Способ идентификации воздушных целей



Способ идентификации воздушных целей
Способ идентификации воздушных целей
Способ идентификации воздушных целей
Способ идентификации воздушных целей
Способ идентификации воздушных целей
Способ идентификации воздушных целей
Способ идентификации воздушных целей
Способ идентификации воздушных целей
Способ идентификации воздушных целей
Способ идентификации воздушных целей
Способ идентификации воздушных целей

 


Владельцы патента RU 2567243:

Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации (RU)
Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации (RU)

Изобретение относится к области радиотехники и может быть использовано при создании средств идентификации воздушных целей. Достигаемый технический результат изобретения - повышение вероятности правильной идентификации воздушных целей, обнаруженных бортовой радиолокационной станцией (РЛС) в условиях многоцелевой обстановки за счет уменьшения объема неопределенности радиолокационной системы с активным ответом (РСАО). Сущность изобретения заключается в применении в РСАО дополнительной селекции запросного сигнала по пространственным координатам обнаруженной воздушной цели, заключающейся в выделении на стороне каждого i-го воздушного судна из множества запросных сигналов, запросного сигнала, адресованного данному воздушному судну, где , I - число воздушных судов, находящихся в зоне действия самолетного радиолокационного запросчика, имеющих на борту самолетный радиолокационный ответчик. Данная процедура осуществляется путем сравнения собственных пространственных координат i-го воздушного судна и пространственных координат воздушной цели, обнаруженной бортовой РЛС запрашивающего воздушного судна, информация о которых передается в запросном сигнале, что позволяет уменьшить пространственный объем неопределенности РСАО до размеров, определяемых ошибками измерения пространственных координат обнаруженной воздушной цели, а также ошибками измерения пространственных координат собственного местоположения запрашивающего и i-го воздушных судов. 2 ил.

 

Изобретение относится к области радиотехники и может быть использовано при создании средств идентификации воздушных целей, обнаруживаемых бортовой радиолокационной станцией.

Наиболее близким по технической сущности к заявляемому способу (прототипом) является способ идентификации воздушных целей, реализуемый в радиолокационной системе с активным ответом (РСАО) (см., например, Радиолокационные системы многофункциональных самолетов. Т. 1. РЛС - информационная основа боевых действий многофункциональных самолетов. Системы и алгоритмы первичной обработки радиолокационных сигналов. / Под ред. А.И. Канащенкова и В.И. Меркулова. - М.: «Радиотехника», 2006. - 656 с. С. 623).

К недостаткам данного способа относится низкая вероятность правильной идентификации воздушных целей в условиях многоцелевой обстановки. Основными причинами этого являются ошибки, возникающие в результате наложения ответных сигналов нескольких воздушных судов, находящихся в пределах объема неопределенности РСАО, и ошибки, возникающие в результате привязки к обнаруженной воздушной цели ответного сигнала другого воздушного судна, находящегося в пределах объема неопределенности РСАО.

Техническим результатом изобретения является повышение вероятности правильной идентификации воздушных целей, обнаруженных бортовой РЛС в условиях многоцелевой обстановки, за счет уменьшения объема неопределенности РСАО путем применения селекции запросного сигнала по пространственным координатам воздушных целей, обнаруженных бортовой РЛС.

Указанный результат достигается тем, что в известном способе идентификации воздушных целей, реализуемом в РСАО, основанном на обнаружении воздушной цели с помощью бортовой РЛС на стороне запрашивающего воздушного судна, формировании и передаче кодированного запросного сигнала самолетным радиолокационным запросчиком, приеме и обработке данного запросного сигнала самолетным радиолокационным ответчиком на стороне каждого i-го воздушного судна, где , I - число воздушных судов, находящихся в зоне действия самолетного радиолокационного запросчика, имеющих на борту самолетный радиолокационный ответчик, формировании и передаче кодированного ответного сигнала самолетным радиолокационным ответчиком со стороны каждого i-го воздушного судна, приеме и обработке данных ответных сигналов, а также формировании решения об идентификационном признаке воздушной цели самолетным радиолокационным запросчиком, формируют на стороне запрашивающего воздушного судна оценки декартовых координат обнаруженной воздушной цели и соответствующие дисперсии в относительной системе координат, кодируют запросный сигнал информацией, содержащей оценки декартовых координат обнаруженной воздушной цели в относительной системе координат и соответствующие дисперсии, на стороне каждого i-го воздушного судна выделяют из принятого запросного сигнала оценки декартовых координат обнаруженной воздушной цели в относительной системе координат и соответствующие дисперсии, из навигационной системы каждого i-го воздушного судна вводят оценки его декартовых координат и соответствующие дисперсии, оценивают расстояние Ri между обнаруженной воздушной целью и i-м воздушным судном, определяют пороговое значение hi по расстоянию между обнаруженной воздушной целью и i-м воздушным судном, если Ri<hi, то формируют решение о совпадении пространственных координат обнаруженной воздушной цели и i-го воздушного судна и передают ответный сигнал, в противном случае ответный сигнал не передают.

