Способ электролиза воды под давлением в электролизной системе


 

C25B1/12 - Электролитические способы; электрофорез; устройства для них (электродиализ, электроосмос, разделение жидкостей с помощью электричества B01D; обработка металла воздействием электрического тока высокой плотности B23H; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод электрохимическими способами C02F 1/46; поверхностная обработка металлического материала или покрытия, включающая по крайней мере один способ, охватываемый классом C23 и по крайней мере другой способ, охватываемый этим классом, C23C 28/00, C23F 17/00; анодная или катодная защита C23F; электролитические способы получения монокристаллов C30B; металлизация текстильных изделий D06M 11/83; декоративная обработка текстильных изделий местной

Владельцы патента RU 2568034:

Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" (RU)

Изобретение относится к способу электролиза воды под давлением в электролизной системе, входящей в состав накопителей электроэнергии, работающих с замкнутым по воде рабочим циклом. Способ включает подачу постоянного напряжения от источника питания и воды, частичное разложение воды током в процессе электролиза воды с раздельным генерированием водорода и кислорода, отделение упомянутых газов от воды в газоотделителях с обеспечением в процессе генерирования равенства давлений упомянуты газов и заправку полученными газами баллонов системы, при этом генерирование газов и заправку ими баллонов производят поочередно, с пневматическим изолированием газоотделителей системы от ее баллонов при генерировании водорода и кислорода, а во время заправки баллонов - от электролизера, причем перед заправкой баллонов газоотделители изолируют друг от друга, а после окончания заправки их снова соединяют. Обеспечивается возможность генерирования водорода и кислорода с одинаковым давлением, без силовых нагрузок на мембраны ячеек и заполнения баллонов электролизной системы газами с различными давлениями без потери газов благодаря двухстадийному алгоритму работы электролизного накопителя газов, т.е. разделению по времени процессов генерирования газов и заполнения ими баллонов.

 

Изобретение относится к области автономных электрохимических систем, работа которых связана с накоплением и выдачей электроэнергии и может использоваться при разработке твердополимерных электролизных систем (ЭЛС), входящих в состав накопителей электроэнергии, работающих с замкнутым по воде рабочим циклом.

Известны твердополимерные электрохимические системы, входящие в состав накопителей электроэнергии, работающих с замкнутым по воде рабочим циклом (например, «Установка с электролизером воды высокого давления для лунной базы». Изд. РАН, Ж. «Энергетика» №3, 2007 г., стр.35-45; US 20100055512 (A1), 04.03.2010).

Известна электрохимическая система, взятая за аналог (RU 2371813, 29.01.2008), в которой осуществляется раздельное генерирование водорода и кислорода, а также их сбор в соответствующих баллонах. Данная система работает в непрерывном режиме, осуществляя одновременно и разложение воды на газы, и сбор последних в баллонах - ресиверах.

Недостатком такого способа эксплуатации ЭЛС является трудность их использования при высоких давлениях. При давлениях ≈60÷80 атм и выше между кислородной и водородной частями систем неизбежно возникает перепад давлений, связанный с эффектом «неидеальности», то есть отклонения свойств газов от законов идеального газа. При небольших рабочих давлениях ЭЛС такие перепады невелики, и мембрана электролизной ячейки их выдерживает. При более высоких давлениях приходится использовать ячейки усиленной конструкции, с более толстой мембраной и более низкими электрическими характеристиками (WO 01/37359 (А2), 25.05.2001). Массогабаритные параметры электролизера с такими ячейками также ухудшаются, а опасность прорыва мембраны естественно возрастает с увеличением перепада давления на ней.

При невысоких давлениях, когда перепад давлений между водородом и кислородом также невелик, для разгрузки мембран электролизных ячеек используют компенсаторы с изменяемым объемом. Это могут быть пружинные (RU 2102535, 20.01.1998, US 7097748 (В2), 29.08.2006) или гидравлические устройства, работающие на принципе сообщающихся сосудов (RU 2349683, 20.03.2009). Такие способы компенсации перепада давлений на мембрану электролизных ячеек трудно использовать при давлениях 100 атм и выше, когда величина перепада давлений между водородом и кислородом может достигать нескольких десятков атмосфер. В этом случае объем газовых полостей таких компенсаторов (сообщающихся с ресиверами ЭЛС) должен быть соизмерим с объемом самих ресиверов (баллонов), поэтому подобные устройства получаются довольно громоздкими. Кроме того, сложность их конструкции снижает их надежность и, соответственно, безопасность ЭЛС.

