатели антенн СВЧ. М, Советское радио, 1974 г., 238 с. Структура стенки обтекателя состоит из одного или нескольких слоев материалов с известными частотно-независимыми значениями диэлектрической проницаемости в рабочей полосе частот. Геометрическая толщина стенки подбирается эквивалентной полуволновой электрической толщине на средней по диапазону, резонансной частоте.

Известно, что реализация на одной частоте полуволновой электрической толщины стенки за счет резонансного согласования стенки со свободным пространством позволяет получить минимальный уровень отражения падающей волны и максимальную величину прошедшего поля. Это соответственно является условием для получения минимального искажения фазы прошедшего через обтекатель поля падающей волны.

Обтекатель с резонансной стенкой, изготовленный по данному техническому решению, вносит минимально возможные искажения в поле падающей волны на резонансной частоте, но пропорционально увеличению рабочей полосы значительно возрастает величина искажений, вносимых обтекателем в поле падающей волны.

Известен широкополосный обтекатель для совмещенного диапазона с полуволновой стенкой для высокочастотного диапазона (94 ГГц) и, соответственно, «тонкой» по электрической толщине для диапазона 9,345 ГГц: патент USA №6028565. H01Q 1/42, 19 ноября 1996 г.

При использовании материалов с частотно-независимыми диэлектрическими свойствами реализация полуволновой электрической толщины стенки обтекателя невозможна для широкой частотной полосы. Поэтому в широкополосном антенном обтекателе, работающем в совмещенных диапазонах, применяется структура стенки с «тонкой» электрической толщиной, менее 0,1 длины волны, за счет снижения геометрической толщины для низкочастотного диапазона, которая является полуволновой по электрической толщине для высокочастотной области. Даже незначительное увеличение электрической толщины стенки вносит обтекателем в падающее поле значительные искажения.

Так как уменьшение толщины стенки ограничивается теплофизическими требованиями к обтекателю, искажения, вносимые в падающее поле из-за конечной толщины стенки, оказываются значительными, что приводит к высоким ошибкам пеленга. Кроме того, из-за отличия электрической толщины стенки от полуволновой, недостатком применения такой структуры является низкий коэффициент прохождения обтекателя.

Наиболее близким техническим решением является антенный обтекатель по патенту RU №2054763. H01Q 1/42, 12.04.1993, содержащий однослойную стенку из диэлектрического материала в форме колпака, снабженного узлом крепления к летательному аппарату, для уменьшения искажений вносимых обтекателем в падающее поле в широкой полосе частот, в качестве диэлектрического материала использован диэлектрический материал с тангенсом диэлектрических потерь, лежащим в пределах 0,02<tg(δ)<0,01, а толщина однослойной стенки выбрана из условия , где d - толщина однослойной стенки, λ - длина волны в свободном пространстве, ε - диэлектрическая проницаемость диэлектрического материала однослойной стенки.

Недостатком прототипа является то, что при выбранной геометрической толщине с диэлектрической проницаемостью материала ε=ε′·(1+i·tg(δε)) и магнитной проницаемостью материала µ=µ′·(1+i·tg(δµ)), стенка настроена по электрической толщине только на одну из частот рабочего диапазона, которая является полуволновой. При увеличении широкополосности, пропорционально увеличению рабочей частотной полосы, растет по диапазону неравномерность электрической толщины стенки относительно «настроенной» на среднюю частоту, которая приводит к увеличению искажений, вносимых обтекателем в поле падающей волны.

Кроме того, для увеличения широкополосности обтекателя предлагается увеличить тангенс угла диэлектрических потерь. Но применение в конструкции стенки обтекателя материала с увеличенным тангенсом угла диэлектрических потерь маскирует частотную неоднородность искажения поля падающей волны. Собственные характеристики антенной системы под обтекателем, со стенкой из материала с более высоким тангенсом угла диэлектрических потерь будут иметь более расплывчатые и хуже настроенные, менее чувствительные пеленгационные характеристики, в частности, более низкий уровень глубины нуля разностного канала пеленгатора.

Также недостатком прототипа является то, что при росте тангенса угла диэлектрических потерь возрастают прямые тепловые потери сигнала падающей волны в стенке обтекателя. Это приводит к уменьшению коэффициента прохождения и, как следствие, снижению дальности обнаружения цели.

