Способ компенсации потери напряжения в питающей электрической сети



Способ компенсации потери напряжения в питающей электрической сети
Способ компенсации потери напряжения в питающей электрической сети
Способ компенсации потери напряжения в питающей электрической сети
Способ компенсации потери напряжения в питающей электрической сети
Способ компенсации потери напряжения в питающей электрической сети
Способ компенсации потери напряжения в питающей электрической сети
Способ компенсации потери напряжения в питающей электрической сети
Способ компенсации потери напряжения в питающей электрической сети
Способ компенсации потери напряжения в питающей электрической сети
Способ компенсации потери напряжения в питающей электрической сети
Способ компенсации потери напряжения в питающей электрической сети
Способ компенсации потери напряжения в питающей электрической сети
Способ компенсации потери напряжения в питающей электрической сети

 


Владельцы патента RU 2572807:

Малафеев Сергей Иванович (RU)

Использование: в области электротехники. Технический результат - повышение точности компенсации потери напряжения. Согласно способу сигналы с датчиков тока 3 и 5 и напряжения 4 поступают на входы контроллеров 7 и 9. Контроллер 7 выполняет следующие функции: аналого-цифровое преобразование сигналов тока и напряжения; непрерывное вычисление действующих значений активной Iа и реактивной Iрн составляющих тока нагрузки и напряжения U путем усреднения за период питающей сети. Контроллер 9 выполняет следующие функции: аналого-цифровое преобразование сигналов тока и напряжения, непрерывное вычисление и запоминание действующих значений активной Iан и реактивной Iрн составляющих тока нагрузки и напряжения U путем усреднения за период питающей сети; вычисление значений активного r и реактивного x сопротивлений питающей электрической сети 1. Данные о действующих значениях активной Iан и реактивной Iрн составляющих тока нагрузки и напряжения U и значениях активного r и реактивного x сопротивления питающей электрической сети по шине данных 10 поступают в контроллер 8, который производит вычисление требуемого значения реактивного тока питающей сети

и формирование сигнала задания для компенсирующего устройства в соответствии с уравнением Iк=Iр+Iрн. 3 ил.

 

Изобретение относится к электротехнике и предназначено для использования в системах электроснабжения промышленных предприятий.

Известны способы компенсации потери напряжения в питающей электрической сети с помощью источника емкостного тока в узле нагрузки, при котором измеряют активный Ia и реактивный Iрн токи нагрузки и регулируют ток емкостного компенсирующего устройства (Баркан Я.З. Автоматическое управление режимом батарей конденсаторов. - М.: Энергия, 1978, с. 52-67; патент РФ №2239271, МПК H02J 3/16; H02J 3/18, опубл. 27.10.2004; патент РФ №2368992, H02J 3/18; опубл. 27.09.2009).

Известные способы предусматривают измерение токов и напряжений в узле нагрузки без учета потери напряжения в питающей сети.

Следовательно, недостатком известных способов является высокая погрешность компенсации потери напряжения в питающей электрической сети.

Следовательно, недостатком известных способов является высокая сложность процедуры идентификации.

Из известных технических решений наиболее близким к предлагаемому по достигаемому результату является способ компенсации потери напряжения в питающей электрической сети с помощью источника емкостного тока в узле нагрузки, при котором измеряют активный Ia и реактивный Iрн токи нагрузки и регулируют ток емкостного компенсирующего устройства (а.с. СССР №1737619, МПК H02J 3/18).

Известный способ предусматривает измерение активного и реактивного токов нагрузки и питающей сети и регулирование тока компенсирующего устройства таким образом, чтобы емкостной ток питающей сети был равен активному току нагрузки, умноженному на коэффициент, равный отношению активного сопротивления питающей сети к индуктивному сопротивлению питающей сети. В этом случае напряжение на нагрузке поддерживается приближенно равным напряжению в центре питания. Погрешность компенсации потери напряжения при этом возрастает при увеличении реактивного тока нагрузки.

Следовательно, недостатком известного способа является высокая погрешность компенсации потери напряжения в питающей электрической сети.

Цель предлагаемого изобретения - повышение точности компенсации потери напряжения в питающей электрической сети.

