Многоканальная отражательная линия задержки на пав и способ кодирования информационного сигнала



Многоканальная отражательная линия задержки на пав и способ кодирования информационного сигнала
Многоканальная отражательная линия задержки на пав и способ кодирования информационного сигнала
Многоканальная отражательная линия задержки на пав и способ кодирования информационного сигнала

 


Владельцы патента RU 2576504:

Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (RU)
Федеральное государственное унитарное предприятие федеральный научно-производственный центр "Научно-исследовательский институт измерительных систем им. Ю.Е. Седакова" (RU)

Изобретение относится к устройствам акустоэлектроники. Техническим результатом является повышение степени защищенности информационного сигнала от несанкционированного прочтения и повышение технологичности процесса его кодирования. Для этого в многоканальной оптической линии задержки (ОЛЗ), включающей расположенный на пьезоэлектрической подложке входной преобразователь, состоящий из n встречно-штыревых преобразователей (ВШП), и отражательные элементы, установленные в одну линию по обеим сторонам входного преобразователя, входной преобразователь выполнен из N модулей, состоящих из n1…ni ВШП, количество которых в модуле соответствует числу импульсов с заданными временными характеристиками в информационном сигнале и установленных таким образом, что осевая линия каждого модуля имеет свой угол наклона α к линии расположения отражательных элементов. В способе кодирования информационного сигнала, формируемого многоканальной ОЛЗ ВШП входного преобразователя группируют в N модулей, при этом каждый модуль изготавливают с количеством ВШП, соответствующим числу импульсов, имеющих заданные временные задержки и осевые линии которых устанавливают под углом α1…αn к линии отражательных элементов, причем α1≠α2≠…≠αn, а перекодирование информационного сигнала выполняют переменой места положения модулей относительно друг друга с сохранением угла наклона осей модулей. 2 н.п. ф-лы, 4 ил.

 

Изобретение относится к устройствам акустоэлектроники, предназначенным для формирования кодированного информационного сигнала в системах радиочастотной идентификации объектов.

Известны устройства формирования кодирования информационного сигнала, функционирующие на поверхностных акустических волнах (ПАВ) [1, 2]. Конструктивно устройства содержат подложку из пьезоматериала, на поверхности которой выполнены входной преобразователь и отражательные элементы в виде встречно-штыревых преобразователей (ВШП), расставленных в звуковых каналах. Кодирование информационного сигнала выполняют размещением отражательных элементов на определенном расстоянии от входного преобразователя, определяющего временные задержки между импульсами.

Недостатком таких конструкций является сложность в формировании различных кодов, требующих перерасчета мест установки отражательных элементов.

Наиболее близким к заявляемому техническому решению является многоканальная отражательная линия задержки (ОЛЗ) на ПАВ [3], в которой входной преобразователь состоит из n отдельных идентичных ВШП, соединенных параллельно. Каждый ВШП образует самостоятельный акустический канал, в котором установлены отражательные элементы. Входной преобразователь расположен вдоль осевой линии, имеющей угол наклона α к линии расположения отражательных элементов, который задает величину временного интервала между импульсами информационного сигнала.

Способ кодирования информационного сигнала, вырабатываемого представленной конструкцией многоканальной ОЛЗ [3], заключается в том, что предварительно рассчитывают угол наклона оси входного преобразователя к линии расположения отражательных элементов, исходя из требований временных задержек между импульсами. Затем устанавливают входной преобразователь с наклоном к линии расположения отражательных элементов под углом, соответствующим расчетной величине. Перекодирование информационного сигнала выполняют путем изменения угла наклона общей оси входного преобразователя относительно расположения отражателей.

Данная конструкция ОЛЗ и способ кодирования информационного сигнала позволяют повысить технологичность ее изготовления и получить кодированный информационный сигнал с равномерно распределенными импульсами во времени, однако она не позволяет осуществить переход с импульсного кодирования информационного сигнала на другой, более сложный, например, импульсно-временной, что сужает ее функциональные возможности.

Техническим результатом изобретения является повышение степени защищенности информационного сигнала от несанкционированного прочтения и повышение технологичности процесса его кодирования.