Задачей изобретения является снижение искажений, вносимых обтекателем в поле падающей волны в широком диапазоне частот.

Достигается задача тем, что предложен широкополосный обтекатель, содержащий однослойную стенку из материала в форме колпака, снабженного узлом крепления к летательному аппарату, отличающийся тем, что стенка выполнена из диамагнитного материала µ≤1, с диэлектрической проницаемостью ε = 1 μ , с диэлектрическими tg(δε)<0,0100 и магнитными tg(δµ)<0,0100 потерями, где диэлектрическая проницаемость определяется как ε=ε′·(1+i·tg(δε)), а магнитная проницаемость определяется как µ=µ′·(1+i·tg(δµ)).

Выполнение обтекателя с однослойной стенкой из материала, для которого реализованы условия по предлагаемому техническому решению со стенкой из диамагнитного материала µ≤1, с диэлектрической проницаемостью ε = 1 μ , с диэлектрическими tg(δε)<0,0100 и магнитными tg(δµ)<0,0100 потерями, позволяет повысить коэффициент прохождения в полосе частот и за счет улучшения согласования стенки со свободным пространством снизить искажения, вносимые стенкой в фазу поля падающей волны в широкой полосе частот.

Авторы установили, что в заявляемой конструкции широкополосного обтекателя для предложенного соотношения между диэлектрической и магнитной проницаемостями материала стенки обтекателя достигается наибольший коэффициент прохождения и минимизация искажений, вносимых обтекателем в поле падающей волны в широкой полосе частот.

Для доказательства преимущества предлагаемого технического решения проведены расчетные эксперименты, результаты которых представлены ниже.

Сформулируем эту задачу как определение условий, при которых для определенной величины угла падения волны с параллельной и перпендикулярной поляризациями происходит полное прохождение падающей волны.

На фиг. 1 для угла падения плоской волны α1 коэффициенты отражения для параллельной и перпендикулярной поляризаций падающей волны равны нулю. Свойства внешнего пространства соответствуют ε1=1 µ1=1 и ε3=1 µ3=1. Свойства плоского слоя (пластины) ε22′·(1+i·tg(δε)); µ22′·(1+i·tg(δµ)) с углом падения α1.

Поиск свойств материала стенки для широкополосного обтекателя и антенны произвольной поляризации можно сформулировать исходя из равенства величины угла падения, при котором отражение равно нулю для обеих поляризаций. Из [Марков Г.Т. Электродинамика и распространение радиоволн. М., Советское радио., 1979, стр. 224-241] следует равенство формул 6.57 и 6.58:

из (1) следует для нахождения µ при известном значении ε:

или для нахождения ε при известном значении µ:

Это верно для угла, равного

угла, совпадающего с углом Брюстера, для левой части (1) для совпадающей поляризации с плоскостью падения,

Или угла, равного

для правой части (1) для перпендикулярной поляризации вектора электрического поля относительно плоскости паления.

Решениями кубических уравнений ((2) или (3)) являются три действительных корня: два симметричных относительно нуля, равных по модулю, и один корень по модулю меньше единицы.

Переписав уравнения (2) и (3) с выделением общей части в виде

определим условие для нахождения первого корня как

а условием нахождения двух следующих корней из (6) будет .Из (7) выбирая материал стенки при условии и , показатель преломления , а величина угла полного преломления в соответствии с (4) и (5) равна α1112=90°.

В отличие от целого класса диамагнетиков, для которых µ≤1, возможно выполнение (7) и при других условиях, например, ε<1,0 и , но это условие мы не рассматириваем, так как оно выполняется только для плазмы или футуристических метаматериалов.

При условии ε=µ волновое сопротивление среды становится равным ω=1 (Канецеленбаум Б.З. Высокочастотная электродинамика. М., «Наука», 1966, стр. 26), а уравнение (1) имеет второе тривиальное решение, и величина угла полного преломления в соответствии с (4) и (5) при этом будет равна α1112=0°, что соответствует нормальному падению. Такое решение уравнения (1) является тривиальным и с физической точки зрения, еще и потому, что выполняется только для нормального падения плоской электромагнитной волны на плоскопараллельную стенку и может являться критерием поиска широкополосной конструкции обтекателя только плоской формы.