Поставленная цель достигается тем, что в известном способе компенсации потери напряжения в питающей электрической сети с помощью источника емкостного тока в узле нагрузки, при котором измеряют активный Ia и реактивный Iрн токи нагрузки и регулируют ток емкостного компенсирующего устройства, дополнительно измеряют активное r и индуктивное x сопротивления питающей сети, действующее напряжение питающей сети U, вычисляют требуемое значение реактивного тока питающей сети по формуле

и устанавливают ток компенсирующего устройства в соответствии с выражением

Iк=Iр+Iрн.

По сравнению с наиболее близким аналогичным техническим решением предлагаемый способ имеет следующие новые операции:

- измеряют активное r и индуктивное x сопротивления сети;

- измеряют действующее значение напряжения питающей сети U;

- вычисляют требуемое значение реактивного тока питающей сети по формуле

- устанавливают ток компенсирующего устройства в соответствии с выражением

Iк=Iр+Iрн.

Следовательно, заявляемое техническое решение соответствует требованию «новизна».

По каждому из отличительных признаков проведен поиск известных технических решений в области электротехники и автоматики.

Операция измерения действующего значения напряжения питающей сети U известна в способах аналогичного назначения (Баркан Я.З. Автоматическое управление режимом батарей конденсаторов. - М.: Энергия, 1978, с. 52-67).

Операция установления тока компенсирующего устройства в соответствии с выражением Iк=Iр+Iрн известна в способах аналогичного назначения (Баркан Я.З. Автоматическое управление режимом батарей конденсаторов. - М.: Энергия, 1978, с. 52-67).

Операции измерения активного r и индуктивного x сопротивлений питающей сети; вычисления требуемого значения реактивного тока питающей сети по формуле

в известных способах аналогичного назначения не обнаружены.

Таким образом, указанные признаки обеспечивают заявляемому техническому решению соответствие требованию «существенные отличия».

При реализации предлагаемого технического решения обеспечивается точная компенсация потери напряжения в питающей электрической сети. Это достигается за счет поддержания емкостного тока в питающей сети на основании измерения активного и индуктивного сопротивлений питающей электрической сети, активного и индуктивного токов нагрузки и напряжения в узле нагрузки и точного вычисления необходимого емкостного тока компенсирующего устройства для полной компенсации потери напряжения.

Следовательно, заявляемое техническое решение соответствует требованию «положительный эффект».

Сущность предлагаемого способа компенсации потери напряжения в питающей электрической сети поясняется чертежами. Эквивалентная схема замещения участка системы электроснабжения, показанная на фиг. 1, содержит питающую электрическую сеть с активным сопротивлением r и индуктивным сопротивлением x. На фиг. 1 обозначено: E ˙ - напряжение в центре питания; Δ U ˙ - падение напряжения в питающей электрической сети; I ˙ = I a + j I p - ток питающей сети; Ia - активный ток питающей сети; Ip - реактивный ток питающей сети; U ˙ - напряжение в узле нагрузки; xк - реактивное сопротивление компенсирующего устройства; zн - комплексное сопротивление нагрузки.

На фиг. 2 приведены векторные диаграммы токов и напряжений в узле нагрузки в режиме потребления активно-индуктивного тока. На чертеже обозначено: Iрн - реактивный ток нагрузки; Iк - реактивный ток компенсирующего устройства. Активный ток питающей сети равен активному току нагрузки Ia=Iан.

На основании векторной диаграммы, приведенной на фиг. 2, можно составить уравнение для действующих значений напряжений:

где E - напряжение в центре питания.

Решение уравнения

E=U

с учетом соотношения (1) относительно реактивного тока питающей сети дает выражение

Для определения знака (+ или -) в выражении (2) рассмотрим случай Iан=0. Полная компенсация обеспечивается при Iр=0. Выражение (2) при Iан=0 принимает вид

Из уравнения (3) следует, что в формуле (2) физической сущности процесса отвечает знак «-», т.е.

Следовательно, если с помощью компенсирующего устройства установить ток питающей сети в соответствии с уравнением (4), то потеря напряжения в сети будет полностью скомпенсирована и напряжение на нагрузке будет равно напряжению в центре питания U=Ε.

На фиг. 3 приведена функциональная схема системы автоматического регулирования тока компенсирующего устройства. На чертеже (фиг. 3) обозначено: 1 - питающая электрическая сеть; 2 - электроприемник (нагрузка); 3 и 5 - первый и второй трансформаторы тока; 4 - трансформатор напряжения; 6 - компенсирующее устройство; 7, 8 и 9 - первый, второй и третий контроллеры; 10 - шина данных.