Технический результат достигается тем, что в многоканальной ОЛЗ, включающей расположенный на пьезоэлектрической подложке входной преобразователь, состоящий из n ВШП, и отражательные элементы, установленные в одну линию по обеим сторонам входного преобразователя, входной преобразователь выполнен из N модулей, состоящих из n1…ni ВШП, количество которых в модуле соответствует числу импульсов с заданными временными характеристиками в информационном сигнале и установленных таким образом, что осевая линия каждого модуля имеет свой угол наклона α к линии расположения отражательных элементов.

Технический результат достигается тем, что в способе кодирования информационного сигнала, формируемого многоканальной ОЛЗ, в которой входной преобразователь, состоящий из ВШП, устанавливают под углом к линии расположения отражательных элементов в соответствии с его расчетом, исходя из временных задержек между импульсами информационного сигнала.

ВШП входного преобразователя группируют в N модулей, при этом каждый модуль изготавливают с количеством ВШП, соответствующим числу импульсов, имеющих заданные временные задержки и осевые линии которых устанавливают под углом α1…αn к линии отражательных элементов, причем α1≠α2≠…≠αn, а перекодирование информационного сигнала выполняют переменой места положения модулей относительно друг друга с сохранением угла наклона осей модулей.

На фиг. 1 изображен эскиз топологии ОЛЗ, в которой входной преобразователь сформирован из ВШП, сгруппированных в модули А, В, С, оси которых установлены с различными углами наклона к линии расположения отражательных элементов, Δl - горизонтальное расстояние между входными ВШП в соседних акустических каналах, h - расстояние между акустическими каналами.

На фиг. 1 обозначены: 1 - подложка из пьезоэлектрического материала; 2 - отражательные элементы; 3 - входной преобразователь; 4 - ВШП входного преобразователя, образующие акустические каналы; А, В, С - модули входного преобразователя 3; α1…αn - углы наклона осей модулей А, В, С к линии расположения отражательных элементов.

На фиг. 2 представлен информационный сигнал, формируемый предлагаемой ОЛЗ.

На фиг. 3 дана топология с измененным расположением модулей А, В, С.

На фиг. 4 представлен перекодированный информационный сигнал.

Конструктивно многоканальная ОЛЗ, представленная на фиг. 1, выполнена следующим образом. На подложке 1 расположены отражательные элементы 2 и входной преобразователь 3, состоящий из аналогичных ВШП 4, объединенных в модули (обозначены А, В, С), в которых количество ВШП 4 соответствует числу импульсов с заданными временными характеристиками в информационном сигнале.

Отражательные элементы 2 установлены в акустических каналах с двух сторон от входного преобразователя. Модули А, В, С расположены на осевых линиях, имеющих наклоны под углами α1…αn к линии расположения отражательных элементов. Величины углов наклона α рассчитываются, исходя из обеспечения требуемого временного интервала Δt между импульсами в каждом модуле информационного сигнала. Расчет для угла наклона каждого модуля выполняется согласно методике, представленной в прототипе [3]:

где Δl - горизонтальное расстояние между входными ВШП в соседних акустических каналах, h - расстояние между акустическими каналами.

ВШП, формирующие входной преобразователь в модулях А, В, С, соединены последовательно, а модули между собой подключены параллельно.

Способ кодирования информационного сигнала заключается в том, что ВШП 4 группируют в N модулей. При этом каждый модуль изготавливают с количеством ВШП, соответствующим числу импульсов, имеющих заданные временные задержки. Затем их устанавливают под углами α1…αn к линии отражательных элементов, причем α1≠α2≠…≠αn.

Перекодирование информационного сигнала выполняют переменой места положения модулей относительно друг друга с сохранением угла наклона осей модулей.

Изобретение реализуется следующим образом. На входной преобразователь 3 подается короткий радиоимпульс, под действием которого ВШП 4 формируют акустическую волну, распространяющуюся по акустическим каналам. Достигнув отражателей 2, акустическая волна переотражается и достигает входных ВШП 4, которые преобразуют ПАВ в радиоимпульс и формируют кодированный информационный сигнал. Каждый модуль А, В, С, N с установленными ВШП 4, формирует свой блок импульсов в информационном сигнале. Поскольку оси модулей А, В, С, N имеют различные углы наклона α к линии отражательных элементов, то вырабатываемые ими импульсы имеют различные временные задержки. Так модуль А, имеющий меньший угол наклона, формирует импульсы с меньшими временными интервалами, чем модули В, С с большими углами наклона. На фиг. 2 представлен информационный сигнал, формируемый ОЛЗ с топологией, представленной на фиг. 1.