Данные обстоятельства явились одной из причин разработки «Устройства для электролиза воды под давлением», в котором гидрокомпенсаторами перепада давлений между кислородом и водородом являются сами баллоны установки (RU 2508419, 27.02.2014). Эффект «неидеальности» здесь парируется с помощью «управляемого» принципа сообщающихся сосудов, которыми служат ресиверы ЭЛС. При этом данный принцип реализуется не непосредственной гидравлической связью, а с помощью системы управления и дополнительной системой водоснабжения, подключенной к ресиверам (прототип).

Главным недостатком прототипа является принципиальное решение хранить газы при высоком давлении вместе с водой, поскольку 100% влажность газов затрудняют их дальнейшее использование. В изделиях ракетно-космической техники, например, используются только газы с точкой росы около -50°C. Предельно влажные водород и кислород применяют лишь в газорезке, где их давление невелико (1÷3 атм). В остальных случаях, при высоких давлениях неизбежно будет происходить конденсация воды в магистралях и агрегатах установки. При дросселировании таких газов (в клапанах и т.д.) арматура может замерзать. Слив воды, насыщенной газами (особенно кислородом) при высоких давлениях также проблематичен, поскольку при падении давления вода будет «вскипать», а выделяющиеся газы могут вывести из строя, например, насосы. В связи с этим ГОСТы на электролизные водород (ГОСТ 3022-60) и кислород (ГОСТ 5583-78) ограничивают допустимую влажность этих газов значениями 1 г/м3 и 0,07 г/м3, что на два порядка меньше значения, реализуемого в прототипе.

Помимо этого регулировка уровней воды в ресиверах с помощью системы управления достаточно сложна, а поэтому не очень надежна и инерционна по времени.

Благодаря этому повышение рабочего давления ЭЛС неизбежно приводит к увеличению перепада давления водорода и кислорода в системе, что может разрушить мембраны электролизных ячеек. Например, мембрана твердополимерной ячейки обычно выдерживает перепад давлений в несколько атмосфер, мембрана щелочной ячейки - несколько десятых атмосферы.

На начальной стадии работы ЭЛС, при небольших давлениях, равенство давлений H2 и O2 обеспечивается выбором соответствующих объемов газовых баллонов (H2:O2=2:1). Это позволяет эксплуатировать ЭЛС в непрерывном режиме, осуществляя одновременно и генерирование газов, и их «закачку» в баллоны. При давлениях 60÷80 атм и выше для этого режима работы необходимо применять специальные меры, к которым относятся:

1) использование ячеек повышенной прочности (WO 01/37359 (А2), 25.05.2001);

2) применение пневмокомпенсаторов с изменяемым объемом (RU 2102535, 20.01.1998; US 7097748 (В2), 29.08.2006; RU 2349683, 20.03.2009).

3) дренаж «избыточного» электролизного газа. Первые два варианта требуют усложнения конструкции электролизера и ЭЛС. Кроме этого ухудшаются массогабаритные характеристики системы и возрастает опасность взрыва баллонов ЭЛС. Третий вариант снижает энергоэффективность системы.

Задачей изобретения является разработка способа, позволяющего твердополимерной ЭЛС стандартной конфигурации работать не только при низких (до 60÷80 атм), но и при высоких давлениях, когда эффект неидеальности газов значителен.

Техническим результатом изобретения является генерирование водорода и кислорода с одинаковым давлением, без силовых нагрузок на мембраны ячеек; заполнение баллонов ЭЛС газами с различными давлениями без потери газов благодаря двухстадийному алгоритму работы электролизного накопителя газов, т.е. разделению по времени процессов генерирования газов и заполнения ими баллонов.

