Интегрированное устройство опознавания

Изобретение относится к технике радиолокации, радиосвязи, радионавигации и радиоуправления и может быть использовано в радиоэлектронных системах для выработки признака государственной принадлежности объектов (целей). Достигаемый технический результат - повышение достоверности опознавания объектов. Указанный результат достигается за счет того, что заявленное устройство содержит два блока информационных каналов, блок сравнения, два блока вычитания, два блока ключей, блок деления, блок схем ИЛИ, блок умножения матриц и быстродействующую цифровую вычислительную систему (БЦВС), при этом связи второго блока информационных каналов с БЦВС позволяют учесть особенности объединяемых во второй блок информационных каналов, алфавиты частных решений которых совпадают с алфавитом общих решений и принимающих частные решения по критерию Неймана-Пирсона, что приводит к повышению достоверности общего решения. 1 ил., 2 табл.

 

Предлагаемое изобретение относится к технике радиолокации, радиосвязи, радионавигации и радиоуправления и может быть использовано в радиоэлектронных системах для выработки признака государственной принадлежности объектов (целей).

Известно интегрированное устройство (система) опознавания [Радиолокационные системы многофункциональных самолетов. Т1. РЛС - информационная основа боевых действий многофункциональных самолетов. Системы и алгоритмы первичной обработки радиолокационных сигналов / Под ред. А.И. Канащенкова и В.И Меркулова. - М.: Радиотехника, 2006, с. 644-650], содержащее набор (блок) информационных каналов: канал координатно-связного опознавания; канал радиолокационного опознавания; канал на основе информации, получаемой по радиолокационным изображениям; каналы радиолокационного и оптико-электронного распознавания; канал радиотехнической разведки; канал тактического опознавания. Выход каждого из информационных каналов подключен к соответствующему входу процессора обработки данных, выход которого является выходом устройства.

Устройство работает следующим образом. На основе поступающей информации о цели, для которой необходимо определить ее принадлежность к «своим» или «чужим» объектам, каждый информационный канал выделяет и оценивает соответствующие признаки. Эти признаки поступают в процессор обработки данных, который в соответствии с реализованным в нем алгоритмом выносит окончательное решение о принадлежности цели к одному из двух классов - «свой» или «чужой».

К недостаткам данного устройства можно отнести то, что не используются возможности информационных каналов по выработке частных решений в различных алфавитах.

Известно также интегрированное устройство (система) опознавания [Жиронкин С.Б., Аврамов А.В., Быстраков С.Г. Построение интегрированных систем опознавания на основе координатно-связного метода. - Зарубежная радиоэлектроника. Успехи современной радиоэлектроники, 1997, №5, с. 71-74], которое содержит пять информационных каналов (подсистем): прямого опознавания, координатно-связного опознавания, радиолокационного распознавания, оптико-электронного распознавания и радиотехнического распознавания, а также быстродействующую цифровую вычислительную систему (БЦВС).

Устройство работает следующим образом. На основе поступающей информации о цели, для которой необходимо определить ее принадлежность к «своим» или «чужим» объектам, каждый информационный канал в соответствии с заложенными в нем принципами формирует частное решение о принадлежности цели к определенному типу (классу) в своем собственном алфавите. Частные решения информационных каналов поступают в БЦВС, которая в соответствии с реализованным в ней алгоритмом выносит окончательное решение о принадлежности цели к одному из двух классов - «свой» или «чужой».

Недостатками этого устройства является ограниченное число информационных каналов, а также отсутствие учета достоверности вырабатываемых ими частных решений, что снижает достоверность принятого на их основе общего решения.

По техническому решению наиболее близким к предлагаемому изобретению является интегрированное устройство опознавания воздушных целей [Жиронкин С.Б., Макарычев А.В. Интегрированное устройство опознавания воздушных целей. Патент №2452975 от 10 июня 2012 г. Опубликован 10.06.2012 г. Бюллетень №16], которое и выбрано в качестве прототипа. Устройство содержит быстродействующую цифровую вычислительную систему (БЦВС), а также следующие N-канальные блоки: блок информационных каналов, блок сравнения, два блока вычитания, два блока ключей, блок деления, блок схем ИЛИ и блок умножения матриц.

