Способ изготовления фотодиода



Способ изготовления фотодиода
Способ изготовления фотодиода
Способ изготовления фотодиода
Способ изготовления фотодиода
Способ изготовления фотодиода
Способ изготовления фотодиода
Способ изготовления фотодиода
Способ изготовления фотодиода
Способ изготовления фотодиода

 


Владельцы патента RU 2566650:

Акционерное общество "НПО "Орион"(АО "НПО "Орион") (RU)

Изобретение относится к технологии изготовления матричных фотоприемников ИК-излучения на основе антимонида индия, теллурида кадмия-ртути. Способ изготовления матричного фотоприемника согласно изобретению включает формирование на полупроводниковой пластине р+-n- или n+-р-перехода по всей поверхности, формирование защитной маски фоторезиста с рисунком ФЧЭ с последующим травлением мезаструктур на глубину, при которой р+-n- или n+-р-переход выходит на поверхность у основания мезаструктуры под углом меньше 60°. Затем осуществляют нанесение защитного диэлектрика, формирование фоторезистивной маски с последующим травлением контактных окон в диэлектрике, напыление металла, формирование фоторезистивной маски с последующим травлением металла для получения контактной системы, напыление индия, формирование фоторезистивной маски с последующим травлением индия одним из известных способов: химическое травление или ионное травление с последующим удалением слоев фоторезиста для получения индиевых микроконтактов. Изобретение обеспечивает возможность изготовления мезаструктур с помощью известных методов ионного и химического травления, обеспечивающих низкое значение напряженности электрического поля на поверхности n+-р- или р+-n-переходов и, соответственно, низкие значения темновых токов фотоприемников. 9 ил.

 

Изобретение относится к вопросам изготовления матричных фотоприемников ИК-излучения на основе антимонида индия, теллурида кадмия-ртути.

В настоящее время широко используется способ изготовления матричных фотодиодов на различных материалах с использованием мезаструктур, в которых разделение на отдельные фоточувствительные элементы (ФЧЭ) производится травлением сплошных n+-р- или р+n-структур таким образом, что верхний n+(р+) слой между ФЧЭ вытравливается полностью, а p (n) слои - частично или полностью до подложки [J.P. Price et al. Dual - band MW/LW IRFPAs made from HgCdTe grown by MOVPE, Proc. of SPIE, v. 6940, 69402S-11; D. Sheela and N. DasGupta, Opnimization of surface passivation InGaAs/InP p-i-n photodetectors using ammonium sulfide, Semicond. Sci. Technol., 23 (2008) 035018, p. 1-5; P. Tribolet, Advtnced HGCDTE Ntchnologies and dual band developments, Proc. of SPIE, v. 6940, 69402P-141-3].

Для травления используются методы ионного и химического травления,

Известен способ изготовления матричного фотоприемника с использованием указанного метода, описанный в [патент США №5.663.564 от 02.09.1997 г. W.A. Radford, Photovoltaic detector with integrated dack current offset correction], принятый за аналог.

Указанный способ имеет следующий недостаток.

При проведении процесса травления глубина вытравливаемой мезаструктуры значительно превышает глубину расположения металлургического р-n-перехода, что приводит к пересечению р-n-перехода мезаструктурой под углом, близким к прямому 90°. Это приводит практически к равенству ширины области пространственного заряда (ОПЗ) n+-р- или р+n-перехода по всей его площади, включая выход на поверхность и, соответственно, равенству величины электрического поля. При наличии зарядов на границе раздела полупроводник - диэлектрик ОПЗ на поверхности может дополнительно сужаться, усиливая поле, что приводит к токам утечки на поверхности n+-р- или р+n-перехода (в случае положительного заряда на поверхности - для р+n-перехода, и отрицательного заряда - для n+-р-перехода). Поскольку знак и величину поверхностного заряда контролировать достаточно сложно, это обусловливает плохую воспроизводимость получаемых значений темновых токов и, соответственно, величины шума ФЧЭ.

Задачей изобретения является создание технологии изготовления мезаструктур с помощью известных методов ионного и химического травления, позволяющей обеспечить низкое значение напряженности электрического поля на поверхности n+-р- или р+n-переходов и, соответственно, низкие значения темновых токов.