При условии ε=µ величина угла полного преломления не равна нулю и не соответствует нормальному падению, но материалы с отрицательной магнитной и диэлектрической проницаемостью не обнаружены, поэтому далее не рассматриваются.

Для конструкции обтекателя более сложной криволинейной формы, чем плоская пластина, возможен поиск контура с использованием условия (10) при ε = 1 μ для величины угла падения, близкого к углу полного прохождения, равному 90°. Реализация криволинейной поверхности при этом скользящем угле падения волны невозможна, но так как средний угол падения на обтекатель достаточно близок к этой величине и обычно более 65°, то возможно конструирование криволинейной формы и для этого угла при выполнении условия (9), тем более, что при этом значительно повышается коэффициент прохождения и снижаются пеленгационные ошибки именно при наиболее критичных малых углах поворота обтекателя относительно антенны.

Расчеты проводились с использованием матричного метода, описанного в [Борн М., Вольф Э. Основы оптики. М.: «Наука», 1973, 720 с.], предполагая, что материал стенки имеет диэлектрическую ε=|ε′|·(1+i·tg(δε)) и магнитную µ=|µ′|·(1+i·tg(δµ)) проницаемости.

На фиг. 2 представлены расчетные частотные зависимости коэффициента прохождения обтекателя со стенкой толщиной h=10 мм для двух вариантов диамагнитного материала с параметрами ε=1,5, µ=1 и ε=1,5, µ=0,66 в плоскости Е, в полосе частот до 20 ГГц.

Из рассмотрения фиг. 2 видно, что для конструкции обтекателя, выполненного по предлагаемому решению, минимальный коэффициент прохождения во всей полосе частот составляет не менее 90%, а для обычной стенки падает до 42%.

На фиг. 3 представлены расчетные частотные зависимости коэффициента прохождения обтекателя со стенкой толщиной h=10 мм для двух вариантов диамагнитного материала с параметрами ε=1,5, µ=1 и ε=1,5, µ=0,66 в плоскости Н, в полосе частот до 20 ГГц.

Из рассмотрения фиг. 3 видно, что для конструкции обтекателя, выполненного по предлагаемому решению, минимальный коэффициент прохождения во всей полосе частот составляет не менее 90%, а для обычной стенки падает до 42%.

Из сравнения фиг. 2 и 3 видно, что для конструкции обтекателя, выполненного по предлагаемому решению, минимальный коэффициент прохождения во всей полосе частот и при любой поляризации падающей волны составляет не менее 90%, а для обычной стенки падает до 42%.

На фиг. 4 и 5 представлены расчетные частотные зависимости коэффициента прохождения обтекателя со стенкой толщиной h=10 мм для двух вариантов диамагнитного материала с параметрами ε=1,5, µ=1 и ε=1,5, µ=0,66, в полосе частот до 20 ГГц, в плоскости Е и Н соответственно.

Из рассмотрения фиг. 4 и 5 видно, что для конструкции обтекателя, выполненного по предлагаемому решению, минимальный коэффициент прохождения во всей полосе частот составляет не менее 99%, а для обычной стенки падает до 80%.

Из сравнения фиг. 2 и 3 с фиг. 4 и 5 видно, что снижение величины диэлектрической проницаемости материала стенки приводит к повышению минимального коэффициента прохождения в полосе частот, но наилучшие значения частотной зависимости коэффициента прохождения наблюдаются для предлагаемого технического решения.

Широкополосный обтекатель, выполненный по предлагаемому техническому решению, по сравнению с известными конструкциями обтекателей, в широкой полосе частот вносит минимальные искажения в поле падающей волны и обладает лучшими радиотехническими характеристиками.

Источники информации

1. Каплун В.А. Обтекатели антенн СВЧ. М, Советское радио, 1974 г., 238 с.

2. Патент USA №6028565. W-band and X-band radome wall. H01Q 1/42, 19 ноября 1996 г.

3. Патент RU №2054763. Антенный обтекатель. H01Q 1/42, 12.04.1993.

4. Марков Г.Т. Электродинамика и распространение радиоволн. М., Советское радио, 1979, стр. 224-241.

5. Канецеленбаум Б.З. Высокочастотная электродинамика. М., «Наука», 1966, стр. 26.

6. Борн М., Вольф Э. Основы оптики. М., «Наука», 1973, 720 с.

