Антифрикционное покрытие



Антифрикционное покрытие
Антифрикционное покрытие
Антифрикционное покрытие

 


Владельцы патента RU 2570057:

Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук(ИМАШ РАН) (RU)

Изобретение относится к области машиностроения и может быть использовано для создания поверхностей трения, в частности подшипников скольжения и качения. Описано антифрикционное покрытие, содержащее углеводородный смазочный слой и легированную вольфрамом наноструктурированную монокристаллическую углеродную пленку толщиной 10-7-10-9 м, адсорбционные центры которой регулярно расположены как на поверхности пленки, так и в ее объеме. Технический результат - повышение задиростойкости и снижение коэффициента трения покрытия. 2 ил., 1 табл.

 

Изобретение относится к области машиностроения и может быть использовано для создания поверхностей трения, в частности подшипников скольжения и качения.

Известно антифрикционное покрытие, содержащее углеводородный смазочный слой, нанесенный на монокристаллическую углеродную пленку, включающую адсорбционные центры (см. Патент РФ №2230238, кл. F16C 33/04, 2002 г.).

Углеродную пленку получают методом импульсной конденсации углеродной плазмы в сочетании с дополнительным облучением ионами аргона или методом нанотехнологической молекулярной сборки. При этом адсорбционные центры располагаются как на поверхности пленки, так и в ее объеме.

При работе машин и механизмов в режиме граничного трения между трущимися парами с покрытиями данного типа формируются молекулярные эпитропные жидкокристаллические слои в граничных слоях молекул смазки, нормально ориентированные к поверхности трения. Структурная упорядоченность граничного слоя смазки повышает смазочную способность масел, так как структура пленки создает себе подобную молекулярную структуру в граничном слое смазки.

Тем не менее антифрикционные показатели данного покрытия остаются неудовлетворительными.

Техническим результатом является повышение задиростойкости и снижение коэффициента трения покрытия.

Указанный результат достигается за счет того, что антифрикционное покрытие содержит углеводородный смазочный слой, нанесенный на легированную вольфрамом монокристаллическую углеродную пленку, включающую адсорбционные центры, которые располагаются регулярно как на поверхности пленки, так и в ее объеме. При этом данное покрытие содержит легированную вольфрамом монокристаллическую наноструктурированную линейно-цепочечную углеродную пленку толщиной 10-7-10-9 м.

Улучшение антифрикционных свойств покрытия достигается как за счет его легирования вольфрамом, так и за счет регулярного расположения адсорбционных центров, как на поверхности пленки, так и в ее объеме, а также их связи с поверхностью наноструктурированного линейно-цепочечного покрытия.

Наличие регулярно упорядоченных адсорбционных центров в новом материале позволяет усилить ориентационные свойства углеродной наноструктурированной пленки.

Заявляемое изобретение поясняется чертежами.

На рис.1 показано антифрикционное покрытие на твердой основе в разрезе.

На рис.2 показана схема вакуумной установки для получения углеродных антифрикционных покрытий нового поколения.

Антифрикционное покрытие (рис.1) на основе 1 из стали 45 содержит смазочный слой 2, легированную вольфрамом наноструктурированную монокристаллическую углеродную пленку 3 толщиной 10-7-10-9 м, включающую адсорбционные центры, которые регулярно располагаются как на поверхности пленки, так и в ее объеме 4. В качестве смазочного материала могут использоваться практически все виды углеводородных смазок, а в качестве основы кроме стали 45 могут использоваться и другие конструкционные материалы.

Антифрикционное покрытие изготавливают с использованием вакуумной установки (рис.2), которая состоит из вакуумной камеры 5, термостола 6, источника 7 ионов инертного газа - аргона, импульсного генератора 8 углеродной плазмы, источника 9 легирующего газа и генератора плазмы 10 с вольфрамом.

Для нанесения пленки в вакуумную камеру 5 (рис.2) на термостол 6 помещают основу 1. Далее камеру вакуумируют до 10-7-10-9 мм рт. столба, а затем очищают и активируют поверхность основы при помощи источника 7 ионов аргона, при этом основу охлаждают или нагревают при помощи термостола. Затем наносят монокристаллическую углеродную пленку 3, одновременно используя источник вольфрамовой плазмы 10 и импульсный генератора 8 углеродной плазмы, плотностью от 2×1014 - 1×1015 см-3. Толщину покрытия и процесс его структурирования регулируют путем изменения давления в вакуумной камере, угла наклона термостола, частоты импульсов генератора плазмы и температуры основы.