Сущность изобретения заключается в применении в РСАО, наряду с существующими видами селекции запросного сигнала, дополнительной селекции запросного сигнала по пространственным координатам обнаруженной воздушной цели. Под дополнительной селекцией запросного сигнала по пространственным координатам обнаруженной воздушной цели понимается выделение на стороне каждого i-го воздушного судна из множества запросных сигналов запросного сигнала, адресованного данному воздушному судну. Данная процедура осуществляется путем сравнения собственных пространственных координат i-го воздушного судна и пространственных координат воздушной цели, обнаруженной бортовой РЛС запрашивающего воздушного судна, информация о которых передается в запросном сигнале. Это позволяет уменьшить пространственный объем неопределенности РСАО до размеров, определяемых ошибками измерения пространственных координат обнаруженной воздушной цели, а также ошибками измерения пространственных координат собственного местоположения запрашивающего и i-го воздушных судов.

Данный способ включает в себя следующие этапы:

1. На стороне запрашивающего воздушного судна осуществляются:

- обнаружение воздушной цели и формирование оценок ее полярных координат J1=[Д111]T в связанной системе координат с соответствующими дисперсиями D[J1] с помощью бортовой РЛС, где Д1 - дальность до обнаруженной воздушной цели, α1 - пеленг обнаруженной воздушной цели в горизонтальной плоскости, β1 - пеленг обнаруженной воздушной цели в вертикальной плоскости;

- ввод из бортовой РЛС оценок полярных координат обнаруженной воздушной цели J1=[Д111]T в связанной системе координат с соответствующими дисперсиями D[J1];

- формирование оценок декартовых координат местоположения запрашивающего воздушного судна X0=[x0,y0,z0]T и угловых координат W0=[ψ000]T, характеризующих его пространственную ориентацию в относительной системе координат с соответствующими дисперсиями D[X0] и D[W0] с помощью навигационной системы, где ψ0 - угол рысканья, ϑ0 - тангаж, γ0 - крен.

- ввод из навигационной системы оценок декартовых координат местоположения запрашивающего воздушного судна X0=[x0,y0,z0]T и угловых координат W0=[ψ000]T, характеризующих его пространственную ориентацию в относительной системе координат с соответствующими дисперсиями D[X0] и D[W0];

- пересчет оценок полярных координат воздушной цели J1 в декартовы координаты X1 связанной системы координат в соответствии с выражением

- пересчет оценок декартовых координат обнаруженной воздушной цели из связанной системы координат в нормальную систему координат в соответствии с выражением

где Ac→g - матрица перехода из связанной системы координат в нормальную систему координат,

- пересчет оценок декартовых координат обнаруженной воздушной цели X1g из нормальной системы координат в относительную систему координат в соответствии с выражением

- формирование матрицы дисперсий оценок декартовых координат местоположения обнаруженной воздушной цели в нормальной системе координат в соответствии с выражением

где

,

,

,

,

.

- определение дисперсий оценок декартовых координат обнаруженной воздушной цели в относительной системе координат в соответствии с выражением

- формирование и передача кодированного запросного сигнала с информацией об оценках декартовых координат местоположения обнаруженной воздушной цели X1 в относительной системе координат и соответствующих дисперсиях D[X1] с помощью самолетного радиолокационного запросчика;

2. На стороне i-го воздушного судна осуществляется:

- прием и обработка кодированного запросного сигнала с помощью самолетного радиолокационного ответчика с выделением информации об оценках декартовых координат местоположения обнаруженной воздушной цели X1 в относительной системе координат и соответствующих дисперсиях D[X1];

- формирование оценок декартовых координат i-го воздушного судна Xi=[xi,yi,zi]T в относительной системе координат и соответствующих дисперсий D[Xi] с помощью навигационной системы;

- ввод из навигационной системы оценок декартовых координат i-го воздушного судна Xi=[xi,yi,zi]T в относительной системе координат и соответствующих дисперсий ;

- оценка расстояния Ri между обнаруженной воздушной целью и i-м воздушным судном в соответствии с выражением

- расчет порогового значения hi по расстоянию между обнаруженной воздушной целью и i-м воздушным судном в соответствии с выражением

h i = 1 ( x 1 x i ) 2 + ( y 1 y i ) 2 + ( z 1 z i ) 2 × × ( ( x 1 x i ) 2 9 ( D [ x 1 ] D [ x i ] ) + ( y 1 y i ) 2 9 ( D [ y 1 ] D [ y i ] ) + ( z 1 z i ) 2 9 ( D [ z 1 ] D [ z i ] ) ) 1 2 ( 8 )