Устройство работает следующим образом. На основе поступающей информации о цели, для которой необходимо определить ее принадлежность к «своим» или «чужим» объектам, каждый информационный канал по критерию идеального наблюдателя формирует частное решение о принадлежности цели к определенному типу (классу) в своем собственном алфавите. Информационные каналы выдают не только частные решения q t * , но и соответствующие им апостериорные вероятности P ( q t * ) (формируют так называемые мягкие решения). Принятие общего (окончательного) решения о принадлежности наблюдаемого объекта классу m осуществляется в БЦВС на основе мягких решений { q t * , P ( q t * ) } и соответствующих им вероятностей P mq t * , рассчитываемых с помощью соответствующих блоков по формулам

где P mq t * - вероятность принятия t-м информационным каналом частного решения q t * по объекту, принадлежащему классу m в алфавите общих решений;

m - номер класса объектов в алфавите общих решений ( m = 1, M ¯ ) ;

q t * - принятое t-м информационным каналом частное решение об отнесении объекта к типу (классу) с номером q t * ;

qt - номер типа (класса) объекта в алфавите частных решений t - го информационного канала ( q t = 1, Q ¯ t ) ;

Qt - количество типов (классов) объектов в алфавите частных решений t - го информационного канала (объем алфавита);

P(qt/m) - априорная вероятность отнесения объекта t-м информационным каналом к типу (классу) с номером qt при условии, что объект принадлежит классу с номером m в алфавите общих решений;

P ( q t * / q t ) - вероятность принятия t-м информационным каналом частного решения об отнесении объекта к типу (классу) с номером q t * при условии, что объект принадлежит типу (классу) с номером qt;

М - количество классов объектов в алфавите общих решений (M=2 при опознавании «Свой», «Чужой»);

N - количество информационных каналов.

Повышение достоверности опознавания на основе мягких решений происходит за счет того, что вероятности P mq t * находятся с учетом конкретных условий принятия частных решений q t * в каждом информационном канале.

Оптимальное по критерию Неймана-Пирсона общее решение формируется в БЦВС на основе функции правдоподобия

и решающего правила

где отношение правдоподобия l определяется выражением

а порог h выбирается по заданной вероятности неправильного опознавания «чужого» объекта (m=2) как «своего» (m*=1).

В качестве примера рассмотрим процесс формирования общего решения прототипом в составе пяти (N=5) информационных каналов при следующих исходных данных:

1) количество классов объектов в основном алфавите М=2;

2) алфавиты частных решений первых двух информационных каналов совпадают с алфавитом общих решений, то есть Q1=Q2=М=2;

3) алфавиты остальных каналов не совпадают между собой, но имеют одинаковый объем, то есть Q3=Q4=Q5=5.

Рассмотрим первый информационный канал (t=1; Q1=M=2). Пусть в этом канале сформирована следующая совокупность апостериорных вероятностей отнесения наблюдаемого объекта к типам с номерами q 1 = 1,2 ¯

{P(q1)}={P(q1=1); P(q1=2)}={0,51; 0,49}.

Тогда в соответствии с критерием идеального наблюдателя

P ( q 1 * ) = max { 0,51 ; 0,49 } = P ( q 1 = 1 ) = 0,51

и в первом канале будет принято частное решение

q 1 * = 1 .

Матрица-столбец условных вероятностей (2) принимает вид

Допустим, что на основе информации целеуказания, полученной от внешних источников, сформирована матрица априорных вероятностей

Тогда в соответствии с (1) по правилу перемножения матриц получим

Аналогично формируются матрицы P mq t * и в остальных четырех каналах. Результаты расчетов сведем в таблицу 1.

Подставив значения P m g t * из таблицы 1 в формулу (5), получим

Тогда в соответствии с решающим правилом (4) при h=1,05 будет принято общее решение m*=1, то есть наблюдаемый объект «Свой».

Отношение правдоподобия может быть представлено в виде произведения частных отношений правдоподобия

В прототипе все информационные каналы принимают частные решения по критерию идеального наблюдателя. Однако реально некоторые из них (например, подсистемы прямого и координатно-связного опознавания) принимают частные решения по критерию Неймана-Пирсона. Отсутствие учета особенностей таких информационных каналов снижает достоверность принятого на их основе общего решения, что является серьезным недостатком прототипа.

Целью изобретения является повышение достоверности опознавания объектов (целей) путем устранения указанного недостатка.