Широкополосный обтекатель, содержащий однослойную стенку из материала в форме колпака, снабженного узлом крепления к летательному аппарату, отличающийся тем, что стенка выполнена из диамагнитного материала µ≤1, с диэлектрической проницаемостью , с диэлектрическими tg(δε)<0,0100 и магнитными tg(δµ)<0,0100 потерями, где диэлектрическая проницаемость определяется как ε=ε′·(1+i·tg(δε)), а магнитная проницаемость определяется как µ=µ′·(1+i·tg(δµ)).



 

Похожие патенты:

Изобретение относится к способу изготовления термостойкого элемента корпуса сверхзвукового летательного аппарата (ЛА) и касается переднего радиопрозрачного обтекателя корпуса.
Изобретение относится к области авиационной и ракетной техники и может быть использовано при креплении антенных обтекателей скоростных ракет различных классов. Технический результат изобретения заключается в повышении надежности узла крепления обтекателя с корпусом летательного аппарата за счет более точного базирования (центрирования) антенного обтекателя на шпангоуте.

Изобретение относится к области создания конструкций носовых антенных обтекателей ракет с оболочками, изготавливаемыми из жаростойких неорганических (керамических) материалов.

Изобретение относится к области авиационно-ракетной техники, преимущественно к конструкциям носовых радиопрозрачных обтекателей, являющихся укрытием от аэродинамического воздействия антенных устройств головок самонаведения (АУ ГСН).

Изобретение относится к области авиационно-ракетной техники, преимущественно к конструкциям носовых радиопрозрачных обтекателей, являющихся укрытием от аэродинамического воздействия антенных устройств головок самонаведения (АУ ГСН).

Изобретение относится к области радиотехники, а именно к антенным системам. Технический результат - упрощение конструкции антенной системы и ослабление климатико-механических требований к составным частям антенной системы.

Изобретение относится к антенно-фидерным устройствам преимущественно к широкополосным системам «антенна-обтекатель». Технический результат - повышение коэффициента прохождения электромагнитной волны и снижение пеленгационных ошибок в системе «антенна-обтекатель» в широкой полосе частот.

Изобретение относится к области судостроения, а именно к обтекателям гидроакустических станций. Технический результат - создание обтекателя антенн гидроакустических станций из композиционных материалов, обладающего повышенной прочностью и эксплуатационной надежностью с улучшенными акустическими свойствами.

Изобретение относится к области радиолокации и может быть использовано в радиотехнических устройствах подводных судов. Технический результат - уменьшение громоздкости без увеличения задержки излучения и приема электромагнитных сигналов.

Изобретение относится к авиационной и ракетно-космической технике, а именно к головным отсекам (ГО) летательных аппаратов (ЛА). ГО ЛА содержит переднюю панель в виде клина с плоскими иллюминаторами, осесимметричную с переменным сечением боковую обечайку со стыковочным шпангоутом, складную телескопическую аэродинамическую иглу.

Изобретение относится к области авиационной и ракетной техники, преимущественно к разработке и производству радиопрозрачных обтекателей летательных аппаратов. Технический результат - повышение прочности узла соединения керамической оболочки с металлическим шпангоутом при теплопрочностных нагрузках и улучшение технологии изготовления. Узел крепления керамической оболочки антенного обтекателя с металлическим шпангоутом содержит керамическую оболочку и металлический шпангоут, соединенный с керамической оболочкой по сопрягаемым поверхностям слоем эластичного термостойкого адгезива. В шпангоуте выполнены равномерно расположенные по окружности отверстия, плотность распределения которых в осевом направлении для области соединения оболочки со шпангоутом пропорциональна величине распорных усилий, передаваемых от шпангоута к оболочке, при этом радиусы описанных окружностей отверстий выбираются из условия: R≥5H, где R - радиус описанной окружности, Н - толщина адгезив. 3 ил.