Технический результат достигается тем, что способ эксплуатации электролизной системы включает подачу постоянного напряжения питания и воду, раздельное генерирование водорода и кислорода в процессе частичного разложения воды током, отделение этих газов от воды в газоотделителях при обеспечении в процессе генерирования равенства давлений этих газов, а также заправку полученными газами баллонов системы, при этом процессы генерирования газов и заправки ими баллонов производят поочередно, пневматически изолируя газоотделители системы от ее баллонов при генерировании газов, и от электролизера - во время заправки баллонов, причем перед заправкой баллонов газоотделители изолируют друг от друга, а после окончания заправки их снова соединяют.

Суть предложения заключается в том, что эффект «неидеальности» различен для различных газов, а наиболее «идеальным» является водород. Давление же кислорода существенно меньше расчетного.

Разделение же по времени процессов генерирования газов и заполнения ими баллонов позволяет:

- генерировать водород и кислород с одинаковым давлением, без силовых нагрузок на мембраны ячеек;

- заполнять баллоны ЭЛС газами с различными давлениями, без потерь газов.

Такая методика позволяет эксплуатировать ЭЛС со стандартной архитектурой (электролизер - газоотделители - баллоны) при любых допустимых для системы давлениях. Промежуточным компенсатором перепада давлений H2 и O2 при этом служат газоотделители, в которых используется гидравлический принцип компенсации перепада давлений (принцип сообщающихся сосудов).

Способ реализуется следующим образом.

В ЭЛС подают постоянное напряжение питания от источника питания и воду. Затем начинается генерирование водорода и кислорода по обычной для твердополимерных установок методике (частичное разложение воды током и отделение полученных газов от оставшейся воды). При этом газы накапливаются в соответствующих газоотделителях (ГО), гидравлически соединенных между собой, а не в баллонах системы - последние в это время изолированы от газоотделителей.

После наработки определенной порции газов, когда давление в ГО больше давления в баллонах-ресиверах, электролиз прекращают, а ГО изолируют друг от друга (перекрывают соединяющую их гидромагистраль). Магистрали, соединяющие ГО с электролизером, также перекрываются, и открываются магистрали, соединяющие ГО с баллонами. Происходит зарядка баллонов - ресиверов от ГО. После выравнивания давлений в ГО и ресиверах (давление водорода и давление кислорода при этом различны) ресиверы изолируются от ГО; а гидромагистрали, соединяющие ГО, открывают, в результате чего давления в ГО водорода и кислорода выравниваются. Затем ГО снова подключаются к электролизеру, подключается его питание, и снова начинается генерирование газов. Таким образом, ГО играют роль передаточного звена между электролизером, в котором давления водорода и кислорода одинаковы, и баллонами, в которых давления водорода и кислорода различны. При этом появляется возможность осушить газы перед их сбором в баллонах.

Таким образом, предложенный двухстадийный алгоритм работы электролизного накопителя газов позволяет использовать простейшую конструкцию установки при относительно высоких давлениях, допустимых по условиям ее прочности.

Способ электролиза воды под давлением в электролизной системе, включающий подачу в электролизную систему постоянного напряжения от источника питания и воды, частичное разложение воды током в процессе электролиза воды с раздельным генерированием водорода и кислорода, отделение упомянутых газов от воды в газоотделителях электролизной системы с обеспечением в процессе генерирования равенства давлений упомянутых газов и заправку полученными газами баллонов, отличающийся тем, что генерирование газов и заправку полученными газами баллонов производят поочередно, при этом пневматически изолируют газоотделители электролизной системы от ее баллонов при генерировании водорода и кислорода, а во время заправки баллонов - изолируют от электролизера, при этом перед заправкой баллонов газоотделители электролизной системы изолируют друг от друга, а после окончания заправки их соединяют.



 

Похожие патенты:

Изобретение относится к карбонизатору напитка и к способу получения газированного напитка. Карбонизатор напитка содержит блок для генерации CO2, включающий в себя фотоэлектрохимический элемент, предназначенный для превращения сахарида в первой жидкости, содержащей сахарид, под влиянием света в CO2 и воздух, обогащенный CO2; регулятор давления, предназначенный для поддерживания повышенного давления воздуха, обогащенного CO2; и смесительную камеру для смешивания воздуха, обогащенного CO2, под давлением со второй жидкостью для получения газированного напитка.