Технический результат достигается тем, что на полупроводниковой пластине создается р+-n- или n+-р-переход по всей поверхности, формируется защитная маска фоторезиста с рисунком ФЧЭ с последующим травлением мезаструктур на глубину, при которой р+-n- или n+-р-переход выходит на поверхность у основания мезаструктуры под углом меньше 60°. Затем производится нанесение защитного диэлектрика, формирование фоторезистивной маски с последующим травлением контактных окон в диэлектрике, напыление металла, формирование фоторезистивной маски с последующим травлением металла для получения контактной системы, напыление индия, формирование фоторезистивной маски с последующим травлением индия одним из известных способов (химическое травление, ионное травление) с последующим удалением слоев фоторезиста для получения индиевых микроконтактов,

Например, для получения мезаструктуры с углом выхода перехода на поверхность меньше 60° после создания n+-р-перехода по всей поверхности пластины наносят слой позитивного фоторезиста, который после экспонирования через фотошаблон с рисунком ФЧЭ, проявления и задубливания служит маской при травлении мезаструктуры n+-р-типа, выполняют химическое травление мезаструктуры на глубину, равную Hn+ + 0,2 Hn+, где Hn+ - толщина n+-области, 0,2 Hn+ - глубина травления р-области. Аналогично для р+-n-структуры глубина травления Hp+ + 0,2 Нр+. После травления структуры наносят диэлектрическое покрытие, вскрывают с помощью фотолитографии контактные окна. Напыляют слой металла, с помощью фотолитографии формируют контактный слой, затем одним из известных способов на контактном слое металла формируют индиевые микроконтакты.

При указанном способе формирования мезаструктуры угол выхода n+-р (р+-n) перехода на поверхность значительно меньше 90°, что приводит к значительно большей ширине ОПЗ на поверхности и снижению величины электрического поля. Уменьшение величины угла у основания мезаструктуры связано с уменьшением скорости травления у основания мезаструктуры за счет ухудшения подвода реагентов и отвода продуктов реакции, что приводит к большей кривизне контура травления.

На фиг. 1 показаны контуры травления мезаструктур при глубоком травлении в способе изготовления, принятом за аналог, и в предлагаемом способе.

Последовательность технологической цепочки предлагаемого способа иллюстрируется на фиг. 2-9, где:

на фиг. 2 показан процесс формирования n+-р- или р+n-перехода;

на фиг. 3 показан процесс травления мезаструктуры;

на фиг. 4 показан процесс нанесения диэлектрика;

на фиг. 5 изображен процесс формирования контактных окон в диэлектрике;

на фиг. 6 изображен процесс напыления слоя металла;

на фиг. 7 изображен процесс формирования контактной системы;

на фиг. 8 изображен процесс напыления слоя индия;

на фиг. 9 показан процесс формирования индиевых микроконтактов с помощью травления.

Способ изготовления фотодиода осуществляется в следующей последовательности:

- на полупроводниковой пластине формируется n+-р- или р+n-переход (фиг. 2);

- на полупроводниковой пластине с помощью фотолитографии формируется маска фоторезиста с рисунком ФЧЭ;

- проводится травление мезаструктур (фиг. 3);

- наносится слой диэлектрика (фиг. 4);

- изготавливаются контактные окна в слое диэлектрика (фиг. 5);

- напыляется слой металла (фиг. 6);

- с помощью фотолитографии создается контактная система (фиг. 7);

- напыляется слой индия (фиг. 8).

Далее проводится формирование индиевых микроконтактов одним из способов (фиг. 9):

- растворением нижнего слоя фоторезиста с одновременным удалением индия (метод взрыва);

- методом травления, для этого:

- проводится формирование маски фоторезиста для травления индия;

- проводится травление индия одним из известных способов (химическое, ионное) для формирования микроконтактов;

- проводится удаление фоторезиста в растворе диметилформамида или смеси диметилформамида с моноэтаноламином, или плазмохимическим травлением в кислородной плазме.

Способ изготовления матричного фотоприемника, включающий создание р+-n- или n+-р-перехода по всей поверхности пластины, формирование защитной маски фоторезиста с последующим травлением мезаструктур, нанесение защитного диэлектрика, формирование фоторезистивной маски с последующим травлением контактных окон в диэлектрике, напыление металла, формирование фоторезистивной маски с последующим травлением металла для получения контактной системы, напыление индия, формирование фоторезистивной маски с последующим травлением индия одним из известных способов: химическое травление или ионное травление с последующим удалением слоев фоторезиста для получения индиевых микроконтактов, отличающийся тем, что травление мезаструктур производят на глубину, при которой р+-n- или n+-р-переход выходит на поверхность у основания мезаструктуры под углом меньше 60°.