Цель изобретения достигается тем, что в известное устройство, содержащее N-канальный блок информационных каналов и быстродействующую цифровую вычислительную систему (БЦВС), выход которой является выходом устройства, а выход решения каждого информационного канала подключен к ее соответствующему входу, а также следующие N-канальные блоки:

блок сравнения, два блока вычитания, два блока ключей, блок деления, блок схем ИЛИ и блок умножения матриц, выходы которого соединены с дополнительными входами БЦВС, первые входы являются входами внешних источников устройства, а вторые входы подключены к выходам блока схем ИЛИ, первые и вторые входы которого соединены соответственно с выходами первого и второго блоков ключей, управляющие входы которых подключены соответственно к первым и вторым выходам блока сравнения, первые и вторые входы которого соединены соответственно с выходами решения и первыми дополнительными выходами блока информационных каналов, вторые дополнительные выходы которого подключены к информационным входам первого блока ключей и входам вычитаемого первого блока вычитания, входы уменьшаемого которого являются входами сигнала единичного уровня устройства и объединены со входами вычитаемого второго блока вычитания, входы уменьшаемого которого соединены с третьими дополнительными выходами блока информационных каналов, а выходы первого и второго блоков вычитания подключены соответственно ко входам делимого и делителя блока деления, выходы которого соединены с информационными входами второго блока ключей, дополнительно введен L-канальный второй блок информационных каналов, выход решения каждого из которых подключен к соответствующему входу БЦВС, а выходы подключены к ее соответствующим дополнительным входам.

Сопоставительный анализ с прототипом показывает, что заявляемое устройство отличается тем, что содержит дополнительно введенный L-канальный блок информационных каналов, а также дополнительные связи между ним и БЦВС. Этот блок объединяет каналы, алфавиты частных решений которых совпадают с алфавитом общих решений и которые в отличие от прототипа принимают частные решения по критерию Неймана-Пирсона.

Таким образом, заявляемое устройство соответствует критерию изобретения «новизна».

Сравнение заявляемого решения с другими техническими решениями показывает, что вновь введенный блок известен [Радиолокационные системы многофункциональных самолетов. Т1. РЛС - информационная основа боевых действий многофункциональных самолетов. Системы и алгоритмы первичной обработки радиолокационных сигналов / Под ред. А.И. Канащенкова и В.И. Меркулова. - М.: Радиотехника, 2006, с. 644-650; Жиронкин С.Б., Аврамов А.В., Быстраков С.Г. Построение интегрированных систем опознавания на основе координатно-связного метода. - Зарубежная радиоэлектроника. Успехи современной радиоэлектроники, 1997, №5, с. 71-74].

Однако при его введении в указанной связи с БЦВС в заявляемое устройство оно проявляет новые свойства, что приводит к повышению достоверности принятого решения о государственной принадлежности объекта. Это позволяет сделать вывод о соответствии технического решения критерию «существенные отличия».

Блок-схема устройства представлена на фиг.

Устройство содержит:

1 - блок информационных каналов (в составе N каналов), выходы решений которого подключены к соответствующим входам БЦВС 11 и первым входам блока сравнения 2. Первые, вторые и третьи дополнительные выходы блока 1 соединены соответственно со вторыми входами блока сравнения 2, со входами вычитаемого первого блока вычитания 3 и входами уменьшаемого второго блока вычитания 4. Кроме того, вторые дополнительные выходы блока 1 подключены к информационным входам первого блока ключей 5. Этот блок объединяет каналы, принимающие частные решения по критерию идеального наблюдателя.

2 - блок сравнения (в составе N схем сравнения на два входа и два выхода каждая), первые и вторые входы которого подключены соответственно к выходам решений и первым дополнительным выходам блока информационных каналов 1. Первые и вторые выходы блока сравнения 2 соединены соответственно с управляющими входами первого 5 и второго 6 блоков ключей.

3 - первый блок вычитания (в составе N схем вычитания на два входа каждая), входы вычитаемого которого подключены ко вторым дополнительным выходам блока информационных каналов 1, а входы уменьшаемого являются входом сигнала единичного уровня устройства и объединены со входами вычитаемого второго блока вычитания 4. Выходы первого блока вычитания 3 подключены ко входам делимого блока деления 7.

4 - второй блок вычитания (в составе N схем вычитания на два входа каждая), входы уменьшаемого которого подключены к третьим дополнительным выходам блока информационных каналов 1, а входы вычитаемого являются входом сигнала единичного уровня устройства и объединены со входами уменьшаемого первого блока вычитания 3. Выходы второго блока вычитания 4 подключены ко входам делителя блока деления 7.

5 - первый блок ключей (в составе N ключей на два входа каждый), управляющие входы которого подключены к первым выходам блока сравнения 2, информационные входы - ко вторым дополнительным выходам блока информационных каналов 1, а выходы подключены к первым входам блока схем ИЛИ 8.

6 - второй блок ключей (в составе N ключей на два входа каждый), управляющие входы которого подключены ко вторым выходам блока сравнения 2, информационные входы - к выходам блока деления 7, а выходы подключены ко вторым входам блока схем ИЛИ 8.