Для формирования наноструктурированной монокристаллической пленки используют источник легирующего газа 9 и генератор плазмы 10 с вольфрамом. Импульсные генераторы плазмы 8, 10 и источник легирующего газа 9 работают по времени синхронизировано относительно друг друга - совместно или попеременно. Адсорбционные центры 4, регулярно расположенные внутри и на поверхности углеродной пленки, формируют из химических элементов из ряда: (O), (H), (N), (OH), (NHx), (OOH) и др., содержащихся в вакуумной камере остаточных газов.

Параметры процесса подбирают путем периодического исследования структуры и толщины углеродной пленки на различных образцах с использованием электронной спектроскопии. При этом отбирают образцы с наноструктурированной углеродной монокристаллической пленкой толщиной от 10-7 до 10-9 и линейно-цепочечной структурой.

Затем вне вакуумной камеры на наноструктурированную пленку наносят углеводородный смазочный слой 2 на основе вазелинового масла с добавкой 1% олеиновой кислоты.

Для сравнения в аналогичных условиях и с использованием аналогичных материалов готовят монокристаллическую углеродную пленку согласно прототипу.

Результаты трибометрических испытаний пар трения образцов с наноструктурированной монокристаллической углеродной пленкой по стали 45 и образцов с монокристаллической углеродной пленкой по стали 45 при различных скоростях скольжения представлены в таблице 1.

Как следует из приведенной таблицы, наименьшие величины коэффициента трения в исследованном диапазоне режимов испытания отмечаются у пары трения образцов с наноструктурированной монокристаллической углеродной пленкой толщиной 10-7-10-9 и стали 45.

Испытания проводились до возникновения заедания, характеризующегося резким возрастанием коэффициента трения. Это явление отмечалось у пары трения образец (прототип) с монокристаллической углеродной пленкой - сталь 45 (1500 об/мин, 44-я минута испытания). При испытании пары образец с наноструктурированной монокристаллической углеродной пленкой - сталь 45 заедание в указанном диапазоне режимов испытания не имело места.

Достоинства заявляемого технического решения заключаются в создании оптимальных микроструктур, наилучшим образом удовлетворяющих условиям работы антифрикционных покрытий и позволяющая им достигнуть высоких триботехнических параметров.

Изобретение можно использовать в машиностроении, приборостроении, а также в тех областях техники, где имеет место граничное трение

Антифрикционное покрытие, содержащее углеводородный смазочный слой, нанесенный на монокристаллическую углеродную пленку, включающую адсорбционные центры, отличающееся тем, что содержит легированную вольфрамом монокристаллическую наноструктурированную линейно-цепочечную углеродную пленку толщиной 10-7-10-9 м, адсорбционные центры которой регулярно расположены как внутри, так и на поверхности углеродной пленки.



 

Похожие патенты:

Изобретение относится к устройствам для изготовления намоткой слоистых армированных изделий из полимерных композиций и может быть использовано для изготовления подшипников скольжения.

Изобретение относится к области машиностроения, а именно к производству втулок с низким коэффициентом трения, не требующих смазки, для рычажной тормозной системы рельсового транспорта, например пассажирского и грузового.

Изобретение относится к технологии изготовления слоистых изделий намоткой и может быть использовано для изготовления подшипника скольжения. Способ включает нанесение полимерной композиции на внутреннюю цилиндрическую часть и фланец в виде покрытия путем заполнения зазора между фланцем и шаблоном намоткой слоями пропитанного полимерной композицией жгута с последующей опрессовкой и отверждением полимерной композиции, удаление шаблона и механическую обработку покрытия.

Изобретение относится к устройствам для изготовления намоткой слоистых армированных изделий из полимерных композиций и может быть использовано для изготовления подшипников скольжения.

Изобретение относится к устройству для изготовления намоткой слоистых армированных изделий из полимерных композиций и может быть использовано для изготовления подшипников скольжения.