Способ по изобретению заключается в создании прочных тонких, механических поддерживающих структур для электромагнитного калориметра. Такими структурами являются ячеистые структуры из пропитанной эпоксидным связующим ткани из углеродного волокна. Техническим результатом, достигаемым при использовании способа по изобретению, является возможность изготовления механической структуры из углеродного волокна с высокой прочностью и точностью по толщине тонких стенок 20 мкм и плоскостности. Технический результат обеспечивается тем, что в отсутствии внешнего давления и автоклавов, для формирования нужных поверхностей и толщины стенок используются внешние формообразующие пластины и бруски сложной формы из высоколегированной стали, собранные в единую конструкцию высокопрочными винтами. Требуемые толщины и точность ячеистой структуры достигаются созданием при изготовлении формообразующих пластин и брусков гарантированных зазоров, задающих толщины стенки готового изделия с точностью 20 мкм, и качеством обработанной поверхности. Для осуществления способа по изобретению используется устройство, которое включает в себя детали формирования высокоточной внутренней и внешней геометрии тонкостенных сотовых структур, а также комплект дополнительных деталей, необходимых для сборки и перемещения устройства, и датчики системы контроля температуры оснастки в процессе изготовления ячеистых структур. Точность размеров изготавливаемых сотовых структур обеспечивается, прежде всего, за счет прецизионного позиционирования этих деталей относительно друг друга во время сборки пресс-формы, а также высокоточной обработки деталей оснастки. Для успешного создания требуемого образца в дальнейшем необходимо выполнить ряд стандартных операций, не относящихся к использованию данного устройства, а именно производится обрезка технологических и конструктивных элементов по краям альвеолы. Результатом создания устройства является возможность изготовления опорных ячеистых структур с толщиной стенки 200 мкм, точностью изготовления каждой ячейки 20 мкм и плоскостностью от 10 мкм. 1 з.п. ф-лы, 4 ил.
Изобретение относится к области машиностроения, в частности, может быть использовано при изготовлении антенных обтекателей. Способ соединения керамического обтекателя с металлическим корпусом летательного аппарата предполагает выполнение в металлическом шпангоуте продольных сквозных пазов. Пазы выполняются равномерно по окружности, а шпангоут соединяют с керамическим обтекателем по сопрягаемым коническим поверхностям слоем эластичного клея и посредством уплотнительного кольца. При этом перед соединением шпангоут со стороны, противоположной сопрягаемой поверхности, обклеивают полиэтиленовой лентой с липким слоем шириной, превышающей длину продольных пазов на 5-10 мм. Технический результат - повышение прочности и герметичности.

Изобретение относится к области машиностроения и может быть использовано в конструкциях защитных устройств для различных антенн. Предложенный антенный обтекатель состоит из набора слоев высокопрочного стеклопластика, выполненных в виде отдельных секторов. Слои стеклопластика изготовлены на основе стеклоткани из взаимопереплетающихся нитей основы и утка, расположенных между собой под углом 90°. Сектора слоев, выполненные в виде сферических треугольников, соединены между собой в вершинах с образованием единого целого в виде многолепесткового слоя и спрофилированы по ширине так, что на сферической поверхности кромки соседних секторов располагаются вплотную друг к другу. Каждый последующий слой развернут относительно предыдущего так, что угол между центрально расположенными нитями основы предыдущего слоя и уточными нитями последующего слоя находится в пределах от 10° до 12°. Полюсная и торцевая зоны усилены дополнительными слоями, чередующимися с многолепестковыми слоями, по внутренней поверхности сегмента. Данное изобретение позволяет расширить область применения антенных обтекателей с упрощением технологического процесса изготовления и повышением прочности и надежности. 11 з.п. ф-лы, 3 ил.

Изобретение относится к лакокрасочным покрытиям, в частности к полимерным радиопрозрачным композициям, предназначенным для устранения поверхностных дефектов радиопрозрачных обтекателей из ПКМ, и может быть использовано в изделиях ГА и других конструкциях из ПКМ. Полимерная радиопрозрачная композиция включает эпоксидный олигомер, модификатор-полиэфир, пигменты и органический растворитель. Композиция дополнительно содержит наполнитель - стеклянные микросферы и отвердитель - смесь полиэтиленполиамина и 50% раствора гексаметилендиамина или 2-метилпентаметилендиамина в изопропиловом спирте (при следующем соотношении компонентов, мас.%: эпоксидный олигомер 19-29; модификатор 20,7-31; пигменты 11,5-18,3; наполнитель 3-10; отвердитель 1-5; органический растворитель 21-35. В качестве пигментов композиция содержит смесь диоксида титана с оксидом хрома, или с цинковыми белилами, или с оксидом хрома. В качестве полиэфира полимерная композиция содержит полиэфир, представляющий собой продукт поликонденсации этиленгликоля и глицерина с себациновой кислотой. В качестве органического растворителя могут быть использованы этилгликольацетат, бутилацетат, ксилол, метилэтилкетон или их смесь в соотношении 4:4:1:1. Техническим результатом настоящего изобретения является понижение водопоглощения и повышение грибостойкости при сохранении адгезионных свойств полимерной композиции.3 з.п. ф-лы, 2 табл,1 пр.