Система, реализующая предлагаемый способ компенсации потери напряжения в питающей электрической сети работает следующим образом. Сигналы с датчиков тока 3 (измеряет ток нагрузки) и 5 (измеряет ток компенсирующего устройства) и напряжения 4 поступают на входы контроллеров 7 и 9.

Контроллер 7 выполняет следующие функции:

- аналого-цифровое преобразование сигналов тока и напряжения, поступающих с выходов датчиков тока 3 и напряжения 4;

- непрерывное вычисление действующих значений активной Iан и реактивной Iрн составляющих тока нагрузки и напряжения U путем усреднения за период питающей сети.

Контроллер 9 выполняет следующие функции:

- аналого-цифровое преобразование сигналов токов и напряжения, поступающих с выходов датчиков соответственно 3, 5 и 4;

- непрерывное вычисление и запоминание действующих значений активной Iан и реактивной Iрн составляющих тока нагрузки и тока компенсирующего устройства Iк и напряжения U путем усреднения за период питающей сети;

- вычисление значений активного r и реактивного x сопротивлений питающей электрической сети 1. Процедура идентификации параметров питающей электрической сети производится следующим образом. Из массивов запомненных значений с учетом значения тока Iк (Iр=Iк-Iрн) компенсирующего устройства путем численного решения системы уравнений:

где U1, U2, U3, Iан1, Iан2, Iан3, Iр1, Iр2, Iр3 - массивы напряжений, активных нагрузки и реактивных токов сети, зарегистрированные в три разных момента времени. Система из трех уравнений используется для определения двух неизвестных r и x при неизвестном E.

Данные о действующих значениях активной Iан и реактивной Iрн составляющих тока нагрузки и напряжения U и значениях активного r и реактивного x сопротивления питающей электрической сети по шине данных 10 поступают в контроллер 8, который производит вычисление значения реактивного тока питающей сети в соответствии с выражением (3) и формирование сигнала задания для компенсирующего устройства в соответствии с уравнением

Iк=Iр+Iрн.

Важным достоинством предлагаемого технического решения является то, что при его реализации не требуется информация о значении напряжения в центре питания. В результате работы системы напряжение в узле нагрузки автоматически устанавливается равным напряжению в центре питания.

Следовательно, известный способ компенсации потери напряжения в питающей электрической сети с помощью источника емкостного тока в узле нагрузки, при котором измеряют активный Iан и реактивный Iрн токи нагрузки и регулируют ток емкостного компенсирующего устройства, отличается тем, что дополнительно измеряют активное r и индуктивное x сопротивления питающей сети, действующее напряжение питающей сети U, вычисляют требуемое значение реактивного тока питающей сети по формуле

и устанавливают ток компенсирующего устройства в соответствии с выражением

Iк=Iр+Iрн,

и обеспечивает повышение точности компенсации потери напряжения в питающей электрической сети.

Использование предлагаемого способа компенсации потери напряжения в питающей электрической сети на промышленных предприятиях будет способствовать повышению надежности и качества электрооборудования, питающих сетей и технологических процессов.

Способ компенсации потери напряжения в питающей электрической сети с помощью источника емкостного тока в узле нагрузки, при котором измеряют активный Iан и реактивный Iрн токи нагрузки и регулируют ток емкостного компенсирующего устройства, отличающийся тем, что дополнительно измеряют активное r и индуктивное x сопротивления питающей сети, действующее напряжение питающей сети U, вычисляют требуемое значение реактивного тока питающей сети по формуле

и устанавливают ток компенсирующего устройства в соответствии с выражением
Iк=Iр+Iрн.



 

Похожие патенты:

Изобретение относится к области электротехники и может быть использовано в электроподвижном составе переменного тока с зонно-фазным регулированием напряжения. Технический результат заключается в повышении коэффициента мощности за счет улучшения синусоидальности формы первичного тока электровоза.

Изобретение относится к линиям электроснабжения для транспортных средств. Способ регулирования заключается в том, что фильтрокомпенсирующую установку (ФКУ) включают или отключают в зависимости от значения измеряемого фактического коэффициента реактивной мощности t g ϕ факт в часы больших суточных нагрузок электрической сети и отключают ФКУ в часы малых нагрузок при генерируемой реактивной мощности: t g ϕ г .факт = 0 .