- формирование решения о совпадении или несовпадении пространственных координат обнаруженной воздушной цели и i-го воздушного судна по критерию Неймана-Пирсона в соответствии с выражением

где гипотеза χi=1 - пространственные координаты обнаруженной воздушной цели и i-го воздушного судна совпадают, то есть i-е воздушное судно является воздушной целью, обнаруженной бортовой РЛС запрашивающего воздушного судна, гипотеза χi=0 - пространственные координаты обнаруженной воздушной цели и i-го воздушного судна не совпадают, то i-е воздушное судно не является целью, обнаруженной бортовой РЛС запрашивающего воздушного судна;

- формирование и передача кодированного ответного сигнала с помощью самолетного радиолокационного ответчика в случае принятого решения о совпадении пространственных координат обнаруженной воздушной цели и i-го воздушного судна.

Этим обеспечивается уменьшение объема неопределенности РСАО до размеров эллипса с полуосями ; ; .

3. На стороне запрашивающего воздушного судна осуществляется прием и обработка ответного сигнала, а также формирование решения об идентификационном признаке цели самолетным радиолокационным запросчиком в соответствии с существующим способом идентификации.

Данный способ может быть реализован, например, с помощью устройства, структурная схема которого приведена на фигуре 1, где обозначено: 1 - запрашивающее воздушное судно, 2 - блок обработки информации, 3 - навигационная система, 4 - синхронизатор, 5 - самолетный радиолокационный запросчик, 6 - бортовая РЛС, 7 - запрашиваемое воздушное судно, 8 - самолетный радиолокационный ответчик, 9 - блок обработки информации, 10 - синхронизатор, 11 - навигационная система.

Блок обработки информации 2 предназначен для обработки информации, поступающей от навигационной системы 3 и бортовой РЛС 6 в соответствии с выражениями (1-6). Навигационная система 3 предназначена для формирования оценок декартовых координат местоположения запрашивающего воздушного судна 1 X0=[x0,y0,z0]T и угловых координат, характеризующих его пространственную ориентацию W0=[ψ000]T в относительной системе координат с соответствующими дисперсиями D[X0] и D[W0]. Синхронизатор 4 предназначен для синхронизации работы элементов устройства на борту запрашивающего воздушного судна 1. Самолетный радиолокационный запросчик 5 предназначен для формирования и передачи кодированного запросного сигнала с информацией об оценках декартовых координат обнаруженной воздушной цели X1 в относительной системе координат и соответствующих дисперсиях D[X1], для приема и обработки кодированного ответного сигнала переданного с борта запрашиваемого воздушного судна, а так же для формирования решения об идентификационном признаке воздушной цели в соответствии с существующим способом идентификации. Бортовая РЛС 6 предназначена для обнаружения воздушной цели и формирования оценок ее полярных координат J1=[Д111]T в связанной системе координат с соответствующими дисперсиями D[J1]. Самолетный радиолокационный ответчик предназначен для приема и обработки кодированного запросного сигнала, переданного с борта запрашивающего воздушного судна 1, с выделением информации о пространственных координатах обнаруженной воздушной цели X1 в относительной системе координат и соответствующих дисперсиях D[X1], а также для формирования и передачи кодированного ответного сигнала, в случае принятого решения в блоке обработки информации 9 о совпадении пространственных координат обнаруженной воздушной цели и запрашиваемого воздушного судна 7. Блок обработки информации 9 предназначен для обработки информации, поступающей от самолетного радиолокационного ответчика 8 и навигационной системы 11 в соответствии с выражениями (7-9). Синхронизатор 10 предназначен для синхронизации работы элементов устройства на борту запрашиваемого воздушного судна 7. Навигационная система 11 предназначена для формирования оценок декартовых координат местоположения i-го воздушного судна 7 Xi=[xi,yi,zi]T в относительной системе координат и соответствующих дисперсий D[Xi].