Изобретение относится к способу получения вторичного энергоносителя - водорода посредством преобразования энергии ветра. Способ получения вторичного энергоносителя - водорода посредством преобразования энергии ветра включает преобразование посредством парусного движителя кинетической энергии ветра в кинетическую энергию движения судна, движущегося в районах открытого океана с мощными воздушными потоками, и затем посредством гидравлической турбины и электрогенератора в электрическую энергию, которую используют для разложения воды на водород и кислород с ожижением и накоплением водорода в криогенных резервуарах.

Изобретение относится к способу получения дезинфицирующего средства из водного раствора NaCl с использованием диафрагменного электролизера. Способ характеризуется тем, что поток пресной воды в количестве 0,4%-0,8% от количества получаемого дезинфицирующего средства в пересчете на концентрацию 500 мг в литре соединений активного хлора направляют в катодную камеру, поток пресной воды в количестве 16%-20% от количества получаемого дезинфицирующего средства в пересчете на концентрацию 500 мг в литре соединений активного хлора направляют на смешение с NaCl и затем в анодную камеру, оставшийся поток пресной воды направляют внутрь трубчатого катода, поток пресной воды из внутренней полости катода направляют в продолжение анодной камеры в крышке-смесителе электролизера, поток из катодной камеры направляют на утилизацию, поток из анодной камеры в виде анолита направляют в продолжение анодной камеры этого же электролизера, концентрацию активного хлора в анолите понижают поступившей пресной водой до норм дезинфицирующего средства, и дезинфицирующее средство выводят из электролизера, водород из катодной камеры направляют на вытяжку.
Изобретение относится к технологии изготовления нетканых диафрагменных материалов на основе волокон полимера с внедренными по поверхности частицами гидрофильного наполнителя для электролизеров воды с щелочным электролитом.

Изобретение относится к технологии получения йодата калия и найдет применение в химической, фармацевтической и пищевой промышленности при изготовлении йодсодержащих соединений. Способ получения йодата калия включает непрерывное электрохимическое окисление йодида калия до йодата калия с массовой концентрацией йодида калия 55-85 кг/м3 и йодата калия 70-170 кг/м3 в присутствии бихромата калия с массовой концентрацией до 2 кг/м3 на окислительном рутениево-титановом аноде при анодной плотности тока не более 2000 А/м2 в растворе при температуре 60-80°C, кристаллизацию йодата калия путем непрерывного отбора части электролита, его охлаждение до температуры окружающей среды и отделение кристаллов йодата калия от маточного раствора, отделенный от кристаллов маточный раствор укрепляется по йодиду калия и возвращается в электролизер. .
Изобретение относится к способу изготовления электродно-диафрагменного блока для щелочного электролизера воды, включающему приготовление формующего раствора диафрагмы, нанесение формующего раствора на подложку, изготовление диафрагмы методом фазовой инверсии и формирование электродно-диафрагменного блока прижатием электродов с двух сторон диафрагмы.

Изобретение относится к аноду для выделения хлора при электролизе из водного раствора. Анод имеет сформированный на проводящей подложке каталитический слой, содержащий аморфный оксид рутения и аморфный оксид тантала.

Изобретение относится к батарее твердооксидных электролитических элементов (SOEC), изготовляемой способом, который включает следующие стадии: (a) формирование первого блока батареи элементов путем чередования по меньшей мере одной соединительной пластины и по меньшей мере одного узла элемента, причем каждый узел элемента содержит первый электрод, второй электрод и электролит, расположенный между этими электродами, а также обеспечение стеклянного уплотнителя между соединительной пластиной и каждым узлом элемента, причем стеклянный уплотнитель имеет следующий состав: от 50 до 70 мас.% SiO2, от 0 до 20 мас.% Аl2О3, от 10 до 50 мас.% СаО, от 0 до 10 мас.% МgО, от 0 до 2 мас.% (Na2O+K2O), от 0 до 10 мас.% В2O3 и от 0 до 5 мас.% функциональных элементов, выбранных из TiO2, ZrO2, F2, P2O5, МоО3, Fе2O3, MnO2, La-Sr-Mn-O перовскита (LSM) и их комбинаций; (b) превращение указанного первого блока батареи элементов во второй блок со стеклянным уплотнителем толщиной от 5 до 100 мкм путем нагревания указанного первого блока до температуры 500°C или выше и воздействия на батарею элементов давлением нагрузки от 2 до 20 кг/см2; (c) превращение указанного второго блока в конечный блок батареи твердооксидных электролитических элементов путем охлаждения второго блока батареи, полученного на стадии (b), до температуры ниже, чем на стадии (b), при этом стеклянный уплотнитель на стадии (a) представляет собой лист стекловолокон.