7 - блок деления (в составе N схем деления на 2 входа каждая), входы делимого и делителя которого подключены соответственно к выходам первого 3 и второго 4 блоков вычитания, а выходы - к информационным входам второго блока ключей 6.

8 - блок схем ИЛИ (в составе N схем ИЛИ на два входа каждая), первые и вторые входы которого подключены соответственно к выходам первого 5 и второго 6 блоков ключей, а выходы - ко вторым входам (входам множителя) блока умножения матриц 9.

9 - блок умножения матриц (в составе N схем умножения матриц на два входа каждая), первые входы которого (входы множимого) являются входами внешних источников, вторые входы (входы множителя) подключены к выходам блока схем ИЛИ 8, а выходы - к дополнительным входам БЦВС 11.

10 - второй блок информационных каналов (в составе L каналов), выход решения каждого из которых подключен к соответствующему входу БЦВС 11, а выходы подключены к ее соответствующим дополнительным входам. Этот блок объединяет каналы, алфавиты частных решений которых совпадают с алфавитом общих решений и принимающие частные решения по критерию Неймана-Пирсона.

11 - быстродействующая цифровая вычислительная система (БЦВС), входы которой подключены к выходам решений блоков информационных каналов 10 и 1, дополнительные входы - к выходам второго блока информационных каналов 10 и блока умножения матриц 9, а выход является выходом устройства.

Устройство работает следующим образом. Каждый из информационных каналов блока 1 (дальше рассматривается работа только одного t-го канала и его связи с другими блоками) в рамках своего алфавита вырабатывает частное решение о принадлежности объекта к определенному типу (классу) в виде его номера q t * , который поступает с выхода решения t-го информационного канала блока 1 на первый вход схемы сравнения блока сравнения 2. С первого дополнительного выхода t-го информационного канала блока 1 на второй вход схемы сравнения блока сравнения 2 поступает последовательность {qt}={1; 2;…, qt; …, Qt} номеров типов (классов), соответствующая алфавиту t-го информационного канала. В случае совпадения номера q t * с номером qt, то есть при выполнении равенства q t * = q t , с первого выхода схемы сравнения блока сравнения 2 на управляющий вход ключа первого блока ключей 5 поступает разрешающий сигнал. Если же q t * q t , то аналогичный разрешающий сигнал поступает со второго выхода схемы сравнения блока сравнения 2 на управляющий вход ключа второго блока ключей 6. Со второго дополнительного выхода t-го информационного канала блока 1 выдается апостериорная вероятность P ( q t * ) принятого решения, которая поступает на информационный вход ключа первого блока ключей 5 и вход вычитаемого схемы вычитания первого блока вычитания 3. На вход уменьшаемого схемы вычитания первого блока вычитания 3, как и на вход вычитаемого схемы вычитания второго блока вычитания 4, поступает сигнал единичного уровня. На вход уменьшаемого схемы вычитания второго блока вычитания 4 поступает информация об объеме (количестве типов (классов)) Qt алфавита с третьего дополнительного выхода t-го информационного канала блока 1. В результате на выходах схем вычитания первого 3 и второго 4 блоков вычитания формируются значения 1 P ( q t * ) и Qt-1 соответственно, которые поступают на входы делимого и делителя схемы деления блока деления 7. Результат деления 1 P ( q t * ) Q t 1 с выхода схемы деления блока деления 7 поступает на информационный вход ключа второго блока ключей 6. При наличии разрешающего сигнала на управляющем входе ключа первого блока ключей 5 (при q t * = q t ) он открывается и значения апостериорной вероятности P ( q t * ) принятого решения с его выхода поступают на первый вход схемы ИЛИ блока схем ИЛИ 8, на второй вход которой поступают значения 1 P ( q t * ) Q t 1 выхода ключа второго блока ключей 6 при наличии разрешающего сигнала на его управляющем входе (при q t * q t ). В результате на выходе схемы ИЛИ блока схем ИЛИ 8 в соответствии с выражениями (2) формируются значения условных вероятностей в виде матрицы P ( q t * / q t ) , которые поступают на второй вход (вход множителя) схемы умножения матриц блока умножения матриц 9, на первый вход (вход множимого) которой поступает совокупность значений априорных вероятностей в виде матрицы P ( q t / m ) . На входы БЦВС 11 с выхода решения каждого информационного канала блоков 10 и 1 поступают номера q t * ( t = 1 ,L + N ¯ ) типов (классов), к которым отнесен объект, а на дополнительные входы БЦВС 11 поступает совокупность значений апостериорных вероятностей в виде матриц P ( q t ) , t = 1, L ¯ , с выходов второго блока информационных каналов 10 и рассчитанные по формулам (1) значения вероятностей в виде матриц P mq t * , t = L + 1, L + N ¯ , c выходов блока умножения матриц 9. После расчета в БЦВС 11 отношения правдоподобия и сравнения его с заданным порогом с ее выхода выдается окончательное решение о принадлежности объекта классу «Свой» (m=1) или «Чужой» (m=2).