Устройство работает следующим образом. Синхронизатор 4 синхронизирует работу элементов устройства на борту запрашивающего воздушного судна. Бортовая РЛС 6 обнаруживает воздушную цель и формирует оценки ее полярных координат J1=[Д111]T в связанной системе координат с соответствующими дисперсиями D[J1]. С выхода бортовой РЛС 6 на вход блока обработки информации 2 поступают оценки полярных координат обнаруженной воздушной цели J1=[Д111]T в связанной системе координат с соответствующими дисперсиями D[J1]. Навигационная система 3 формирует оценки декартовых координат местоположения запрашивающего воздушного судна X0=[x0,y0,z0]T и угловых координат W0=[ψ000]T, характеризующих его пространственную ориентацию в относительной системе координат с соответствующими дисперсиями D[X0] и D[W0]. С выхода навигационной системы 3 на вход блока обработки информации 2 поступают оценки декартовых координат местоположения запрашивающего воздушного судна X0=[x0,y0,z0]T и угловых координат W0=[ψ000]T, характеризующих его пространственную ориентацию в относительной системе координат с соответствующими дисперсиями D[X0] и D[W0]. Блок обработки информации 2 обрабатывает информацию, поступающую от навигационной системы 3 и бортовой РЛС 6 в соответствии с выражениями (1-6). С выхода блока обработки информации 2 на вход самолетного радиолокационного запросчика 5 поступает информация об оценках декартовых координат обнаруженной воздушной цели X1 в относительной системе координат и соответствующих дисперсиях D[X1]. Самолетный радиолокационный запросчик 5 формирует и передает кодированный запросный сигнал с информацией об оценках декартовых координат обнаруженной воздушной цели X1 и соответствующих дисперсиях D[X1]. Синхронизатор 10 синхронизирует работу элементов устройства на борту i-го воздушного судна 7. Самолетный радиолокационный ответчик 8 принимает и обрабатывает кодированный запросный сигнал, переданный с борта запрашивающего воздушного судна 1, с выделением информации об оценках декартовых координат обнаруженной воздушной цели X1 в относительной системе координат и соответствующих дисперсиях D[X1]. С выхода самолетного радиолокационного ответчика 8 на вход блока обработки информации 9 поступает информация об оценках декартовых координат обнаруженной воздушной цели X1 в относительной системе координат и соответствующих дисперсиях D[X1]. Навигационная система 11 формирует оценки декартовых координат местоположения i-го воздушного судна 7 Xi=[xi,yi,zi]T в относительной системе координат с соответствующими дисперсиями . С выхода навигационной системы 11 на вход блока обработки информации 9 поступают оценки декартовых координат местоположения i-го воздушного судна 7 Xi=[xi,yi,zi]T в относительной системе координат с соответствующими дисперсиями D[Xi]. Блок обработки информации 9 обрабатывает информацию, поступившую с выходов самолетного радиолокационного ответчика 8 и навигационной системы 11 в соответствии с выражениями (7-9). С выхода блока обработки информации 9 на вход самолетного радиолокационного ответчика 8 поступает информация о совпадении или несовпадении пространственных координат обнаруженной воздушной цели и i-го воздушного судна 7. Самолетный радиолокационный ответчик формирует и передает кодированный ответный сигнал, в случае принятого решения в блоке обработки информации 9 о совпадении пространственных координат обнаруженной воздушной цели и i-го воздушного судна 7. Самолетный радиолокационный запросчик 5 принимает и обрабатывает кодированный ответный сигнал, переданный с борта запрашиваемого воздушного судна 7, а также формирует решение об идентификационном признаке воздушной цели в соответствии с существующим способом идентификации.

Для определения эффективности предлагаемого способа оценивались следующие показатели:

- вероятность правильной идентификации обнаруженной воздушной цели с помощью предлагаемого способа Pпи;

- вероятность правильной идентификации обнаруженной воздушной цели с помощью существующего способа (прототипа) (см., например, Радиолокационные системы многофункциональных самолетов. Т. 1. РЛС - информационная основа боевых действий многофункциональных самолетов. Системы и алгоритмы первичной обработки радиолокационных сигналов. / Под ред. А.И. Канащенкова и В.И. Меркулова. - М.: «Радиотехника», 2006. С. 656) Pпи0.

Показатели Pпи и Pпи0 оценивались путем проведения статистических испытаний на соответствующих имитационных моделях радиолокационной системы с активным ответом при одинаковых начальных условиях.

Для характеристики эффективности предлагаемого способа определялся прирост вероятности правильной идентификации воздушных целей в радиолокационной системе с активным ответом за счет применения предлагаемого способа по отношению к данному показателю существующего способа (прототипа) ΔP=Pпи-Pпи0.

На фигуре 2 приведены графики зависимости величины ΔP от дальности до воздушной цели Дц (км), обнаруженной бортовой РЛС, для различных значений пространственных плотностей воздушных целей ρ. При этом график 1 соответствует значению пространственной плотности воздушных объектов , а график 2 - значению .