Изобретение относится к способу эксплуатации твердополимерного электролизера воды, включающему подачу в него постоянного напряжения питания и реакционной воды, нагрев твердополимерного электролизера и реакционной воды до рабочей температуры, соответствующей заданному значению тока электролиза с контролем текущих значений тока электролиза и температуры, фиксацию рабочей температуры твердополимерного электролизера воды, обеспечивающей заданное значение тока электролиза, и последующее разложение воды при данной температуре и токе электролиза на водород и кислород.
Изобретение относится к электрохимическому способу получения ацетиленидов меди. При этом ацетилениды общей формулы R-C≡C-Cu, где R-алкил (C6-C8), арил получают путем электролиза раствора, состоящего из алкина общей формулы R-C≡CH, где R-алкил (C6-C8), арил, безводной соли щелочноземельного металла общей формулы MX2, где M=Mg, Ca; X=Cl, Br, J и биполярного апротонного растворителя (N, N-диметилформамид, Н, N-диметилацетамид) в мольном отношении алкин : MX2 : растворитель - 1:3:15 на медных электродах и контролируемом потенциале Е=2,4 В.

Изобретение относится к энергетическому оборудованию и может быть использовано в водородной энергетике для получения, хранения и транспортировки водорода. Устройство для получения атомарного водорода содержит реактор 1, работающий на разложении воды твердым реагентом, анод 3, катод 4 и магистрали 8 с арматурой для ввода исходного сырья в реактор 1 и вывода из него водорода и продуктов реакции. В качестве твердого реагента выбран нанодисперсный углерод, размещенный на поверхности анода 3 в воде между анодом 3 и катодом 4. На магистрали вывода водорода из реактора 1 установлены приемник водорода, электромагнит 10 с блоком управления магнитной индукцией 11 и аккумулятор водорода 12 с углеродными нанотрубками. Кроме того, устройство содержит регулятор 6 подводимой к реактору 1 электрической мощности в зависимости от температуры нанодисперсного углерода 5 в прианодном пространстве и заданного программой темпа получения водорода. Изобретение позволяет радикально увеличить срок хранения атомарного водорода для последующего использования в технологических процессах. 1 ил.

Изобретение может быть использовано в электрохимической области. Способ получения композиционного электродного материала на основе кобальт ванадиевого оксида и оксидных соединений молибдена включает осаждение электрокаталитического оксидного покрытия на модифицированной поверхности стеклоуглерода, при этом электрокаталитическое оксидное покрытие формируют на основе смешанных оксидов ванадия, кобальта и молибдена путем их осаждения из водного раствора электролита температурой 60÷65°C, при pH 4÷4,5, содержащего соли кобальта, молибдена, никеля, железа, лимонную и борную кислоты, под действием переменного асимметричного тока, в котором соотношение средних токов за период катодного и анодного составляет 1,5:1 при напряжении 40÷50 B и следующем соотношении компонентов, г·л-1: сульфат кобальта (CoSO4·7H2O) - 100,0÷110,0, гептамолибдат аммония ((NH4)6Mo7O24·4H2O) - 40,0÷56,0, сульфат железа (FeSO4·7H2O) - 6,0÷14,0, сульфат никеля (NiSO4·7H2O) - 18,0÷20,0, лимонная кислота (HOC(СН2СООН)2СООН) - 2,5÷3,0, борная кислота (H3BO3) - 13,0÷15,0. Изобретение позволяет снизить энергоемкость и упростить процесс получения композиционного электродного материала на основе кобальт ванадиевого оксида и оксидных соединений молибдена, увеличить прочность композиционного электродного материала и увеличение стабильности и эффективности его работы. 1 табл., 3 пр.
Изобретение может быть использовано в неорганической химии. Способ получения оксида меди (I) включает электрохимическое окисление и диспергирование электродов в электролизере в растворе хлорида натрия. Концентрация раствора хлорида натрия 2-6 моль/л. Процесс проводят с использованием двух медных электродов под действием симметричного или асимметричного переменного импульсного тока частотой 50 Гц. Средняя величина тока, отнесенная к единице площади поверхности электродов, равна 0,2-1,5 А/см2. Температура синтеза 55-60°C. Затем продукт промывают бидистиллированной водой, фильтруют и сушат при температуре 80°C до постоянной массы. Изобретение позволяет снизить энергозатраты, повысить производительность процесса, варьировать размер получаемых частиц. 8 пр.