Перекодирование информационного сигнала представленной конструкции ОЛЗ выполняют перестановкой модулей без изменения угла наклона их осей к линии расположения отражательных элементов. Измененная топология ОЛЗ и соответствующий ей информационный сигнал представлены на фиг. 3 и 4 соответственно. Из сравнения информационных сигналов, представленных на фиг. 2 и 4 видно, что при выполнении перестановки модулей между собой изменяются временные задержки отраженных импульсов и полностью меняется информационный сигнал.

ВШП 4 входного преобразователя 3 в модулях А, В, С соединены между собой последовательно, а модули А, В, С подключены между собой параллельно, что позволяет снизить общую статическую емкость всего входного преобразователя и упрощает схему согласования входного волнового сопротивления ОЛЗ с антенно-фидерным трактом, подключаемым к ОЛЗ.

Таким образом предложенная конструкция входного преобразователя с переменным углом наклона осевой линии расположения модулей А, В, С, …, N позволяет формировать сложный информационный сигнал, характеризующийся неравномерным расположением импульсов во времени, что затрудняет его несанкционированную расшифровку.

Способ перекодирования информационного сигнала путем перестановки модулей во входном преобразователе упрощает процесс формирования сигналов, имеющих различные коды.

Внедрение предлагаемой многоканальной ОЛЗ позволяет формировать сложные информационные сигналы, имеющие различные задержки между импульсами, упростить согласование входного преобразователя с антенно-фидерным трактом за счет последовательного соединения ВШП в модулях и параллельного подключения последних. При этом проектирование топологии ОЛЗ с различными кодами и ее изготовление имеют лучшую технологичность, чем существующие. Таким образом, поставленная задача выполнена.

Список цитированной литературы

1. Патент RU 2158936 С2, 10.11.2000.

2. Патент RU 2486665 С1, 27.06.2013.

3. Решение о выдаче патента на изобретение, заявка №2012145915/08(073734), дата подачи заявки 26.10.2012.

1. Многоканальная отражательная линия задержки (ОЛЗ) на поверхностных акустических волнах (ПАВ), включающая расположенный на пьезоэлектрической подложке входной преобразователь, состоящий из n встречно-штыревых преобразователей (ВШП), и отражательные элементы, установленные в одну линию по обеим сторонам входного преобразователя, отличающаяся тем, что входной преобразователь выполнен из N модулей, состоящих из из n1…n1 ВШП, количество которых в модуле соответствует числу импульсов с заданными временными характеристиками в информационном сигнале и установленных таким образом, что осевая линия каждого модуля имеет свой угол наклона α к линии расположения отражательных элементов, при этом модули выполнены с возможностью их перестановки относительно друг друга с сохранением угла наклона их осевых линий.

2. Способ кодирования информационного сигнала, формируемого многоканальной ОЛЗ, в которой входной преобразователь, состоящий из ВШП, устанавливают под углом к линии расположения отражательных элементов в соответствии с его расчетом, исходя из временных задержек между импульсами информационного сигнала, отличающийся тем, что ВШП входного преобразователя группируют в N модулей, при этом каждый модуль входного преобразователя изготавливают с количеством ВШП, соответствующим числу импульсов, имеющих заданные временные задержки и осевые линии которых устанавливают под углом α1…αn к линии отражательных элементов, причем α1≠α2≠…≠αn, а перекодирование информационного сигнала выполняют переменой места положения модулей относительно друг друга с сохранением угла наклона их осевых линий.



 

Похожие патенты:
Изобретения относятся к области радиолокации и могут быть использованы в радиолокационных станциях (РЛС) для управления воздушным движением и для контроля воздушного пространства.

Изобретение относится к области определения местоположения подвижных подводных объектов технической природы и может быть использовано при поиске и обнаружении подводных аппаратов и платформ.

Изобретение относится к области радиолокации и может быть использовано при создании средств обнаружения высокоскоростных воздушных целей. Достигаемый технический результат изобретения - повышение вероятности обнаружения высокоскоростных воздушных целей за счет учета скорости их сближения с носителем импульсно-доплеровской радиолокационной станции (ИД РЛС).

Изобретение относится к области радиолокации и может быть использовано на вертолетах и других летательных аппаратах для обнаружения наземных объектов. Достигаемый технический результат - улучшение технико-эксплуатационных характеристик.