Из анализа графиков, приведенных на фигуре 2 видно, что применение предлагаемого способа приводит к существенному повышению вероятности правильной идентификации воздушных целей в условиях многоцелевой обстановки. При этом наибольший положительный эффект достигается при более высоких пространственных плотностях воздушных объектов. Так, например, для на дальности до воздушного объекта, обнаруженного бортовой РЛС, равной Дц=100 км, прирост вероятности правильной идентификации составляет ΔP≈0,05, в то время как для , при прочих равных условиях прирост вероятности правильной идентификации составляет ΔP≈0,32.

Предлагаемое техническое решение является новым, поскольку из общедоступных сведений не известен способ идентификации воздушных целей с применением селекции запросного сигнала по их пространственным координатам.

Предлагаемое техническое решение имеет изобретательский уровень, поскольку из опубликованных научных данных и известных технических решений явным образом не следует, что применение селекции запросного сигнала по пространственным координатам обнаруженной воздушной цели увеличивает вероятность правильной идентификации воздушных судов.

Предлагаемое техническое решение промышленно применимо, так как для его реализации могут быть использованы элементы, широко распространенные в области электронной и электротехники.

Способ идентификации воздушных целей, основанный на обнаружении воздушной цели с помощью бортовой РЛС на стороне запрашивающего воздушного судна, формировании и передаче кодированного запросного сигнала самолетным радиолокационным запросчиком, приеме и обработке данного запросного сигнала самолетным радиолокационным ответчиком на стороне каждого i-го воздушного судна, где , I - число воздушных судов, находящихся в зоне действия самолетного радиолокационного запросчика, имеющих на борту самолетный радиолокационный ответчик, формировании и передаче кодированного ответного сигнала самолетным радиолокационным ответчиком со стороны каждого i-го воздушного судна, приеме и обработке данных ответных сигналов, а также формировании решения об идентификационном признаке воздушной цели самолетным радиолокационным запросчиком, отличающийся тем, что на стороне запрашивающего воздушного судна формируют оценки декартовых координат обнаруженной воздушной цели и соответствующие дисперсии в относительной системе координат, кодируют запросный сигнал информацией, содержащей оценки декартовых координат обнаруженной воздушной цели в относительной системе координат и соответствующие дисперсии, на стороне каждого i-го воздушного судна выделяют из принятого запросного сигнала оценки декартовых координат обнаруженной воздушной цели в относительной системе координат и соответствующие дисперсии, из навигационной системы каждого i-го воздушного судна вводят оценки его декартовых координат и соответствующие дисперсии, оценивают расстояние Ri между обнаруженной воздушной целью и i-м воздушным судном, определяют пороговое значение hi по расстоянию между обнаруженной воздушной целью и i-м воздушным судном, если Ri<hi, то формируют решение о совпадении пространственных координат обнаруженной воздушной цели и i-го воздушного судна и передают ответный сигнал, в противном случае ответный сигнал не передают.



 

Похожие патенты:

Изобретение относится к радионавигации и может быть использовано в локальных навигационных системах и сетях для управления движением мобильных объектов в локальных зонах навигации.

Изобретение относится к области радиолокационной техники и может быть использовано при пассивной локации быстроперемещающихся объектов. Достигаемый технический результат изобретения - повышение эффективности пассивной локации за счет увеличения чувствительности и помехоустойчивости локационной системы, реализации возможности пассивной локации высокоскоростного объекта в условиях действия помех.

Изобретение относится к радиолокации и может быть использовано в импульсных радиолокационных станциях (РЛС). Достигаемый технический результат - улучшение эффективности работы РЛС при флуктуациях эффективной площади рассеяния (ЭПР) обнаруживаемых объектов, а также в условиях прицельных по частоте активных шумовых помех (АШП) в дальней зоне работы при сохранении качества подавления помеховых сигналов, отраженных от местных предметов в ближней зоне работы РЛС.

Изобретение относится к радиотехнике и может быть использовано в системах пеленгации и сопровождения различных объектов. Достигаемый технический результат - повышение точности пеленгации и сопровождения объектов за счет учета изменений крутизны и нелинейных искажений пеленгационной характеристики в процессе функционирования системы антенна-обтекатель.

Изобретение относится к радиолокации и может быть использовано для экспериментальной оценки вклада участков крупногабаритного объекта, например авиационного турбореактивного двигателя, в интегральную величину эффективной поверхности рассеяния двигателя.

Изобретение относится к системам разнесенной радиолокации околоземного космоса и может быть использовано для решения задач дистанционного зондирования Земли с помощью летательных и космических аппаратов.

Изобретение относится к радиотехнике и может быть использовано в многопозиционных системах пассивной радиолокации для определения местоположения и скорости движения радиоизлучающих объектов.

Изобретение относится к способам локации на малых дальностях и может быть использовано в радиосистемах посадки летательных аппаратов, сближения и стыковки космических объектов, безопасности вождения и парковки автомобилей.