Для лучшего понимания отличий предлагаемого устройства от прототипа рассмотрим процесс принятия общего решения предлагаемым устройством на конкретном примере при следующих исходных данных:

1) количество классов объектов в основном алфавите М=2;

2) в состав второго блока информационных каналов 10 входят L=2 канала ( t = 1,2 ¯ ) , каждый из которых в отличие от прототипа принимает частное решение по критерию Неймана-Пирсона. Алфавиты частных решений этих каналов совпадают с алфавитом общих решений, то есть Q1=Q2=М=2;

3) в состав блока информационных каналов 1 входят N=3 канала ( t = 3,5 ¯ ) , каждый из которых принимает частное решение по критерию идеального наблюдателя (как в прототипе). Алфавиты этих каналов не совпадают между собой, но имеют одинаковый объем, то есть Q3=Q4=Q5=5.

Все остальные цифровые данные совпадают с примером для прототипа.

Рассмотрим первый и второй информационные каналы. Пусть в этих каналах сформированы матрицы апостериорных вероятностей отнесения наблюдаемого объекта к типам с номерами q 1 = 1,2 ¯ ; q 2 = 1,2 ¯

Для принятия частного решения по критерию Неймана-Пирсона в каждом из этих каналов формируется частное отношение правдоподобия

каждое из которых сравнивается со своим заданным порогом. Пусть эти пороги одинаковы и равны h1=h2=1,05.

Поскольку l1=1,041 < h1=1,05;

l2=0,111 < h2=1,05,

то в обоих каналах будут приняты одинаковые частные решения

q1*=2 (объект «чужой»); P(q1*)=P(q1=2)=0,49;

q2*=2 (объект «чужой»); P(q2*)=P(q2=2)=0,90. Отметим, что в прототипе первым каналом было бы принято частное решение q1*=1 (объект «свой»); P(q1*)=P(q1=1)=0,51.

Эти частные отношения правдоподобия включаются в общее отношение правдоподобия, рассчитываемое БЦВС, и для рассматриваемого примера получим

и в соответствии с решающим правилом (4) будет принято общее решение m*=2, то есть наблюдаемый объект «Чужой».

Следовательно, отсутствие в прототипе учета особенностей принятия частных решений первыми двумя каналами привело к принятию противоположного общего решения, что свидетельствует об его низкой достоверности.

Таким образом, для каналов, принимающих частное решение по критерию Неймана-Пирсона, матрицы P mq t * не рассчитываются, а их роль выполняют матрицы P ( q t ) , что и отражено в последней строке таблицы 2.

Интегрированное устройство опознавания, содержащее N-канальный блок информационных каналов и быстродействующую цифровую вычислительную систему (БЦВС), выход которой является выходом устройства, а выход решения каждого информационного канала подключен к ее соответствующему входу, а также следующие N-канальные блоки: блок сравнения, два блока вычитания, два блока ключей, блок деления, блок схем ИЛИ и блок умножения матриц, выходы которого соединены с дополнительными входами БЦВС, первые входы являются входами внешних источников устройства, а вторые входы подключены к выходам блока схем ИЛИ, первые и вторые входы которого соединены соответственно с выходами первого и второго блоков ключей, управляющие входы которых подключены соответственно к первым и вторым выходам блока сравнения, первые и вторые входы которого соединены соответственно с выходами решения и первыми дополнительными выходами блока информационных каналов, вторые дополнительные выходы которого подключены к информационным входам первого блока ключей и входам вычитаемого первого блока вычитания, входы уменьшаемого которого являются входами сигнала единичного уровня устройства и объединены со входами вычитаемого второго блока вычитания, входы уменьшаемого которого соединены с третьими дополнительными выходами блока информационных каналов, а выходы первого и второго блоков вычитания подключены соответственно ко входам делимого и делителя блока деления, выходы которого соединены с информационными входами второго блока ключей, отличающееся тем, что в него дополнительно введен L-канальный второй блок информационных каналов, выход решения каждого из которых подключен к соответствующему входу БЦВС, а выходы подключены к ее соответствующим дополнительным входам, причем этот блок объединяет каналы, алфавиты частных решений которых совпадают с алфавитом общих решений и принимающие частные решения по критерию Неймана-Пирсона.