Изобретение относится к области химии и водородной энергетики и может быть использовано в энергетике и транспортном машиностроении. Способ получения и хранения атомарного водорода включает электролиз воды с использованием в электролизной ячейке медного анода и катода из сплава дюральалюминия, периодически активируемого электрическим током, воздействие на полученный водород магнитным полем с амплитудой магнитной индукции в диапазоне от 100 до 120 гаусс и пропускание атомарного водорода через нанодисперсный углерод, содержащий углеродные нанотрубки. Изобретение позволяет увеличить срок хранения атомарного водорода, а также повысить топливную эффективность и экологичность получения и хранения водорода. 1 ил.

Изобретение относится к области нанотехнологий и наноматериалов. Наноразмерный порошок кремния получают травлением монокристаллического кремния в ячейке электрохимического травления с контрэлектродом U-образной формы из нержавеющей стали с последующим механическим отделением пористого слоя от подложки, его измельчением в изопропиловом спирте в ультразвуковой ванне и сушкой в естественных условиях, при этом в качестве электролита используют раствор диметилформамида с добавлением плавиковой кислоты и 20% по объему перекиси водорода (30%). Технический результат - увеличение скорости травления монокристаллического кремния. 2 ил.

Изобретение относится к катодной полуоболочке электролитической ячейки, содержащей металлические компоненты элемента ячейки, включающей: металлическую опорную структуру, приваренную к задней стенке катодной полуоболочки, и по меньшей мере один металлический эластичный элемент, расположенный плоскопараллельно на ней, деполяризованный кислородом катод, который расположен напротив по меньшей мере одного металлического эластичного элемента, при этом указанный деполяризованный кислородом катод содержит перфорированную металлическую сетку и ленту из катализатора, изготовленную из PTFE и оксида серебра, механически впрессованную в нее, причем оксид серебра восстанавливают до серебра во время работы электролитической установки и таким образом образует однородное соединение/связь между компонентами деполяризованного кислородом катода и по меньшей мере одним эластичным элементом, при этом указанное соединение/связь отличается высокой проводимостью, где по меньшей мере один из металлических компонентов снабжен электропроводящим покрытием, содержащим по меньшей мере два слоя, где первый слой, наносимый непосредственно на материалы элемента ячейки, выбран из группы, которая содержит Au, B-легированный никель, сульфиды Ni и их смеси, при этом первый слой имеет толщину слоя от 0,005 до 0,2 мкм; и второй слой, наносимый на первый слой, изготовлен из серебра, при этом второй слой имеет толщину слоя от 0,1 до 30 мкм. Также изобретение относится к применению электролитической ячейки для хлорщелочного электролиза. Предлагаемое покрытие имеет увеличенную адгезионную прочность покрытия на поверхностях компонентов элементов ячейки, так чтобы могли формироваться непроводящие оксидные слои. 2 н. и 2 з.п. ф-лы, 11 ил.