Изобретение относится к радионавигации и может быть использовано в локальных навигационных системах и сетях для управления движением мобильных объектов в локальных зонах навигации.

Изобретение предназначено для выявления и радиолокационного сопровождения групп взаимодействующих воздушных объектов (ВО). Достигаемый технический результат - увеличение времени сопровождения групп ВО за счет более раннего их выявления.

Изобретение относится к области радиолокации и может быть использовано на вертолетах и других летательных аппаратах для обнаружения наземных объектов. Достигаемый технический результат - улучшение технико-эксплуатационных характеристик. Указанный результат достигается за счет того, что вертолетный радиолокационный комплекс (РЛК) содержит бортовую радиолокационную станцию (БРЛС) в составе антенно-приемопередающего устройства (АППУ) с фазированной антенной решеткой (ФАР), бортового процессора (ПБ), бортового рабочего места оператора (РМОБ), бортовой части широкополосной линии связи (ШЛСБ), включающей антенну и аппаратуру связи, и бортовой части узкополосной линии связи (УЛСБ), а также наземный пост (НП) в составе рабочих мест операторов (РМОН), наземной части ШЛС (ШЛСН), включающей направленную антенну, расположенную на телескопической мачте, и аппаратуру связи, наземной части УЛС (УЛСН), системы ориентации и топопривязки (СОТ), наземного процессора (ПН) и генератора мощности (ГМ) с соответствующими связями, содержит также систему ориентации и навигации (СОН) в составе бесплатформенной инерциальной системы (БИНС), встроенной в ФАР, навигационного приемника сигналов и электронно-вычислительную машину, а также модуль жизнеобеспечения и технического обслуживания (МЖТО) в составе жилого отсека, второго ГМ и отсека технического обслуживания с соответствующими связями. Кроме того, в программное обеспечение ПБ введена программа для обнаружения разрывов снарядов, основанная на особенностях доплеровского спектра отраженных от них сигналов, увеличены размеры ФАР, антенна ШЛСБ выполнена в виде четырех направленных антенн, расположенных по бортам вертолета, а направленная антенна ШЛСН является реперным отражателем вертолетного РЛК. 1 ил.

Изобретение относится к области радиолокации и может быть использовано при создании средств обнаружения высокоскоростных воздушных целей. Достигаемый технический результат изобретения - повышение вероятности обнаружения высокоскоростных воздушных целей за счет учета скорости их сближения с носителем импульсно-доплеровской радиолокационной станции (ИД РЛС). Сущность изобретения заключается в применении N каналов обнаружения, в которых когерентное накопление энергии полезного сигнала осуществляется в рамках подвижных участков, образованных путем перемещения временных стробов с соответствующей каждому каналу скоростью, согласованной с ожидаемой скоростью сближения воздушной цели с носителем ИД РЛС. Это позволяет избежать потери энергии сигнала, отраженного от воздушной цели, характерной для одного канала обнаружения с неподвижными временными стробами. 2 ил.