Использование: в области электроэнергетики. Технический результат - обеспечение напряжения у потребителей на допустимом уровне, компенсация реактивной мощности непосредственно у ее потребителя и упрощение расчетов мест размещения конденсаторных устройств.

Использование: в области электроснабжения электрических железных дорог переменного тока. Технический результат - повышение точности регулирования мощности установки поперечной емкостной компенсации (КУ) и, следовательно, повышение надежности и экономичности электроснабжения тяговой сети.
Изобретение относится к области электротехники, а именно к повышению качества тока в электропитающих сетях за счет повышения коэффициента мощности. Способ включает в себя параллельное подключение компонентов сети между фазными проводами, симметрирование токов в фазах и межфазных токов, измерение значения напряжений на подключаемых и подключенных конденсаторах, сравнение мгновенных значений напряжений на подключаемых и подключенных конденсаторах, параллельное соединение их в момент их равенства.

Изобретение относится к электротехнике, а именно к устройствам, обеспечивающим энергосбережение путем централизованной компенсации реактивной мощности в условиях переменных нагрузок, и может быть использовано в высоковольтных электрических сетях напряжением от 3 кВ и выше.

Изобретение относится к области электроэнергетики и может быть использовано в сетях с компенсацией емкостных токов замыкания на землю с помощью настраиваемого дугогасящего реактора (ДГР), включенного в контур нулевой последовательности (КНП) сети, например в нейтраль питающего трансформатора.

Использование: в области электротехники. Технический результат - повышение стабильности работы генератора.

Изобретение относится к электротехнике и может найти применение в устройствах электропитания технологического оборудования, в частности нагревателей прецизионных электропечей.

Использование: в области электротехники. Технический результат - устранение напряжения обратной последовательности в многофазной электрической сети (1) электропередачи с многофазным соединением (2).

Изобретение относится к области электротехники, в том числе к преобразователю (10) для трехфазного напряжения с тремя электрически включенными в треугольник последовательными соединениями (R1, R2, R3), каждое из которых содержит по меньшей мере два последовательно включенных переключающих модуля (SM), и управляющим устройством (30), соединенным с переключающими модулями (SM), которое может управлять переключающими модулями (SM) таким образом, что в последовательных соединениях (R1, R2, R3) протекают токи ветвей с основной частотой трехфазного напряжения и с по меньшей мере одной дополнительной гармоникой тока, причем дополнительная гармоника тока рассчитана таким образом, что она протекает в последовательных соединениях (R1, R2, R3) преобразователя (10) по контуру и остается в преобразователе. Технический результат - уменьшение размаха пульсаций энергии в преобразовательных ветвях. 2 н. и 8 з.п. ф-лы, 8 ил.

Использование: в области электротехники. Технический результат - повышение надежности. Устройство электропитания имеет систему (2) тока с несколькими фазами (3), к которым подключены нелинейная, изменяющаяся во времени нагрузка (1) и компенсатор (5) реактивной мощности. Компенсатор (5) реактивной мощности выполнен как многоуровневый конвертор с несколькими ветвями (6), которые с одной стороны соединены с соответствующей одной из фаз (3) системы (2) тока и, с другой стороны, соединены между собой в общей нулевой точке (7) соединения звездой многоуровневого конвертора (5). Общая нулевая точка (7) соединена с нулевой точкой (12, 15) соединения звездой другого, подключенного к фазам (3) системы (2) тока устройства (8, 14), так что общая нулевая точка (7) как через ветви (6) многоуровневого конвертора (5), так и через другое устройство (8, 14) соединена с фазами (3) системы (2) тока. Соединение через другое устройство (8, 14) выполнено таким образом, что в отношении токовой системы нулевой последовательности системы (2) тока существует низкоомное, а в отношении токовой системы прямой последовательности системы (2) тока и токовой системы обратной последовательности системы (2) тока существует высокоомное соединение общей нулевой точки (7) соединения звездой многоуровневого конвертора (5) с фазами (3) системы (2) тока. 4 з.п. ф-лы, 4 ил.