Изобретение относится к «водородной» энергетике и может быть использовано на станциях заправки перспективного автотранспорта на топливных элементах. Способ эксплуатации электролизной системы, работающей при высоком давлении, включает процесс разложения воды электрическим током с раздельным генерированием водорода и кислорода, сбор полученных газов в емкостях с соотношением объемов соответственно 2:1 и регистрацию давления этих газов, после регистрации давления кислорода P O 2 объем водородной емкости V H 2 увеличивают до значения, определяемого соотношением: V H 2 = V O 2 ρ O 2 8 ρ H 2 , где V O 2 - объем кислородной емкости; V H 2 - объем водородной емкости; ρ O 2 - плотность кислорода при давлении P O 2 (в кислородной емкости); ρ H 2 - плотность водорода при давлении P O 2 (в водородной емкости). Техническим результатом изобретения является обеспечение надежной «закачки» в баллоны водорода и кислорода при высоких давлениях при соблюдении равенства давлений этих газов в процессе электролиза. 1 ил.

Изобретение относится к способу получения дезинфицирующего средства, включает преобразование пресноводного раствора NaCl в анолит в анодной камере диафрагменного электролизера и в католит в катодной камере, протекание потоков в анодной и катодной камерах в одном направлении снизу вверх, получение дезинфицирующего средства с рН 2,5-5,5 из раствора NaCl, поступившего в анодную камеру непосредственно из смесителя концентрата NaCl с пресной водой, получение дезинфицирующего средства с рН 5,5-8,5 из раствора NaCl, поступившего в анодную камеру после обработки его в катодной камере, изменение рН дезинфицирующего средства в диапазонах 2,5-5,5 и 5,5-8,5 изменением соотношения между величинами потоков в электродных камерах за счет изменения величины потока католита во внешнюю среду, выведение из электролизера дезинфицирующего средства с требуемой концентрацией активного хлора. Способ характеризуется тем, что в электродных камерах обрабатывают раствор NaCl, приготовленный только из части пресной воды, участвующей в получении дезинфицирующего средства, оставшуюся часть пресной воды направляют сначала во внутреннее пространство пустотелого катода, затем ее направляют в крышку-смеситель электролизера, где ее смешивают с поступающим из анодной камеры анолитом, в результате получают дезинфицирующее средство с концентрацией активного хлора до 2 г/литр и со значением рН, устанавливаемом в диапазоне от 2,5 до 8,5. Также изобретение относится к устройству для получения дезинфицирующего средства. Использование настоящего изобретения позволяет уменьшить расход NaCl и электроэнергии, а также пресной воды. 2 н. и 4 з.п. ф-лы, 1 ил., 2 табл.

Изобретение относится к электролизной ячейке, содержащей: анодную камеру; катодную камеру; разделительную перегородку, отделяющую анодную камеру от катодной камеры; анод, установленный в анодной камере; катод, установленный в катодной камере; и поглощающее обратный ток тело, имеющее основу и сформированный на основе поглощающий обратный ток слой и установленное в катодной камере. При этом анод и катод электрически соединены и катод и поглощающий обратный ток слой электрически соединены, поглощающий обратный ток слой включает в себя элемент, имеющий более низкий окислительно-восстановительный потенциал, чем катод, и поглощающий обратный ток слой является пористым слоем, включающим в себя Ni или NiO, и полная ширина на половине максимума пика дифракционной линии металлического Ni при угле дифракции 2θ=44,5° на порошковой рентгеновской дифрактограмме поглощающего обратный ток слоя составляет 0,6° или менее. Также изобретение относится к электролизеру. Использование данной ячейки позволяет подавлять деградацию катода под влиянием обратного тока во время остановки электролиза, при этом обладает высокой стойкостью. 2 н. и 21 з.п. ф-лы, 9 ил., 2 табл., 15 пр.

Изобретение относится к области органической химии и электрохимии, конкретно к способу стереоселективного α-гидроксиалкилирования глицина путем введения его в виде основания Шиффа в координационную сферу комплекса Ni(II) с хиральным лигандом ((S)-2N-(N′-бензилпролил)аминобензофеноном), после чего осуществляют взаимодействие с реагентом. При этом в качестве реагента и растворителя используют алифатический спирт и проводят one-pot электрохимический процесс путем гальваностатического электролиза вышеуказанной смеси в присутствии КОН. Целевые продукты выделяют известными методами. Предлагаемый способ позволяет технологично и удобно получать целевые оптически активные β-гидрокси-α-аминокислоты с использованием более дешевых и доступных реагентов. 1 з.п. ф-лы, 8 пр.
Наверх