Изобретение относится к антенно-фидерным устройствам, преимущественно к антенным обтекателям. Техническим результатом изобретения является снижение искажений вносимых обтекателем в поле падающей волны. Антенный обтекатель, снабженный узлом крепления к летательному аппарату, содержит диэлектрический корпус в форме колпака, на внешней и внутренней поверхностях которого закреплены реактивные двухмерные решетки из проводников, выполненные в виде доводочных кольцевых поясов. Подбором посредством доводочных операций на радиотехническом стенде места расположения доводочных кольцевых поясов по образующей, их количества и типа реактивных решеток обеспечивается снижение искажений вносимых обтекателем в поле падающей волны. 20 ил.

Использование: область судостроения, а именно при разработке конструкций гидроакустических станций, и касается наружных форм и размеров обтекателя антенны. Сущность: разработана конструкция гибкого безреберного обтекателя антенны гидроакустической станции, конструкция которой содержит узел крепления, имеющий зону плавного перехода от участка локального усиления к остальной части оболочки обтекателя, выполненного в виде двух сужающихся пучков ткани. Технический результат: повышение прочности, сопротивляемость местным динамическим нагрузкам и улучшение акустических характеристик. 3 ил.

Изобретение относится к области антенной техники и может быть использовано при изготовлении радиоэлектронных устройств, в частности приемо-передающих модулей активных фазированных антенных решеток. Технический результат - обеспечение возможности герметизации радиоэлектронного устройства, исключающей деформацию стенок его корпуса без существенных ограничений по их толщине. Достигается тем, что для герметизации металлического корпуса радиоэлектронного устройства герметично соединяют крышку с остальной частью корпуса. Откачивают воздух из внутреннего объема корпуса, заполняют его газообразной защитной средой через образованный для этого канал и осуществляют последующую герметизацию канала. Откачивание воздуха из внутреннего объема корпуса, заполнение его газообразной защитной средой и герметизацию канала осуществляют в камере, изолированной от внешней среды. 5 з.п. ф-лы, 6 ил.
Изобретение относится к области авиационной и ракетной техники и касается изготовления антенных обтекателей скоростных ракет различных классов. Узел крепления керамического обтекателя с металлическим корпусом летательного аппарата содержит металлический шпангоут, в котором равномерно по окружности по центру склейки выполнены продольные сквозные пазы, соединенный с керамическим обтекателем по сопрягаемым коническим поверхностям слоем эластичного клея, и уплотнительное кольцо. При этом пазы выполнены шириной, составляющей от 0,01 до 0,03 диаметра шпангоута, длиной от 2/3 до 5/6 длины склейки, а суммарная площадь пазов составляет от 6 до 10% площади склейки. Достигается повышение несущей способности обтекателя.

Изобретение относится к области радиотехники и касается разработки конструкций с пониженным коэффициентом отражения радиоволн для защиты плавающих средств от воздействия падающего излучения и внешних факторов окружающей среды. Устройство с пониженным коэффициентом отражения радиоволн в широком диапазоне частот согласно изобретению состоит из входного наружного слоя, обращенного в сторону падающего излучения, и выходного наружного слоя, причем входной наружный слой выполнен из материала с относительной диэлектрической проницаемостью от 3 до 5 и толщиной от 4 мм до 40 мм, а выходной наружный слой выполнен из электропроводящего материала толщиной не более 1 мм с поверхностным электрическим сопротивлением от 250 Ом до 400 Ом. Предлагаемое устройство с пониженным коэффициентом отражения радиоволн позволит снизить радиолокационную заметность объекта по сравнению с металлической поверхностью до 10 раз, а по сравнению с однослойным стеклопластиком толщиной от 4 мм до 40 мм - до 3 раз. 2 ил.
Наверх