Изобретение относится к области радиотехники и может быть использовано при создании средств идентификации воздушных целей. Достигаемый технический результат изобретения - повышение вероятности правильной идентификации воздушных целей, обнаруженных бортовой радиолокационной станцией (РЛС) в условиях многоцелевой обстановки за счет уменьшения объема неопределенности радиолокационной системы с активным ответом (РСАО).

Изобретение относится к радионавигации и может быть использовано в локальных навигационных системах и сетях для управления движением мобильных объектов в локальных зонах навигации.

Изобретение относится к области радиолокационной техники и может быть использовано при пассивной локации быстроперемещающихся объектов. Достигаемый технический результат изобретения - повышение эффективности пассивной локации за счет увеличения чувствительности и помехоустойчивости локационной системы, реализации возможности пассивной локации высокоскоростного объекта в условиях действия помех.

Изобретение относится к радиолокации и может быть использовано в импульсных радиолокационных станциях (РЛС). Достигаемый технический результат - улучшение эффективности работы РЛС при флуктуациях эффективной площади рассеяния (ЭПР) обнаруживаемых объектов, а также в условиях прицельных по частоте активных шумовых помех (АШП) в дальней зоне работы при сохранении качества подавления помеховых сигналов, отраженных от местных предметов в ближней зоне работы РЛС.

Изобретение относится к радиотехнике и может быть использовано в системах пеленгации и сопровождения различных объектов. Достигаемый технический результат - повышение точности пеленгации и сопровождения объектов за счет учета изменений крутизны и нелинейных искажений пеленгационной характеристики в процессе функционирования системы антенна-обтекатель.

Изобретение относится к радиолокации и может быть использовано для экспериментальной оценки вклада участков крупногабаритного объекта, например авиационного турбореактивного двигателя, в интегральную величину эффективной поверхности рассеяния двигателя.

Изобретение относится к области подповерхностной радиолокации и контроля насыпи железных дорог и автодорог. Влажность, загрязненность и толщину слоев насыпи определяют с помощью георадара. В составе насыпи железной или автодороги применяют один или несколько слоев отражательного геотекстиля. Отражательный геотекстиль включает электропроводящие элементы. Измеряют электромагнитные сигналы георадара, отраженные от электропроводящих элементов геотекстиля. Результаты численно обрабатывают на ЭВМ. Затухание отраженных электромагнитных сигналов определяют по амплитуде, а показатель преломления - по скорости сигналов. Влажность насыпи определяют по показателю преломления, а загрязненность - по показателю преломления и затуханию сигналов. Толщину и влажность слоев слоисто-неоднородной насыпи определяют по форме годографа отраженных сигналов. Способ является бесконтактным, неразрушающим, быстрым и эффективным. Технический результат заключается в увеличении эффективности и качества обследования насыпи, повышении безопасности на железных дорогах и автодорогах. 10 з.п. ф-лы, 5 ил.