Изобретение относится к машиностроению, в частности к опорам скольжения, и может быть использовано в подшипниках скольжения с вкладышами из металлокерамики. Подшипник скольжения содержит корпус с антифрикционным вкладышем, выполненным из металлокерамики.

Изобретение относится к области электрофизической и электрохимической обработки, в частности к электроэрозионному легированию, и может быть использовано для обработки подшипниковых шеек валов, контактирующих с вкладышами подшипников скольжения.

Изобретение относится к области электрофизической и электрохимической обработки, в частности к электроэрозионному легированию поверхностей вкладышей подшипников скольжения.
Изобретение относится к элементу скольжения, применяемого, например, в качестве подшипника скольжения в двигателях внутреннего сгорания, подшипника скольжения коленчатых валов, поршневого кольца или юбки поршня.

Изобретение относится, в общем, к коррозиестойким втулкам, которые могут применяться в автомобильной промышленности, в частности для петель дверей, капотов и моторного отсека, сидений, рулевых колонок, маховиков, подшипников вала системы уравновешивания и т.п., а также в других отрослях промышленностяи Втулка содержит: несущий нагрузку подслой (102), имеющий первую основную поверхность, вторую основную поверхность и кромки; слой скольжения (110), связанный с первой поверхностью; коррозиестойкий слой (114), связанный со второй поверхностью и проходящий таким образом, чтобы закрывать кромки несущего нагрузку подслоя (102).

Изобретение относится к подшипникам скольжения и может быть использовано в ракетно-космической, авиационной, нефтегазодобывающей и перерабатывающей промышленности, в железнодорожном, автомобильном транспорте и других областях промышленности. Подшипник скольжения, включающий корпус, устанавливаемый на цапфу вала или ось непосредственно или через вкладыш или втулку, в котором по крайней мере одна поверхность скольжения имеет наноструктурное антифрикционное покрытие на основе карбонитрида титана. Антифрикционное функционально-градиентное покрытие состоит из порошка карбонитрида титана, легированного кремнием, с фракциями нанодиапазона от 10 до 24 нм, субмикронного уровня - от 0,2 до 0,3 мкм и микронного уровня - от 1 до 5 мкм при следующем содержании фракций, мас. %: нанодиапазона - от 8 до 10, субмикронного уровня - от 50 до 60, микронного уровня - от 30 до 42. Технический результат изобретения - комплексное улучшение физико-механических и эксплуатационных характеристик подшипника за счет высокой твердости до 45-48 ГПа, среднего модуля упругости до 500 ГПа, адгезии к подложке (с максимальной критической нагрузкой до 50 Н), максимального снижения коэффициента трения от 0,01 до 0,015, повышения износостойкости, твердости, термической стабильности, жаропрочности, при одновременном повышении пластичности и прочности карбонитрида титана (TiCN) путем его наноструктурирования и легирования кремнием.

Изобретение относится к отверждаемой ультрафиолетовым излучением полимерной композиции для формирования самосмазывающейся прокладки. Отверждаемая ультрафиолетовым излучением полимерная композиция для самосмазывающейся прокладки включает: (мет)акрилатное соединение, имеющее цикл изоциануровой кислоты, описываемое формулой (1): в которой «X» представляет группу, которая содержит акрилоильную группу и состоит только из С, Н и О, а «Y» и «Z» представляют группы, каждая из которых состоит только из С, Н и О, и политетрафторэтиленовую смолу в качестве твердого смазочного материала, причем (мет)акрилатное соединение, имеющее цикл изоциануровой кислоты, содержится в количестве от 20% по весу до 90% по весу, и политетрафторэтиленовая смола содержится в количестве от 10% по весу до 50% по весу относительно общего количества отверждаемой ультрафиолетовым излучением полимерной композиции. Заявлен также узел скольжения, включающий самосмазывающуюся прокладку, и способ изготовления для получения узла скольжения. Технический результат - создание полимерной композиции для формирования самосмазывающейся прокладки, имеющий низкий коэффициент трения, высокую износостойкость, высокую допустимую нагрузку, высокие термостойкость, маслостойкость, при этом допускается возможность корректирования размера, достигается упрощение при изготовлении. 3 н. и 17 з.п. ф-лы, 7 ил., 6 табл., 24 пр.
Наверх