 

Похожие патенты:

Изобретение относится к области контроля фотоэлектрических устройств и касается способа исследования пространственного распределения характеристик восприимчивости фотоэлектрических преобразователей в составе солнечных батарей к оптическому излучению.

Согласно изобретению предложена печь для вжигания электрода солнечного элемента, которая снабжена транспортировочным элементом, транспортирующим подложку с нанесенной на нее проводящей пастой, секцией нагрева, которая нагревает подложку и вжигает проводящую пасту, и секцией охлаждения, которая охлаждает нагретую подложку.

Изобретение обеспечивает фотогальваническое устройство и способ изготовления такого устройства. Фотогальваническое устройство согласно изобретению включает в себя комбинацию полупроводниковых структур и защитный слой.
Изобретение относится к области электрического оборудования, в частности к полупроводниковым приборам, а именно к способам получения трехкаскадных преобразователей.

Изобретение относится к области микроэлектроники, в частности к созданию тонкопленочных элементов матрицы неохлаждаемого типа в тепловых приемниках излучения (болометров) высокой чувствительности. Способ получения чувствительного элемента матрицы теплового приемника на основе оксида ванадия представляет собой нанесение металлической пленки ванадия и электродов методами магнетронного распыления и последующей лифт-офф литографии на диэлектрическую подложку.

Пленки твердых растворов замещения PbSnSe - востребованный материал полупроводниковой оптоэлектроники и лазерной техники среднего и дальнего инфракрасного диапазона.

Изобретение относится к технологии изготовления полупроводниковых приборов. Способ изготовления pin-фотодиодов с охранным кольцом (ОК) на высокоомном р-кремнии включает термическое окисление исходной пластины р-кремния или эпитаксиальной структуры, содержащей слой высокоомного р-кремния, вскрытие «окон» в термическом окисном слое, загонку атомов фосфора в «окна» и их разгонку, совмещенную с окислением, для формирования планарных n+-р переходов рабочей области и области ОК, создание на обратной стороне пластины геттерирующего слоя и проведение геттерирования, стравливание геттерирующего слоя и подлегирование подконтактной области базы атомами бора для создания омического контакта р+-р типа, вскрытие в окисном слое контактных «окон» к рабочей области и охранному кольцу и зондовый контроль их темновых токов, отбор пластин, не соответствующих заданным значениям темнового тока, стравливание с них термического окисного слоя и нанесение на свободную поверхность кремния нового защитного слоя окиси кремния при температуре не выше 300°С, вскрытие контактных «окон» в нанесенном слое и повторный зондовый контроль темновых токов и при соответствии темнового тока заданным значениям - нанесение металлизации, формирование контактного рисунка и вжигание металла, а при несоответствии заданным значениям темнового тока - повторение операций до получения заданных значений темнового тока.
Изобретение относится к области изготовления фоточувствительных полупроводниковых приборов на основе GaAs, позволяющих преобразовывать мощное узкополосное излучение в электрическую энергию для энергоснабжения наземных и космических объектов.

Изобретение относится к полупроводниковой электронике, а именно к способу изготовления фотопроводящих радиационно стойких структур. Способ включает предварительное формирование монослоя жирной кислоты на поверхности раствора свинецсодержащей соли в воде в концентрации 1·10-3-5·10-3 моль/л для получения свинецсодержащего монослоя жирной кислоты по методу Ленгмюра-Блоджетт, перенос одного свинецсодержащего монослоя жирной кислоты на поверхность фоточувствительной пленки, термическую сенсибилизацию фоточувствительной пленки.

Предлагаемое изобретение относится к технологии изготовления полупроводниковых приборов, в частности, к способам изготовления планарных pin-фотодиодов большой площади на основе высокоомного кремния p-типа проводимости.

Изобретение относится к технологии создания фоточувствительных халькопиритных пленок, которые могут найти применение при создании солнечных батарей. Способ получения фоточувствительных халькопиритных пленок включает два этапа, на первом получают прекурсорную пленку, а на втором проводят ее отжиг. В качестве прекурсоров используют интерметаллиды Cu2In, CuGa2 и металлический индий. Изобретение обеспечивает получение однородных пленок с хорошей адгезией. 2 з.п. ф-лы, 9 ил.