Изобретение относится к радиолокации и может быть использовано в импульсных радиолокационных станциях (РЛС) сопровождения с активной фазированной антенной решеткой. Достигаемый технический результат - уменьшение временных затрат на обнаружение целей и, как следствие, увеличение производительности РЛС сопровождения, при сохранении однозначности измерения дальности. Указанный технический результат достигается за счет использования многочастотного способа работы, при котором частота зондирующего сигнала изменяется от такта к такту, а прием отраженного эхо-сигнала осуществляется на этих же частотах в периодах повторения, соответствующих дальности до цели. При этом РЛС работает по целеуказанию от внешних средств обнаружения или от устройства вторичной обработки информации, реализующей завязку трассы при работе указанной РЛС в режиме поиска целей. Способ реализуется устройством, состоящим из основной и компенсационной антенны, формирователя зондирующих импульсов, передающего устройства, приемников основного и компенсационного каналов, устройства первичной обработки, устройства вторичной обработки и схемы управления, с соответствующими связями. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области средств обнаружения нарушений, выявляемых правоохранительными органами. Достигаемый технический результат - повышение чувствительности и помехозащищенности. Указанный результат достигается за счет того, что радар-детектор содержит антенну, подключенную к приемнику сигнала, первый смеситель, смешивающий сигнал антенны с сигналом от первого гетеродина, усилитель, второй смеситель, смешивающий усиленный сигнал с сигналом от, по меньшей мере, одного второго гетеродина, полосовой фильтр, сигнатурный модуль и центральный процессор, который выводит информацию об обнаруженных радарах посредством звукового усилителя и динамика. При этом центральный процессор осуществляет управление, по меньшей мере, одним вторым гетеродином и, посредством связанного с ним генератора пилообразного напряжения, первым гетеродином. Кроме того, устройство содержит фотодиод и связанный с ним лазерный модуль, сигнал от которого анализируется центральным процессором. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области радиотехники, в частности к способам и технике радиотехнического мониторинга источников радиоизлучений (ИРИ) с линейно-частотно-модулированными (ЛЧМ) сигналами. Достигаемый технический результат - повышение точности определения ширины спектра ЛЧМ сигнала путем учета взаимного перемещения носителя ИРИ и носителя автокорреляционного приемника (АКП). Указанный технический результат достигается за счет определения радиальных скоростей движения носителей источника радиоизлучения и приемника, средней длины волны ЛЧМ сигналов, измерения периода следования ЛЧМ сигналов и определения ширины спектра ЛЧМ сигналов по формуле: где fp(n) - разностная частота сигнала на выходе автокорреляционного приемника, τз - время задержки принятого ЛЧМ сигнала, τu - длительность ЛЧМ сигнала, VrИ(nTu) - радиальная скорость движения носителя источника радиоизлучения, VrП(nTu) - радиальная скорость движения носителя приемника, Tu - период следования ЛЧМ сигналов, λ - средняя длина волны ЛЧМ сигналов, n = 1 … N ¯ , N - количество ЛЧМ сигналов. 4 ил.

Изобретение относится к радиолокации и может использоваться в радиотехнических системах, установленных на подвижных объектах, для получения радиолокационного изображения (РЛИ) в процессе дистанционного зондирования земной поверхности. Достигаемый технический результат - повышение вероятности правильного распознавания малоразмерных и распределенных объектов на местности. Сущность заявляемого способа состоит в том, что при формировании РЛИ осуществляется компенсация линейного пространственного искажения изображений на восходящем и нисходящем участке изменения линейно-частотно-модулированного (ЛЧМ) сигнала и дополнительная фокусировка изображений, учитывающая свойства широкополосности ЛЧМ. Для этого после процедуры приема и записи в память эхо-сигналов, отраженных от всех объектов в зоне обзора радиолокационной станции с синтезированной апертурой, осуществляется разделение данных, содержащих отсчеты эхо-сигнала на восходящем и нисходящем участках изменения частоты ЛЧМ зондирующего сигнала. Затем производится параллельное сжатие этих данных по дальности и вычисление оценки ошибки фазовых искажений в процессе автофокусировки. На этапе сжатия данных по азимуту формируется пара РЛИ, при этом используются опорные функции, отличающиеся друг от друга несущими частотами для восходящего и нисходящего участков изменения частоты ЛЧМ сигнала. На следующем этапе осуществляется последовательное вычисление коэффициента взаимной корреляции этих РЛИ при различных значениях линейной ошибки дискретизации эхо-сигналов в соответствии с алгоритмом «золотого сечения». С учетом вычисленной оценки данной ошибки производится дополнительная фокусировка каждого изображения, а после геометрической коррекции пары РЛИ с целью приведения их к единому масштабу, осуществляется их некогерентное суммирование.1 ил.

Изобретение относится к области радиолокации и предназначено для использования в радиолокационных станциях (РЛС) с доплеровским передатчиком, а также в специфических следящих системах. Достигаемый технический результат - увеличение дальности действия, повышение помехозащищенности и точности измерения текущих координат и параметров, исключение возможности разведки структуры зондирующего сигнала при существенном упрощении схемы радиолокатора и соответствующем снижении объема оборудования и его стоимости. Указанный результат достигается за счет того, что в способе радиолокации, предусматривающем формирование передатчиком зондирующего сигнала, излучение антенной данного зондирующего сигнала, прием отраженного от цели сигнала, преобразование частоты отраженного от цели сигнала в первом преобразователе, ко второму входу которого подают сигнал с эталона частоты, при этом сигнал с первого преобразователя поступает на вход второго преобразователя, ко второму входу которого подают сигнал с эталона частоты, во втором преобразователе производят преобразование входного сигнала в выходной сигнал, который направляют в передатчик, а затем в антенну для передачи его в качестве зондирующего сигнала, после чего замкнутой петлей обратной связи мгновенное изменение частоты доплера передатчика компенсируется соответствующим изменением частоты передатчика, в результате чего происходит замыкание системной петли обратной связи, образованной передатчиком, в котором управляют частотой его излучения. Указанный результат достигается также за счет того, что радиолокатор с доплеровским передатчиком, реализующий способ, содержит антенну, антенный переключатель, приемник, по меньшей мере, первый и второй преобразователи, эталон частоты, схему поиска и электронный ключ, выполненный с возможностью подключения входа передатчика к выходу второго преобразователя или выходу схемы поиска. Перечисленные средства определенным образом соединены между собой. 2 н. и 3 з.п. ф-лы, 6 ил.