Изобретение относится к области определения местоположения подвижных подводных объектов технической природы и может быть использовано при поиске и обнаружении подводных аппаратов и платформ. Достигаемый технический результат - увеличение дальности, угла обзора, а также повышение скрытности объектов, ведущих поиск. Способ обнаружения местонахождения подводных объектов заключается в мониторинге области акватории посредством пассивного лоцирования в сверхвысокочастотном (СВЧ) диапазоне и основан на регистрации собственного СВЧ излучения океана, возникающего вследствие изменения термохалинной структуры поверхностных и глубинных слоев океана, и регистрации изменения структуры области тропосферы, расположенной над областью акватории, сборе и накоплении массивов данных о термохалинной циркуляции и состоянии области тропосферы при предполагаемом отсутствии подводных объектов. При предполагаемом наличии подводного объекта слежение за заданной областью акватории и областью тропосферы также осуществляют пассивным лоцированием путем приема на наземной станции излучаемых поверхностью области акватории и областью тропосферы радиосигналов, при этом сравнивают накопленный массив данных о термохалинной циркуляции и состоянии тропосферы с привязкой к заданной поверхности акватории при предполагаемом отсутствии подводных объектов с принятыми излучаемыми поверхностью области акватории и тропосферы радиосигналами; при предполагаемом наличии подводного объекта, при наличии отклонений, свидетельствующих о геофизическом возмущении, возникающем вследствие пересечения подводным объектом геомагнитных линий Земли, по принятым данным определяют величину потока электромагнитного поля в направлении вектора Пойнтинга, по которому судят о наличии подводного объекта; дополнительно осуществляют активное зондирование тропосферы над заданной областью акватории при предполагаемом наличии подводного объекта путем излучения и приема отраженных метаобразованиями тропосферы радиосигналов, сравнивают накопленный массив данных о термохалинной циркуляции с привязкой к заданной поверхности акватории при предполагаемом отсутствии подводных объектов с принятыми излучаемыми поверхностью области акватории радиосигналами при предполагаемом наличии подводного объекта и при наличии отклонений, свидетельствующих о геофизическом возмущении, возникающем вследствие пересечения подводным объектом геомагнитных линий Земли, также определяют поток мощности электромагнитного поля в направлении вектора Пойнтинга. При получении приблизительно одинаковых значений потоков мощности судят о том, что подводным объектом является подводный аппарат, при этом по изменению состояний тропосферы и возмущениям, возникающим вследствие термохалинной циркуляции, определяют местоположение подводного объекта. 3 ил.
Изобретения относятся к области радиолокации и могут быть использованы в радиолокационных станциях (РЛС) для управления воздушным движением и для контроля воздушного пространства. Достигаемый технический результат - сокращение затрат энергии РЛС на определение с требуемой точностью угловой координаты цели. Указанный результат по первому варианту заявляемого технического решения достигается тем, что в способе радиолокационного обзора пространства, основанном на обмене радиолокационной информацией разнесенными в контролируемом пространстве независимо работающими РЛС, радиолокационные станции с перекрывающимися зонами обзора обмениваются данными о прокладываемой ими трассе цели и результирующую трассу в зоне перекрытия прокладывают, вычисляя угловую координату в плоскости установленного разноса РЛС с использованием дальностей до цели, извлекаемых из прокладываемых трасс РЛС, входящих в систему единого времени. Указанный технический результат по второму варианту заявляемого технического решения достигается тем, что в способе радиолокационного обзора пространства, основанном на обмене радиолокационными станциями радиолокационной информацией с банком данных, доступном для независимо работающих разнесенных в контролируемом пространстве РЛС, РЛС передают в банк данных и получают из него параметры прокладываемых ими трасс цели, на основании этой информации результирующую трассу в зоне перекрытия РЛС прокладывают, вычисляя угловую координату в плоскости установленного разноса РЛС с использованием дальностей до цели, извлекаемых из прокладываемых трасс РЛС, входящих в систему единого времени. 2 н.п. ф-лы.

Изобретение относится к устройствам акустоэлектроники. Техническим результатом является повышение степени защищенности информационного сигнала от несанкционированного прочтения и повышение технологичности процесса его кодирования. Для этого в многоканальной оптической линии задержки (ОЛЗ), включающей расположенный на пьезоэлектрической подложке входной преобразователь, состоящий из n встречно-штыревых преобразователей (ВШП), и отражательные элементы, установленные в одну линию по обеим сторонам входного преобразователя, входной преобразователь выполнен из N модулей, состоящих из n1…ni ВШП, количество которых в модуле соответствует числу импульсов с заданными временными характеристиками в информационном сигнале и установленных таким образом, что осевая линия каждого модуля имеет свой угол наклона α к линии расположения отражательных элементов. В способе кодирования информационного сигнала, формируемого многоканальной ОЛЗ ВШП входного преобразователя группируют в N модулей, при этом каждый модуль изготавливают с количеством ВШП, соответствующим числу импульсов, имеющих заданные временные задержки и осевые линии которых устанавливают под углом α1…αn к линии отражательных элементов, причем α1≠α2≠…≠αn, а перекодирование информационного сигнала выполняют переменой места положения модулей относительно друг друга с сохранением угла наклона осей модулей. 2 н.п. ф-лы, 4 ил.

Изобретение относится к области подповерхностной радиолокации и контроля насыпи железных дорог и автодорог. Влажность, загрязненность и толщину слоев насыпи определяют с помощью георадара. В составе насыпи железной или автодороги применяют один или несколько слоев отражательного геотекстиля. Отражательный геотекстиль включает электропроводящие элементы. Измеряют электромагнитные сигналы георадара, отраженные от электропроводящих элементов геотекстиля. Результаты численно обрабатывают на ЭВМ. Затухание отраженных электромагнитных сигналов определяют по амплитуде, а показатель преломления - по скорости сигналов. Влажность насыпи определяют по показателю преломления, а загрязненность - по показателю преломления и затуханию сигналов. Толщину и влажность слоев слоисто-неоднородной насыпи определяют по форме годографа отраженных сигналов. Способ является бесконтактным, неразрушающим, быстрым и эффективным. Технический результат заключается в увеличении эффективности и качества обследования насыпи, повышении безопасности на железных дорогах и автодорогах. 10 з.п. ф-лы, 5 ил.