Изобретение относится к области электротехники и может быть использовано для регулирования напряжения и реактивной мощности блоков генерации электростанций. Техническим результатом является повышение надежности энергоблока, величины активной мощности, выдаваемой в сеть синхронным генератором энергоблока, и повышение быстродействия при регулировании напряжения и реактивной мощности энергоблока. Устройство состоит из синхронного генератора с нерегулируемой системой возбуждения, к его выводам подключены начала первичных обмоток сериесного трансформатора, концы которых являются выводами энергоблока, вторичные обмотки сериесного трансформатора соединены с выводами переменного напряжения первого преобразователя напряжения. К выводам энергоблока через трансформатор подключены выводы переменного напряжения второго преобразователя напряжения, выводы постоянного напряжения которого соединены с однополярными выводами постоянного напряжения первого преобразователя. Выходы сигналов автоматического регулятора реактивной мощности, величины и фазы напряжения энергоблока соединены с соответствующими входами систем управления преобразователей напряжения. 1 ил.

Использование: в области электротехники. Технический результат - повышение надежности и плавности регулирования. Устройство регулирования реактивной мощности электрической сети содержит управляемый реактор, сетевая обмотка которого подключена к сети высокого напряжения, устройства измерения тока и напряжения в точке подключения к сети, силовой блок управления индуктивностью реактора, конденсаторную батарею, содержащую, по крайней мере, две секции конденсаторов, и электронную систему управления силовым блоком управления индуктивностью реактора и переключателем секций конденсаторной батареи. При этом сетевая обмотка реактора содержит, по крайней мере, один отвод, подсоединенный через, по крайней мере, один переключатель к секциям конденсаторной батареи. В устройстве по второму варианту управляемый реактор снабжен дополнительной обмоткой, по крайней мере, с одним отводом, нейтральный конец которой заземлен, линейный конец изолирован, а отвод через, по крайней мере, один переключатель присоединен к секциям конденсаторной батареи. 2 н. и 3 з.п. ф-лы, 6 ил.

Использование: в области электротехники. Техническим результатом является улучшение качества тока за счет повышения быстродействия процессов компенсации реактивной мощности в условиях переменных нагрузок и отказов отдельных элементов, уменьшения перегрузок реактивных элементов и элементов коммутации и повышение надежности функционирования. Согласно изобретению число реактивных элементов М в каждой из N батарей реактивных элементов увеличивают до значения M+K, где К - число резервных реактивных элементов, которое выбирается из условия обеспечения непрерывности технологического процесса потребителей энергии. Подключение каждого из реактивных элементов в каждой из N батарей реактивных элементов производят индивидуально в моменты равенства напряжения на соответствующих реактивных элементах при произвольном его значении и напряжения сети с учетом результатов постоянной выполняемой диагностики исправности каждого из реактивных элементов. При этом подключение каждой из N батарей реактивных элементов к сети осуществляют после момента завершения коммутации реактивных элементов в соответствующей из N батарей реактивных элементов. После этого формируется управляющая команда для уточнения настроек адаптивного компенсатора гармоник. 2 н. и 3 з.п. ф-лы, 1 ил.

Использование: для компенсации реактивной мощности печи с погруженной дугой. Технический результат - повышение эффективности управления. Система содержит устройство дистанционного управления с использованием беспроводной связи и устройство компенсации реактивной мощности печи с погруженной дугой. Устройство дистанционного управления с использованием беспроводной связи дополнительно содержит модуль защищенной связи MS-RSCM302, интегрированный с модулем сетевой связи MS-3G, и модуль преобразования с последовательным портом MS-NC2. Устройство компенсации реактивной мощности печи с погруженной дугой содержит шкаф управления и шкаф автоматической компенсации емкости. Шкаф управления содержит модуль защищенной связи MS-RSCM302, модуль преобразования с последовательным портом MS-NC2, контроллер DVPEH2 PLC, программируемый многофункциональный сетевой прибор и сенсорный экран; причем шкаф автоматической компенсации емкости содержит несколько устройств компенсации. Настоящее изобретение устанавливает дистанционную связь по сети Интернет и сбор данных с помощью кабельного модема, беспроводной передачи и системы 3G, а дистанционный контроль и считывание данных на каждом производственном участке реализуются посредством установки заказного программного обеспечения в компьютерах и смартфонах для дополнительного дистанционного управления фактическим рабочим состоянием устройства компенсации. 4 з.п. ф-лы, 8 ил.
Наверх