Изобретение относится к области технологии изготовления полупроводниковых приборов методом газофазной эпитаксии с использованием металлорганических соединений, в частности к технологии выращивания гетероструктуры для полупроводникового полупрозрачного фотокатода с активным слоем из арсенида галлия, фоточувствительного в видимом и ближнем инфракрасном диапазоне. В способе изготовления гетероструктуры для полупроводникового полупрозрачного фотокатода из арсенида галлия методом МОС-гидридной эпитаксии, при котором стопорный слой и активная область выращиваются при температурах 600-640°C, в структуру введен переходной слой переменного состава от p-GaAs до p-AlyGa1-yAs. При его выращивании повышают температуру до 700-760°С. На нем выращивают буферный слой при температурах 700-760°C. Скорость выращивания слоев выбрана в диапазоне от 0,1 до 3 мкм/час. Поток металлорганического соединения цинка выбирают так, чтобы обеспечить требуемую концентрацию акцепторной примеси в выращиваемых слоях. С использованием данного способа получены фотокатоды с повышенной минимум на 10% квантовой эффективностью. 2 з.п. ф-лы, 1 ил.

Коллекторный электрод для солнечного элемента изготавливают трафаретной печатью проводящей пасты, при этом трафаретную печать повторяют многократно. Скорость прокатывания во время второй или последующей трафаретных печатей является больше, чем скорость прокатывания во время первой трафаретной печати. Вторая и последующая трафаретная печать накладывается на коллекторный электрод, отпечатанный первый раз; таким образом, чем выше скорость прокатывания, тем лучше отделяется печатная форма от пасты и основания. Количество нанесенной пасты увеличивается, и пленка для изготавливаемого коллекторного электрода становится толще, уменьшается величина сопротивления, а также обеспечивается улучшение эффективности преобразования солнечной энергии. 2 н. и 2 з.п. ф-лы, 2 ил., 2 табл.

Изобретение относится к технологии получения индиевых микроконтактов для соединения больших интегральных схем (БИС) и фотодиодных матриц, выполненных на основе полупроводниковых материалов. Способ изготовления индиевых микроконтактов согласно изобретению включает напыление слоя индия на полупроводниковые пластины с контактными площадками, формирование плоских индиевых площадок толщиной напыленного индия методами фотолитографии и/или ионного травления, при этом перед соединением матрицы и БИС производят оплавление индиевых плоских площадок в усеченные сферы высокочастотным катодным травлением ионами инертного газа при парциальном давлении (8-10)×10-1 Па и плотности мощности в разряде от 1 Вт/см2, без последующего нагревания. Изобретение предназначено для повышения надежности при одновременном снижении расхода индия при использовании стандартной конструкции испарителя, а также уменьшении времени процесса ионного травления напыленного слоя индия. 1 пр., 1 табл., 1 ил.

Изобретение относится к технологии изготовления полупроводниковых фотоприемников и может использоваться для создания многоэлементных фотоприемников различного назначения. Изобретение обеспечивает утоньшение базовой области фоточувствительного элемента с получением требуемого качества и воспроизводимости границ и толщины. В способе изготовления матричного фотоприемника на лицевой стороне фоточувствительного элемента до гибридизации протравливают канавку определенной глубины. В процессе утоньшения, когда полировка доходит до дна канавки, вследствие заданной ширины углубления происходит резкое изменение габаритов базовой области, которое можно зафиксировать визуально. В этот момент утоньшение прекращают - полученный кристалл имеет ровные края и фиксированный размер, заданный фотошаблонами под углубление. При этом для изготовления углубления после травления индиевых микроконтактов, не снимая нижний защитный и верхний фоторезисты, напыляют тонкую пленку SiO. Далее делают фотолитографию по SiO с помощью прямоугольного фотошаблона, открывающего место под углубление. Затем следует плазмохимическое травление SiO в месте углубления и жидкостное химическое травление непосредственно углубления на требуемую величину. Удаляют фоторезист, плазмохимически стравливают оставшуюся пленку SiO и удаляют остатки фоторезиста. 3 з.п. ф-лы, 12 ил.