Изобретение относится к радиолокации и может быть использовано в импульсных радиолокационных станциях (РЛС) сопровождения с активной фазированной антенной решеткой. Достигаемый технический результат - уменьшение временных затрат на обнаружение целей и, как следствие, увеличение производительности РЛС сопровождения, при сохранении однозначности измерения дальности. Указанный технический результат достигается за счет использования многочастотного способа работы, при котором частота зондирующего сигнала изменяется от такта к такту, а прием отраженного эхо-сигнала осуществляется на этих же частотах в периодах повторения, соответствующих дальности до цели. При этом РЛС работает по целеуказанию от внешних средств обнаружения или от устройства вторичной обработки информации, реализующей завязку трассы при работе указанной РЛС в режиме поиска целей. Способ реализуется устройством, состоящим из основной и компенсационной антенны, формирователя зондирующих импульсов, передающего устройства, приемников основного и компенсационного каналов, устройства первичной обработки, устройства вторичной обработки и схемы управления, с соответствующими связями. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области средств обнаружения нарушений, выявляемых правоохранительными органами. Достигаемый технический результат - повышение чувствительности и помехозащищенности. Указанный результат достигается за счет того, что радар-детектор содержит антенну, подключенную к приемнику сигнала, первый смеситель, смешивающий сигнал антенны с сигналом от первого гетеродина, усилитель, второй смеситель, смешивающий усиленный сигнал с сигналом от, по меньшей мере, одного второго гетеродина, полосовой фильтр, сигнатурный модуль и центральный процессор, который выводит информацию об обнаруженных радарах посредством звукового усилителя и динамика. При этом центральный процессор осуществляет управление, по меньшей мере, одним вторым гетеродином и, посредством связанного с ним генератора пилообразного напряжения, первым гетеродином. Кроме того, устройство содержит фотодиод и связанный с ним лазерный модуль, сигнал от которого анализируется центральным процессором. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области радиотехники, в частности к способам и технике радиотехнического мониторинга источников радиоизлучений (ИРИ) с линейно-частотно-модулированными (ЛЧМ) сигналами. Достигаемый технический результат - повышение точности определения ширины спектра ЛЧМ сигнала путем учета взаимного перемещения носителя ИРИ и носителя автокорреляционного приемника (АКП). Указанный технический результат достигается за счет определения радиальных скоростей движения носителей источника радиоизлучения и приемника, средней длины волны ЛЧМ сигналов, измерения периода следования ЛЧМ сигналов и определения ширины спектра ЛЧМ сигналов по формуле: где fp(n) - разностная частота сигнала на выходе автокорреляционного приемника, τз - время задержки принятого ЛЧМ сигнала, τu - длительность ЛЧМ сигнала, VrИ(nTu) - радиальная скорость движения носителя источника радиоизлучения, VrП(nTu) - радиальная скорость движения носителя приемника, Tu - период следования ЛЧМ сигналов, λ - средняя длина волны ЛЧМ сигналов, n = 1 … N ¯ , N - количество ЛЧМ сигналов. 4 ил.

Изобретение относится к радиолокации и может использоваться в радиотехнических системах, установленных на подвижных объектах, для получения радиолокационного изображения (РЛИ) в процессе дистанционного зондирования земной поверхности. Достигаемый технический результат - повышение вероятности правильного распознавания малоразмерных и распределенных объектов на местности. Сущность заявляемого способа состоит в том, что при формировании РЛИ осуществляется компенсация линейного пространственного искажения изображений на восходящем и нисходящем участке изменения линейно-частотно-модулированного (ЛЧМ) сигнала и дополнительная фокусировка изображений, учитывающая свойства широкополосности ЛЧМ. Для этого после процедуры приема и записи в память эхо-сигналов, отраженных от всех объектов в зоне обзора радиолокационной станции с синтезированной апертурой, осуществляется разделение данных, содержащих отсчеты эхо-сигнала на восходящем и нисходящем участках изменения частоты ЛЧМ зондирующего сигнала. Затем производится параллельное сжатие этих данных по дальности и вычисление оценки ошибки фазовых искажений в процессе автофокусировки. На этапе сжатия данных по азимуту формируется пара РЛИ, при этом используются опорные функции, отличающиеся друг от друга несущими частотами для восходящего и нисходящего участков изменения частоты ЛЧМ сигнала. На следующем этапе осуществляется последовательное вычисление коэффициента взаимной корреляции этих РЛИ при различных значениях линейной ошибки дискретизации эхо-сигналов в соответствии с алгоритмом «золотого сечения». С учетом вычисленной оценки данной ошибки производится дополнительная фокусировка каждого изображения, а после геометрической коррекции пары РЛИ с целью приведения их к единому масштабу, осуществляется их некогерентное суммирование.1 ил.
Наверх