 

Похожие патенты:

Изобретение относится к области радиолокации и может быть использовано в современных системах управления воздушным движением для обнаружения и контроля за полетом воздушного судна на траектории захода на посадку на взлетно-посадочную полосу аэродрома.

Изобретение относится к области радиолокации, радиосвязи, радионавигации и радиоуправления. Достигаемый технический результат - повышение пропускной способности систем радиолокационного опознавания и связи.

Изобретение относится к области радиолокации и предназначено для селекции движущихся целей на фоне пассивных помех. Достигаемый технический результат - повышение эффективности селекции движущихся целей в режиме перестройки несущей частоты зондирования от импульса к импульсу.

Изобретение относится к области радиолокации и может быть использовано в радиолокационной технике для оценки количества целей в группе. Достигаемым техническим результатом является повышение вероятности правильного определения количества целей в группе при радиолокационном наблюдении маневрирующих целей.

Изобретение относится к радиолокационным средствам ближнего действия. Достигаемый технический результат - повышение помехоустойчивости к пассивным помехам радиолокаторов ближнего действия (РБД) в условиях отсутствия априорных сведений о месте и времени появления реальной цели при относительно коротком времени взаимодействия с обнаруженным воздушным объектом.

Заявленный способ обработки информации на основе метода сложносоставной оптимальной фильтрации слабого сигнала космического радиолокационного комплекса относится к области радиотехники.

Изобретение может быть использовано для радиолокационной идентификации летательных аппаратов на всевозможных дальностях и ракурсах локации. Достигаемый технический результат - повышение достоверности автоматической идентификации воздушных объектов (ВО) в квазиоптической области отражения радиоволн за счет установления более строгого взаимного соответствия между реальным и эталонным дальностными портретами, а именно за счет учета дополнительной информации об амплитудах импульсных откликов в структуре дальностного портрета.

Изобретение относится к радиотехнике и может использоваться в радиолокационных станциях (РЛС) обнаружения и сопровождения целей. Достигаемый технический результат - исключение попадания на экран информации о пассивных помехах и улучшение наблюдаемости полезных сигналов.

Изобретения относятся к радиолокационной технике. Техническим результатом является повышение эффективности работы комплексов активной защиты объектов.

Изобретение относится к радиолокации и может быть использовано в бортовых, наземных и корабельных радиолокационных станциях для разрешения отдельных целей из состава групповой в импульсном объеме.

Изобретение относится к области вторичной цифровой обработки сигналов в радиолокационной станции (РЛС) и может быть использовано для сопровождения и распознавания типа воздушной цели из класса «самолет с турбореактивным двигателем» при воздействии уводящей по скорости помехи. Достигаемый технический результат - повышение достоверности выходной информации. Способ заключается в: параллельном сопровождении на основе калмановской фильтрации отсчетов доплеровских частот, обусловленных отражениями сигнала от планера цели и вращающихся структур компрессора низкого давления ее силовой установки; вычислении разности между полученными значениями доплеровских частот; вычислении модуля производной разности и сравнении ее с порогом, близким к нулю; разбиении всего диапазона разностей на неперекрывающиеся поддиапазоны, каждый из которых соответствует только одному типу цели; вычислении за несколько промежуточных тактов работы обоих калмановских фильтров вероятности попадания оценки разности частот в каждый из априорно сформированный поддиапазон; определении номера поддиапазона, для которого величина этой вероятности максимальна и ее сравнении с заданным порогом вероятности распознавания; принятии решения о распознавании типа цели с вероятностью, не ниже заданной; в случае непревышения модуля производной разности планерной и компрессорной составляющих доплеровских частот порога, близкого к нулю (при отсутствии воздействия уводящей по скорости помехи), формировании выходной информации в виде оценки типа цели и доплеровской частоты на основе динамической модели в калмановских фильтрах и входного сигнала, в противном случае (при превышении модуля разности порога - воздействии уводящей по скорости помехи) - в виде оценки типа цели, распознанного до воздействия помехи, и доплеровской частоты только на основе динамической модели планерной составляющей спектра сигнала. 3 ил.

Изобретение относится к вычислительной технике и может быть использовано в автоматизированных когерентно-импульсных системах для выделения сигналов движущихся целей на фоне пассивных помех при вобуляции периода повторения зондирующих импульсов. Техническим результатом является повышение эффективности режектирования пассивной помехи и выделения сигналов движущихся целей. Устройство содержит блоки задержки, комплексные перемножители, блок измерения фазы, весовые блоки, блок весовых коэффициентов, сумматоры, синхрогенератор, коммутатор. 15 ил.