Изобретение относится к способу получения структурированного электропроводящего покрытия на подложке. Технический результат - предоставление способа получения структурированного металлического покрытия на подложке, при реализации которого формируют структурированный металлический слой с четко определенными кантами и краями, что позволяет напечатать картину с высоким разрешением и структурами малых размеров, применимую в солнечных батареях. Достигается тем, что сначала на поверхность подложки наносят монослой или олигослой вещества, гидрофобизирующего поверхность, а затем на подложку наносят вещество, содержащее электропроводящие частицы, в соответствии с заранее заданным узором. Кроме того, изобретение касается применения этого способа для изготовления солнечных батарей или печатных плат, а также электронной детали, включающей в себя подложку, на которую нанесена структурированная электропроводящая поверхность, причем на подложку нанесен монослой или олигослой материала, гидрофобизирующего поверхность, а на монослой или олигослой нанесена структурированная электропроводящая поверхность. 2 н. и 5 з.п. ф-лы.

Изобретение относится к технологии фотодиодов на основе эпитаксиальных p-i-n структур GaN/AlxGa1-xN, преобразующих излучение ультрафиолетовой области спектра. Изобретение может быть использовано в производстве матричных фоточувствительных элементов приборов гражданского и военного назначения. Сущность изобретения состоит в том, что травление гетероэпитаксиальных структур GaN/AlxGa1-xN после применения стандартных методов фотолитографии проводят с использованием заранее известных скоростей стравливания отдельных слоев AlxGa1-xN с разными значениями доли Al-x (0,00÷0,65). В качестве метода травления используют метод ионно-лучевого травления ионами Ar (аргона). Бомбардировка ионами инертного газа (Ar) при невысоких скоростях травления позволяет достичь необходимой анизотропности и однородности глубины травления. Скорость ионно-лучевого травления ионами аргона эпитаксиальных слоев AlxGa1-xN уменьшается с увеличением содержания мольной доли алюминия в эпитаксиальном слое в 3-4 раза при изменении молярной доли алюминия от 0 до 0.65. Изобретение обеспечивает возможность формирования меза-структуры с множеством отдельных p-i-n диодов с обеспечением необходимой однородности глубины травления структуры до слоя n+-AlxGa1-xN и без прерывания процесса травления. 2 ил., 1 пр.
Изобретение относится к солнечной энергетике. Способ формирования активной p+-области солнечных элементов включает процесс диффузии бора с применением жидкого источника - треххлористого бора (BCl3). В качестве источника диффузанта используется жидкий источник - треххлористый бор (BCl3) при следующем расходе газов: кислород O2=12 л/ч, азот N2=380 л/ч, N2+H2=380 л/ч, BCl3=2 л/ч, 1000 ppm. Изобретение позволяет получить боросиликатный слой из жидкого источника треххлористого бора (BCl3) c обеспечением уменьшения разброса значений поверхностного сопротивления по кремниевой пластине, снижение температуры и длительности процесса. 3 пр.

При изготовлении фотопреобразователя согласно изобретению на тыльной стороне подложки GaSb n-типа проводимости выращивают методом эпитаксии высоколегированный контактный слой n+-GaSb, а на лицевой стороне подложки - буферный слой n-GaSb. Наносят на лицевую поверхность подложки диэлектрическую пленку. Создают химическим травлением окна в диэлектрической пленке. Легируют диффузией цинка из газовой фазы в квазизамкнутом контейнере поверхностный слой структуры GaSb фотопреобразователя. Удаляют на тыльной стороне подложки p-n-переход. Осаждают тыльный и лицевой контакты и отжигают их. Разделяют структуру травлением на отдельные фотоэлементы и наносят антиотражающее покрытие. Изобретение позволяет увеличить КПД фотопреобразователей на основе GaSb при высоких плотностях падающего излучения. 2 з.п. ф-лы, 2 ил., 1 пр.

Способ изготовления гетероструктурного солнечного элемента включает выращивание полупроводниковой гетероструктуры на германиевой подложке, создание омических контактов со стороны тыльной поверхности германиевой подложки и со стороны фронтальной поверхности гетероструктуры, нанесение просветляющего покрытия на фронтальную поверхность гетероструктуры, создание разделительной мезы через маску фоторезиста путем травления первой канавки в полупроводниковой гетероструктуре до германиевой подложки. После создания первой канавки осуществляют пассивацию поверхности первой канавки диэлектриком, после чего проводят травление через маску из фоторезиста второй канавки в германиевой подложке глубиной не менее 2 мкм и шириной на 5-10 мкм уже ширины первой канавки и покрывают вторую канавку диэлектриком. Способ согласно изобретению позволяет увеличить выход годных гетероструктурных солнечных элементов и повысить надежность их эксплуатации особенно в условиях космического пространства. 1 з.п. ф-лы, 2 ил., 5 пр.
Наверх