Изобретение относится к области навигации наземных транспортных средств и предназначено для построения доплеровских датчиков продольной, сносовой и тангажной скоростей. Изобретение направлено на увеличение точности измерения скорости наземного транспортного средства с помощью ОДДС за счет компенсации погрешности смещения у средней частоты сигнала погрешностью смещения у частоты максимума спектра сигнала, величина которой пропорциональна погрешности средней частоты. Однолучевой доплеровский датчик скорости, содержащит последовательно соединенные приемоизлучающее устройство и измеритель частоты с Δfф>Δfс, где Δfф - ширина полосы пропускания фильтра, Δfс - ширина спектра полезного сигнала. При этом в него введены второй измеритель частоты с Δfф<Δfc, схема вычитания частот, корректор и схема сложения частот. 3 ил.

Группа изобретений относится к сельскому хозяйству и может быть использована для сбора информации для экспресс-диагностики инфекционных заболеваний биологических объектов - животных и птиц. Для этого на каждом биологическом объекте устанавливают RFID -метку, содержащую информацию о биологическом объекте. Берут образец от каждого биологического объекта. Размещают на его упаковке RFID-метку, содержащую информацию об образце и биологическом объекте. Наносят каждый образец на соответствующий иммунострип, меченный RFID-меткой. Считывают информацию с RFID-меток, находящихся на каждом биологическом объекте, соответствующем образце и иммунострипе. Вносят в память ридера результаты анализа, полученные для каждого образца с помощью иммунострипа. Передают информацию с ридера путем беспроводной или проводной связи в блок обработки данных, с помощью которого регистрируют полученную информацию и формируют единую базу данных. Также предложена система сбора информации для экспресс-диагностики инфекционных заболеваний животных и птиц. Группа изобретений позволяет осуществлять диагностический контроль на инфекционные заболевания животных и птиц. 2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к области радиолокации и может быть использовано в радиолокационных станциях (РЛС). Достигаемый технический результат - сохранение максимального коэффициента усиления Ку антенны РЛС в широком диапазоне сканирования в угломестной плоскости. Указанный технический результат достигается тем, что радиолокационный обзор пространства осуществляют с помощью фазированной антенной решетки, при этом при электронном сканировании по углу места и механическом в азимутальной плоскости обеспечивают равномерное распределение максимального значения коэффициента усиления антенны путем механического сканирования луча в угломестной плоскости. 2 ил.

Изобретение относится к области радиолокации и может быть использовано в радиолокационных станциях (РЛС) для защиты от импульсных, в том числе ответных, помех. Достигаемый технический результат изобретения - распознавание сигналов помехи, имитирующих цель, во всем угломестном столбце. Указанный технический результат по первому варианту достигается тем, что в способе радиолокационного обзора пространства, основанном на сканировании угломестного столбца, при очередном зондировании изменяют параметры зондирующего сигнала, считают помехой, имитирующей цель, сигналы во всем угломестном столбце, принятые на дальностях, на которых в осмотренном направлении обнаружены сигналы с прежними параметрами. Указанный технический результат по второму варианту достигается тем, что в способе радиолокационного обзора пространства, основанном на сканировании угломестного столбца, вводят задержку излучения зондирующего сигнала или пропускают очередное зондирование, считают помехой, имитирующей цель, сигналы, обнаруженные за пределами инструментальной дальности, а также сигналы, совпадающие с ними по дальности во всем угломестном столбце. 2 н. и 4 з.п. ф-лы, 3 ил.
Наверх