Изобретение относится к радиолокационной технике и предназначено для автокомпенсации доплеровских сдвигов фазы пассивных помех. Достигаемый технический результат - повышение точности автокомпенсации. Указанный результат достигается тем, что автокомпенсатор доплеровской фазы пассивных помех содержит блок оценивания фазы, четыре блока задержки, первый и второй блоки комплексного умножения, блок комплексного сопряжения, синхрогенератор, первый и второй умножители, первый, второй, третий и четвертый косинусно-синусные функциональные преобразователи, первый и второй блоки памяти, комплексный сумматор, дополнительный вычислитель фазы, дополнительный блок оценивания фазы, первый и второй дополнительные блоки комплексного умножения, дополнительный блок комплексного сопряжения, определенным образом соединенные между собой и осуществляющие когерентную обработку исходных отсчетов. 9 ил.

Изобретение относится к технике радиолокации, радиосвязи, радионавигации и радиоуправления и может быть использовано в радиоэлектронных системах для решения задачи обнаружения сигналов. Достигаемый технический результат - расширение функциональных возможностей устройства в условиях неопределенной помеховой обстановки за счет учета статистической зависимости частных решений обнаружителей. Указанный результат достигается за счет того, что комплексное устройство обнаружения является многоканальным и содержит в каждом канале обнаружитель, два мультиплексора, а в общей для всех каналов части содержит пороговое устройство, два умножителя, сумматор на два входа, два ключа, две ячейки памяти, инвертор и делитель, при этом все перечисленные средства определенным образом соединены между собой. 1 ил., 1 табл..

Изобретение относится к способам обработки сигналов в радиолокационных станциях. Достигаемый технический результат - однозначное измерение дальности до метеорологического объекта (МО). Способ заключается в излучении первой последовательности импульсов с частотой повторения Fи1, в которой период повторения Tи1 в несколько раз меньше базового периода Т0, выбираемого из условия однозначного измерения расстояний в пределах всего возможного диапазона дальностей до наблюдаемых МО, излучении в последующий интервал Т0 второй последовательности импульсов с частотой повторения Fи2, причем Fи1=z1F0 и Fи2=z2F0, где F0=1/Т0; величины z1 и z2 некратные друг другу и не имеют общего делителя, определении совокупности наблюдаемых задержек tдн1i, где ; I - общее количество наблюдаемых задержек отраженных от МО импульсов относительно каждого k-го, ; K - количество излученных импульсов в первой пачке, излученного импульса в их первой пачке, вычислении величины средней наблюдаемой задержки t1 ср отраженных импульсов от МО относительно каждого излученного k-го импульса в их первой пачке, определении совокупности наблюдаемых задержек tдн2j, где ; J - общее количество наблюдаемых задержек отраженных от МО импульсов относительно каждого p-го, ; P - количество излученных импульсов во второй пачке, излученного импульса в их второй пачке, вычислении величины средней наблюдаемой задержки отраженных импульсов от МО t2 ср относительно каждого излученного p-го импульса в их второй пачке, сравнении временных задержек tдц1=mTи1+t1 cp и tдц2=nТи2+t2 ср, где m и n - количество целых периодов Ти1 и Ти2, попадающих в пределы интервала истинной задержки tдц, варьировании численных значений m и n до тех пор, пока не будет выполнено условие tдц1=tдц2 с фиксацией, при которых будет выполнено данное условие, и вычислении дальности до МО по формуле Дц=c(mфТи1+t1 ср)/2 или Дц=с(nфТи2+t2 ср)/2, где c - скорость света. 2 ил.

Изобретение относится к технике радиолокации, радиосвязи, радионавигации и радиоуправления и может быть использовано в радиоэлектронных системах для выработки признака государственной принадлежности объектов (целей). Достигаемый технический результат - расширение функциональных возможностей в условиях неопределенной помеховой обстановки. Указанный результат достигается за счет того, что устройство содержит два блока информационных каналов, блок сравнения, два блока вычитания, два блока ключей, блок деления, блок схем ИЛИ, блок умножения матриц, быстродействующую цифровую вычислительную систему (БЦВС), два блока мультиплексоров, два умножителя, вычитатель и сумматор, определенным образом соединенные между собой. 3 ил., 3 табл.

Изобретение относится к радиолокации и может быть использовано для обработки радиолокационных сигналов. Технический результат - повышение эффективности классификации и бланкирования дискретных пассивных помех. Указанный технический результат достигают тем, в способе классификации и бланкирования помех, кроме формирования оценок межчастотной межпериодной доплеровской разности фазы для однозначного измерения скорости объектов на основе двух выборок наблюдений, принятых на двух несущих частотах, и сравнения этой оценки с порогом в каждом элементе дальности с присвоением при непревышении этого порога в конкретном элементе дальности признака сигнала мешающего отражения, дополнительно формируют модуль межчастотного коэффициента корреляции, который используется для оценки продольного размера классифицируемых объектов и который, не превысив порог, классифицируется как мешающий сигнал по корреляционному признаку, при этом после объединения корреляционного и скоростного признаков мешающего сигнала при их совпадении принимается решение о бланкировании отраженного сигнала в данном элементе дальности. При этом скоростному и корреляционному признаку для мешающих отражений ставят в соответствие логические единицы, совпадение которых фиксируют в каждом элементе дальности с помощью логической функции «И». 2 з.п. ф-лы, 2ил.

Изобретение относится к радиолокационным методам и может быть реализовано и применено в системах отождествления аэродинамических летательных аппаратов, использующих наряду с другими признаками векторный отличительный признак, именуемый импульсной характеристикой (ИХ) объекта и формируемый на основе когерентной обработки сигналов с перестройкой несущей частоты, называемых иначе сигналами с синтезом спектра. Достигаемый технический результат - повышение разрешающей способности по времени за счет двукратного синтезированного увеличения диапазона перестройки частоты на интервалах пространственно-углового замирания. Указанный технический результат достигается за счет того, что ИХ воздушного объекта (ВО), формируемая из отраженных сигналов с перестройкой частоты, практически не зависит от смещения диапазона перестройки Fnep частоты по шкале частот, так как при использовании частного диапазона от f0 до (f0+Fпер) или частотного диапазона от (f0+Fпер) до (f0+2Fпер) результат формирования ИХ при неизменности остальных условий для ВО любой сложности отличается несущественно, что позволяет сравнивать полученные на разных по расположению на шкале частот (но одинаковых по величине) диапазонах перестройки ИХ между собой для установления факта наличия или отсутствия углового перемещения ВО относительно локатора. При пространственно-угловом замирании ВО относительно локатора сформированные указанным способом абсолютные ИХ должны совпадать. В условиях интенсивного изменения ракурса локации ИХ должны отличаться ощутимо. При замирании ВО две пачки сигналов с перестройкой частоты предлагается соединять в одну и получать из нее ИХ повышенной информативности. 3 ил.

Изобретение относится к области радиолокации и может быть использовано при обнаружении воздушной цели. Достигаемый технический результат - обеспечение скрытности работы импульсно-доплеровской бортовой радиолокационной станции (БРЛС) на излучение при обнаружении воздушной цели - носителя станции радиотехнической разведки (РТР). Способ заключается в формировании высокочастотной последовательности зондирующих импульсов, их усилении по мощности, излучении в направлении воздушной цели - носителя станции РТР, приеме, усилении, преобразовании отраженных сигналов на промежуточные частоты, их селекции по дальности и доплеровской частоте, преобразовании сигналов в цифровую форму с последующем их спектральным анализом, при каждом приеме отраженного от воздушной цели - носителя станции РТР сигнала измеренное значение дальности обнаружения DБРЛС сравнивают с максимальным значением дальности обнаружения DPTP станцией РТР излученного БРЛС сигнала, при выполнении условия DБРЛС>DPTP принимают решение о том, что скрытность БРЛС при ее работе на излучение обеспечена и станция РТР не обнаруживает излученный БРЛС сигнал, при этом средняя излучаемая мощность передатчика БРЛС, время облучения воздушной цели - носителя станции РТР и время когерентного накопления сигнала в приемнике БРЛС остаются неизменными, в противном случае одновременно увеличивают в n раз, где n - целое или дробное число, большее единицы, время облучения воздушной цели - носителя станции РТР и время когерентного накопления сигнала в приемнике БРЛС и уменьшают в n раз среднюю излучаемую мощность передатчика БРЛС до тех пор, пока не будет выполнено условие DБРЛС>DРТР, которое свидетельствует об обеспечении скрытности работы БРЛС на излучение. 2 ил.

Изобретение относится к технике радиолокации, радиосвязи, радионавигации и радиоуправления и может быть использовано в радиоэлектронных системах для решения задачи обнаружения сигналов, снижения загрузки линий передачи данных и повышения достоверности принятого решения. Указанный результат достигается за счет того, что комплексная система обнаружения является многоканальной и содержит в каждом канале согласованный фильтр, линию передачи данных, двухпороговое и однопороговое устройства, при этом общая часть системы содержит два сумматора, общее пороговое устройство, дешифратор, инвертор, два ключа и схему ИЛИ. Перечисленные средства определенным образом соединены между собой. 2 ил.
Наверх